Collective neutrino oscillations in the early Universe

MPIK, Heidelberg, April 19, 2021

Rasmus S. L. Hansen

NBIA and DARK at the Niels Bohr Institute

INTERACTIONS

Co-financed by the Connecting Europe Facility of the European Union

UNIVERSITY OF COPENHAGEN

Neutrino oscillations

Vacuum oscillations

KamLAND: 0801.4589

Collective neutrino oscillations in the early Universe

Neutrino oscillations

SNO: 1602.02469

Vacuum dominated at low energy.

Matter dominated at high energy.

MSW (Mikheev-Smirnov-Wolfenstein) potential:

 $V_e = \sqrt{2}G_{\rm F}n_e$

Borexino: 1810.12967

Solar neutrinos

Density matrix

 $a_{i\mathbf{p}}^{\dagger}$ - creation operator for neutrino with flavor *i* and momentum **p**. $a_{i\mathbf{p}}$ - annihilation operator for neutrino with flavor *i* and momentum **p**. The density matrices are

$$ho_{ij} = \left\langle a_i^\dagger a_j
ight
angle_{f p} \;, \qquad ar
ho_{ij} = \left\langle ar a_{f j}^\dagger ar a_{f i}
ight
angle_{f p} \;.$$

 $rac{dar{
ho}(\mathbf{p},\mathbf{x})}{dt} = -i\left[ar{\mathcal{H}}(
ho,\mathbf{p},\mathbf{x}),ar{
ho}(\mathbf{p},\mathbf{x})
ight] \; .$

Neutrino oscillations described by

$$\frac{d\rho(\mathbf{p},\mathbf{x})}{dt} = -i\left[\mathcal{H}(\rho,\mathbf{p},\mathbf{x}),\rho(\mathbf{p},\mathbf{x})\right] ,$$

Hamiltonians for vacuum oscillations

$$\mathcal{H}(
ho,\mathbf{p},\mathbf{x}) = rac{\mathcal{U}\mathcal{M}^2\mathcal{U}^\dagger}{2p} , \qquad ar{\mathcal{H}}(
ho,\mathbf{p},\mathbf{x}) = -rac{\mathcal{U}\mathcal{M}^2\mathcal{U}}{2p}$$

Polarization vector - two flavor oscillations

Raffelt and de Sousa Seixas: 1307.7625

Simple collective oscillations

Neutrino-neutrino potential:

$$\vec{V}_{\rm VV} = \sqrt{2}G_{\rm F} \int \frac{d^3\mathbf{p}'}{(2\pi)^3} (\vec{P}(\mathbf{p}') - \vec{\bar{P}}(\mathbf{p}'))(1 - \mathbf{v}' \cdot \mathbf{v}) \quad \Rightarrow \quad \frac{d}{dt} \vec{P} \propto (\vec{P} - \vec{\bar{P}}) \times \vec{P}$$

Simple: homogeneous, isotropic

Simple collective oscillations

Neutrino-neutrino potential:

$$ec{V}_{
m vv} = \sqrt{2}G_{
m F}\int rac{d^3{f p}'}{(2\pi)^3}(ec{P}({f p}')-ec{P}({f p}'))(1-{f v}'\cdot{f v}) \quad \Rightarrow \quad rac{d}{dt}ec{P}\propto(ec{P}-ec{P}) imesec{P}) imesec{P} \; .$$

Vacuum oscillations:

 $\begin{array}{l} \operatorname{prop}(\nu_e \rightarrow \nu_e) = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E} \\ \operatorname{mixing angle} \theta = \pi/4 \approx \text{0.79.} \end{array}$

Synchronized oscillations: mixing angle $\theta = 0.46$.

Pastor, Raffelt, Semikoz: hep-ph/0109035

Simple: homogeneous, isotropic

Simple collective oscillations

Simple: homogeneous, isotropic

Polarization vector:

$$\rho = \frac{1}{2} \begin{pmatrix} P_{o} + P_{z} & P_{x} - iP_{y} \\ P_{x} + iP_{y} & P_{o} - P_{z} \end{pmatrix}, \qquad \frac{d}{dt} \vec{P} = \vec{V} \times \vec{P},$$
$$\vec{V}_{\nu\nu} = \sqrt{2}G_{F} \int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}} (\vec{P}(\mathbf{p}') - \vec{P}(\mathbf{p}'))(1 - \mathbf{v}' \cdot \mathbf{v}) \quad \Rightarrow \quad \frac{d}{dt} \vec{P} \propto \vec{D} \times \vec{P}.$$

Bipolar oscillations:

Raffelt and de Sousa Seixas: 1307.7625

Hannestad, Raffelt, Sigl, Wong: astro-ph/0608695

 $\begin{array}{l} \mbox{Collective neutrino oscillations in the early Universe} \\ \mbox{collective neutrino oscillations on the early Universe} \\ \mbox{collective neurons on the early Universe} \\ \mbo$

Collective oscillations can:

- Synchronize oscillations.

- Lead to large conversion for small θ .

Treating neutrino oscillations in the early Universe

Quantum kinetic equations

$$\left(rac{\partial}{\partial t} - Hprac{\partial}{\partial p}
ight)
ho(\mathbf{p},\mathbf{x}) = -i\left[\mathcal{H}(
ho,\mathbf{p},\mathbf{x}),
ho(\mathbf{p},\mathbf{x})
ight] + \mathcal{C}(
ho,\mathbf{p},\mathbf{x})\,,$$

Treating neutrino oscillations in the early Universe

Quantum kinetic equations

$$\left(rac{\partial}{\partial t} - Hprac{\partial}{\partial p}
ight)
ho(\mathbf{p},\mathbf{x}) = -i\left[\mathcal{H}(
ho,\mathbf{p},\mathbf{x}),
ho(\mathbf{p},\mathbf{x})
ight] + \mathcal{C}(
ho,\mathbf{p},\mathbf{x}),$$

Hamiltonian:

$$\begin{aligned} \mathcal{H}(\rho,\mathbf{p},\mathbf{x}) &= \frac{\mathcal{U}\mathcal{M}^{2}\mathcal{U}^{\dagger}}{2p} + \sqrt{2}G_{\mathrm{F}}\int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}}(\rho(\mathbf{p}',\mathbf{x}) - \bar{\rho}(\mathbf{p}',\mathbf{x}))(1 - \mathbf{v}' \cdot \mathbf{v}) \\ \text{vacuum term} \quad \text{asymmetric neutrino} - \text{neutrino term} \\ &- \frac{8\sqrt{2}G_{\mathrm{F}}p}{4} \quad \frac{\mathcal{E}_{l} + \frac{1}{3}\mathcal{P}_{l}}{m_{\mathrm{W}}^{2}} \\ \text{symmetric matter term} \end{aligned}$$

Neutrino oscillations in the early Universe Large lepton asymmetry

Dolgov, Hansen, Pastor, Petcov, Raffelt and Semikoz: hep-ph/0201287

Synchronized oscillations and large chemical potentials:

Fermi-Dirac distribution:

$$f(p) = \frac{1}{\exp(p/T - \xi) + 1} \, .$$

In equilibrium, $\overline{\xi} = -\xi$.

Conclusion: Bounds on ξ_{ν_e} apply to all flavors.

see also Wong: hep-ph/0203180 and Abazajian, Beacom and Bell: astro-ph/0203442 $_{
m 10}$

Neutrino oscillations in the early Universe Large lepton asymmetry

Dolgov, Hansen, Pastor, Petcov, Raffelt and Semikoz: hep-ph/0201287

Synchronized oscillations and large chemical potentials: (measured $tan(\theta_{13})^2 = 0.02$)

Conclusion: Bounds on ξ_{ν_e} apply to all flavors.

see also Wong: hep-ph/0203180 and Abazajian, Beacom and Bell: astro-ph/0203442 10

Neutrino oscillations in the early Universe

Diversity

Johns, Mina, Cirigliano, Paris and Fuller: 1608.01336

Neutrino oscillations equilibrate flavors in general.

Neutrino oscillations equilibrate flavors in general.

Details depend on initial conditions.

Neutrino-neutrino term

$$\rho = \frac{1}{2} \begin{pmatrix} P_{o} + P_{z} & P_{x} - iP_{y} \\ P_{x} + iP_{y} & P_{o} - P_{z} \end{pmatrix} \qquad \vec{V}_{vv} = \sqrt{2}G_{F} \int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}} (\vec{P}(\mathbf{p}') - \vec{\bar{P}}(\mathbf{p}'))(1 - \mathbf{v}' \cdot \mathbf{v})$$

Neutrino-neutrino term

$$\rho = \frac{1}{2} \begin{pmatrix} P_{o} + P_{z} & P_{x} - iP_{y} \\ P_{x} + iP_{y} & P_{o} - P_{z} \end{pmatrix} \qquad \vec{V}_{vv} = \sqrt{2}G_{F} \int \frac{d^{3}\mathbf{p}'}{(2\pi)^{3}} (\vec{P}(\mathbf{p}') - \bar{\vec{P}}(\mathbf{p}'))(1 - \mathbf{v}' \cdot \mathbf{v})$$

 $rac{d}{dt}ec{P}\proptoec{D} imesec{P}$

Bipolar oscillations - Inverted mass ordering

Raffelt and de Sousa Seixas: 1307.7625

Neutrino-neutrino term

$$\rho = \frac{1}{2} \begin{pmatrix} P_{o} + P_{z} & P_{x} - iP_{y} \\ P_{x} + iP_{y} & P_{o} - P_{z} \end{pmatrix}$$

$$ec{V}_{
u
u} = \sqrt{2}G_{\mathrm{F}}\int rac{d^{3}\mathbf{p}'}{(2\pi)^{3}}(ec{P}(\mathbf{p}') - ar{ec{P}}(\mathbf{p}'))(\mathbf{1} - \mathbf{v}' \cdot \mathbf{v})$$

$$\frac{d}{dt}\vec{P}_1 \propto \vec{D}_2 \times \vec{P}_1$$
$$\frac{d}{dt}\vec{P}_2 \propto \vec{D}_1 \times \vec{P}_2$$

Two bin model - Normal mass ordering

Raffelt and de Sousa Seixas: 1307.7625

Mirizzi: 1506.06805

Breaking homogeneity

A simple line model

Duan and Shalgar: 1412.7097

Mirizzi, Mangano and Saviano: 1503.03485

Collective oscillations can break isotropy and homogeneity.

Collective oscillations can break isotropy and homogeneity.

The breaking can make conversion in NO possible.

Collective oscillations in the early Universe Homogeneous universe model with two angle bins

RSLH, Shalgar and Tamborra: 2012.03948

Assumptions:

- Universe is homogeneous.
- Angular dependence approximated with two angle bins. (left moving *L* and right moving *R* not to be confused with chirality of the particles)
- Two neutrino oscillation framework.
- Relaxation-time-like approximation for the collision term.

Expansion of the Universe

Collision term - approximations

Divide into four different types of reactions each with a rate:

- 1. Scattering with electrons and positrons, $\Gamma_{s,\alpha}$
- 2. Annihilations to electrons and positrons, $\Gamma_{a,\alpha}$
- 3. Neutrino-neutrino scatterings, $\Gamma_{\!\nu\nu}$
- 4. Neutrino-antineutrino collisions, $\Gamma_{\nu\bar{\nu}}$

Equilibrium distributions are assumed when calculating the rates.

Functional form: One equilibrium distribution in each gain term.

$$f(T_{\rm eq},\mu) = rac{1}{\exp(p/T_{\rm eq}-\mu/T_{\rm eq})+1} \,,$$

All other distribution functions are represented by normalized energy densities, $u_{\alpha\beta}$.

Collision term - approximations

Divide into four different types of reactions each with a rate:

- 1. Scattering with electrons and positrons, $\Gamma_{s,\alpha}, T_{eq}=T_{\gamma}$, $\mu=\pi_{\alpha}$
- 2. Annihilations to electrons and positrons, $\Gamma_{a,\alpha}$, $T_{eq} = T_{\gamma}$, $\mu = \mu_{\alpha}$
- 3. Neutrino-neutrino scatterings, $\Gamma_{\nu\nu},\,T_{eq}=T_{\nu_{\alpha}},\,\mu=\pi_{\nu_{\alpha}}$
- 4. Neutrino-antineutrino collisions, $\Gamma_{\nu\bar{\nu}}$, $T_{eq} = T_{\nu_{\alpha}}$, $\mu = \pi_{\nu_{\alpha}}$

Equilibrium distributions are assumed when calculating the rates.

Functional form: One equilibrium distribution in each gain term.

$$f(T_{\rm eq},\mu) = rac{1}{\exp(p/T_{\rm eq}-\mu/T_{\rm eq})+1} \,,$$

All other distribution functions are represented by normalized energy densities, $u_{\alpha\beta}$.

Collision term

For electron neutrinos:

$$\begin{split} \mathcal{C}_{ee} &= \Gamma_{a,e} \left[\left(\frac{T_{\gamma}}{T_{cm}} \right)^4 f(T_{\gamma}, \mu_e) - \rho_{ee} \right] \\ &+ \Gamma_{s,e} \left[f(T_{\gamma}, \pi_e) - \rho_{ee} \right] \\ &- \Gamma_G \operatorname{Re} \left(\bar{u}_{ex} \rho_{ex}^* \right) \\ &+ \Gamma_{\nu\nu} (2u_{ee} + u_{xx}) \left(f_{\nu_e} - \rho_{ee} \right) \\ &+ \Gamma_{\nu\bar{\nu}} (4\bar{u}_{ee} + \bar{u}_{xx}) \left(f_{\nu_e} - \rho_{ee} \right) \\ &+ \Gamma_{\nu\bar{\nu}} \left(\bar{u}_{xx} f_{\nu_x} - \bar{u}_{ee} \rho_{ee} \right) \\ &+ \operatorname{Re} \left[\left(\Gamma_{\nu\nu} u_{ex}^* + 4 \Gamma_{\nu\bar{\nu}} \bar{u}_{ex}^* \right) \left(f_{ex} - \rho_{ex} \right) \right], \end{split}$$

Annihilations to $e^+e^ \times 10^{-3}$ 1.21.0 n_0 0.8 0.20.0 Scattering with $e^+/e^ \times 10^{-4}$ 2 $\Delta \left(\frac{dn}{dr} \right) / n_0$ 0 --- ν_e , Grohs et al. (2015) --- ν_r , Grohs et al. (2015) -6All interactions with e^{\pm} , ν and $\bar{\nu}$ $\times 10^{-3}$ 1.21.0 $\binom{0}{u} \binom{0.8}{\frac{4p}{u}} \frac{0.6}{0.4}$ 0.20.0 2 10 6 $r = E/T_{\rm cm}$

Linear stability analysis

Write density matrix:

$$ho_R = rac{1}{2} \mathrm{Tr}(
ho_R) + rac{1}{2} \begin{pmatrix} s_R & \epsilon_R \\ \epsilon_R^* & -s_R \end{pmatrix} \; .$$

- Assume $\mathbf{\epsilon} = (\epsilon_R, \bar{\epsilon}_R, \epsilon_L, \bar{\epsilon}_L)^T = (0, 0, 0, 0)^T$ is a fixed point (zero time derivative).
- Linearize the equations for small ϵ :

$$\frac{d}{dt}\mathbf{\epsilon} = i\mathbf{M}\mathbf{\epsilon}$$

- Assume collective solution $\boldsymbol{\epsilon} = \exp(-i\Omega t) \mathbf{Q}$.
- Determine Ω such that $(M I)\mathbf{Q} = 0$ has solutions (determine eigenvalues).

Linear stability analysis

- μ Neutrino term.
- ω_λ Matter and vacuum term.
- $s = \rho_{ee} \rho_{xx}$ Difference between ν_e and ν_x densities. Eigenvalues: ($\boldsymbol{\varepsilon} = \exp(-i\Omega t) \mathbf{Q}$)

$$\begin{split} \Omega_1^{\pm} &= \frac{1}{2} \left(3\mu(s-\bar{s}) \pm \sqrt{-4\omega_{\lambda}\mu(s+\bar{s}) + 4\omega_{\lambda}^2 + \mu^2(s-\bar{s})^2} \right), \\ \Omega_2^{\pm} &= \frac{1}{2} \left(\mu(s-\bar{s}) \pm \sqrt{4\omega_{\lambda}\mu(s+\bar{s}) + 4\omega_{\lambda}^2 + \mu^2(s-\bar{s})^2} \right). \end{split}$$

Eigenvectors:

$$\mathbf{w}_{1}^{\pm T} = \left(\frac{\mu(s-2\bar{s})+\omega_{\lambda}-\Omega_{1}^{\pm}}{\mu\bar{s}}, -1, -\frac{\mu(s-2\bar{s})+\omega_{\lambda}-\Omega_{1}^{\pm}}{\mu\bar{s}}, 1\right)^{T}, \text{ (asymmetric in } R \leftrightarrow L)$$
$$\mathbf{w}_{2}^{\pm T} = \left(\frac{\mu s+\omega_{\lambda}-\Omega_{2}^{\pm}}{\mu\bar{s}}, 1, \frac{\mu s+\omega_{\lambda}-\Omega_{2}^{\pm}}{\mu\bar{s}}, 1\right)^{T}. \text{ (symmetric in } R \leftrightarrow L)$$
Recall: $\boldsymbol{\epsilon} = (\boldsymbol{\epsilon}_{R}, \bar{\boldsymbol{\epsilon}}_{R}, \boldsymbol{\epsilon}_{L}, \bar{\boldsymbol{\epsilon}}_{L})^{T}.$

Linear stability analysis

Isotropic initial conditions, NO

Isotropic initial conditions, IO

Anisotropic initial conditions, IO

Anisotropic initial condition, NO

$$v-ar{v}$$
 asymmetry

Homogeneous, isotropic and single energy

Linearize:

$$\rho \sim \begin{bmatrix} s-\delta & \varepsilon \\ \varepsilon^* & -s+\delta \end{bmatrix}$$

$$\frac{d}{dt} \begin{pmatrix} \epsilon \\ \bar{\epsilon} \end{pmatrix} = i \mathsf{M} \begin{pmatrix} \epsilon \\ \bar{\epsilon} \end{pmatrix}$$

$$\frac{d(\delta - \bar{\delta})}{dt} = \omega \sin 2\theta (\operatorname{Im}(\epsilon) + \operatorname{Im}(\bar{\epsilon}))$$

$$v - \bar{v}$$
 asymmetry

Homogeneous, isotropic and single energy

$$\frac{d(\delta-\bar{\delta})}{dt} = \omega \sin 2\theta (\operatorname{Im}(\epsilon) + \operatorname{Im}(\bar{\epsilon}))$$

Symmetric initial conditions ($\bar{\varepsilon}_{o} = \varepsilon_{o}$) gives

 $\operatorname{Im}(\bar{\varepsilon}) = -\operatorname{Im}(\varepsilon).$

Antisymmetric initial conditions $(\bar{e}_{\circ} = -e_{\circ})$ gives

$$\operatorname{Im}(\bar{\varepsilon}) = \operatorname{Im}(\varepsilon).$$

$$v - \bar{v}$$
 asymmetry

Homogeneous, isotropic and single energy

$$\frac{d(\delta-\bar{\delta})}{dt} = \omega \sin 2\theta (\mathrm{Im}(\epsilon) + \mathrm{Im}(\bar{\epsilon}))$$

Symmetric initial conditions ($\bar{\varepsilon}_{o} = \varepsilon_{o}$) gives

$$\operatorname{Im}(\bar{\varepsilon}) = -\operatorname{Im}(\varepsilon).$$

Antisymmetric initial conditions $(\bar{\varepsilon}_{\circ} = -\varepsilon_{\circ})$ gives

$$Im(\bar{\varepsilon}) = Im(\varepsilon)$$

Enhancement of $v - \bar{v}$ asymmetry:

- Found numerically for early Universe conditions.

- Confirmed in simple model.

- Similar effect known from active-sterile oscillations.

Effect on Neff

Collective oscillations enhance v_x and supress v_e .

Collision term from e^+e^- annihilation:

$$\begin{split} \mathcal{C}_{a,ee} &= \Gamma_{a,e} \left[\left(\frac{T_{\gamma}}{T_{cm}} \right)^4 f(T_{\gamma},\mu_e) - \rho_{ee} \right] , \\ \mathcal{C}_{a,xx} &= \Gamma_{a,x} \left[\left(\frac{T_{\gamma}}{T_{cm}} \right)^4 f(T_{\gamma},\mu_x) - \rho_{xx} \right] . \end{split}$$

 $\Gamma_{a,e} > \Gamma_{a,x}$.

Oscillations are expected to enhance $N_{\rm eff}$.

Change in $N_{\rm eff}$ in the two angle bin model

2012.03948

$$egin{aligned} N_{\mathrm{eff}} &\equiv rac{
ho_{
u}}{7/8
ho_{\gamma}} \left(rac{11}{7}
ight)^3 \ &pprox \left(rac{\int dr \ r^3(
ho_{ee}+ar
ho_{ee}+
ho_{xx}+ar
ho_{xx})}{2\int dr r^3 f_{\mathrm{o}}}+1
ight) rac{(11/7)^3}{(T_{\gamma}/T_{\mathrm{cm}})^4}\,. \end{aligned}$$

For no neutrino oscillations, $N_{\rm eff}=$ 3.04596 (not very accurate).

The cases with oscillations give:

	NO, isotropic	NO, anisotropic	NO, anisotropic ($\mu_{ini} = 10^{-9}$)	IO, both
$\Delta N_{\rm eff}$	$0.9 imes10^{-4}$	$5.0 imes10^{-4}$	$4.9 imes10^{-4}$	$5.8 imes10^{-4}$

These are only indications from a simple model with an approximated collision term!

Summary

- Collective oscillations in the early Universe can enhance Neff.
- They can break isotropy and we expect them to break homogeneity.
- They might amplify a small neutrino-antineutrino asymmetry by several orders of magnitude.

Future perspectives

- Full angular distributions.
- Breaking homogeneity.
- Full collision term.
- Three neutrino effects.
- Beyond Standard Model physics.
 - Large lepton asymmetry.
 - Low temperature reheating.
 - Sterile neutrinos.
- Going beyond meanfield.

Thank you for your attention!

Homogeneous universe model with two angle bins

$$rac{\partial
ho_R(p)}{\partial t} - Hp rac{\partial
ho_R(p)}{\partial p} = -i[\mathcal{H}_R(
ho_R,
ho_L,p),
ho_R] + \mathcal{C}_R(
ho_R,
ho_L,p) ,
onumber \ rac{\partial
ho_L(p)}{\partial t} - Hp rac{\partial
ho_L(p)}{\partial p} = -i[\mathcal{H}_L(
ho_R,
ho_L,p),
ho_L] + \mathcal{C}_L(
ho_R,
ho_L,p) ,
onumber \$$

Hamiltonian:

$$egin{aligned} \mathcal{H}_{R}(
ho_{R},
ho_{L},p) &= rac{\mathcal{U}\mathcal{M}^{2}\mathcal{U}^{\dagger}}{2p} + \sqrt{2}G_{F}\intrac{dp'}{2\pi^{2}}(
ho_{L}(p') - ar{
ho}_{L}^{*}(p')) \ &- rac{8\sqrt{2}G_{F}p}{3}rac{\mathcal{E}_{l}}{m_{W}^{2}}\,, \end{aligned}$$

Effects of collisions and potentials

$$P_{z,\text{int},X} = \int \frac{dr}{4\pi^2} P_{z,X}(r) \quad \text{for} \quad X \in \{R,L\}$$

