

Global fits of neutrino and dark matter models with GAMBIT

Tomás Gonzalo

Monash University

MPIK Heidelberg, 17th June 2019

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019 1 / 44

Outline

- 1 Global Fits
 - What?
 - Why?
 - How?

2 GAMBIT

- **3** R
 - Results
 - Right-handed Neutrinos
 - Higgs portal DM

What are global fits?

Global fit in statistics

Statistical fit of one or more **models** to several **data** sets simultaneously

- Generalisation of non-linear regression
- Goodness-of-fit
- Parameter estimation
- Comparison of models

Why do we need global fits?

- Many BSM theories
 - \rightarrow Which one is better?
- BSM models have a large amount of parameters
 - \rightarrow Explore full parameter space
 - $\rightarrow\,$ Where is my theory valid?
- Many experimental constraints
 - \rightarrow Collider searches, dark matter, precision observables, flavour anomalies,...
 - \rightarrow Simultaneously include all constraints
 - \rightarrow Does my theory fit the experimental data?

Why do we need global fits?

- Many BSM theories
 - \rightarrow Which one is better?
- BSM models have a large amount of parameters
 - $\rightarrow~{\rm Explore}$ full parameter space
 - $\rightarrow\,$ Where is my theory valid?
- Many experimental constraints
 - \rightarrow Collider searches, dark matter, precision observables, flavour anomalies,...
 - \rightarrow Simultaneously include all constraints
 - \rightarrow Does my theory fit the experimental data?

How do we do global fits?

• Combine all constraints into a **composite likelihood**

$$\mathcal{L} = \mathcal{L}_{Collider} \mathcal{L}_{Higgs} \mathcal{L}_{DM} \mathcal{L}_{Flavour} \dots$$

- Perform an extensive **parameter scan**
 - \rightarrow Old-school sampling methods (random, grid) are inefficient
 - \rightarrow Impossible to make statement about statistics

- $\rightarrow \text{ Need smart sampling strategies}$ (differential, nested, genetic,...)
- **Rigorous** statistical interpretation (frequentist/Bayesian)
 - \rightarrow Goodness-of-fit
 - \rightarrow Parameter estimation
 - \rightarrow Model comparison

GAMBIT

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019 9 / 44

GAMBIT

GAMBIT: The Global And Modular BSM Inference Tool

gambit.hepforge.or

EPJC 77 (2017) 784

arXiv:1705.07908

- $\bullet\,$ Extensive model database not just SUSY
- Extensive observable/data libraries
- Many statistical and scanning options (Bayesian & frequentist)
- Fast LHC likelihood calculator
- Massively parallel
- Fully open-source

Members of:

ATLAS, Belle-II, CLIC, CMS, CTA, Fermi-LAT, DARWIN, IeeCube, LHCb, SHiP, XENON Authors of: DarkSUSY, DDCale, Diver, FlexibleSUSY, gamlike, GM2Cale, IsaTols, nulike, PolyChord, Rivet, SoftSUSY, SuperISO. SUSY-AL WIMPSim

- Fast definition of new datasets and theories
- Plug and play scanning, physics and likelihood packages

Recent collaborators:

Peter Ahron, Csaba Balázs, Ankit Beniwal, Sanjay Bloor, Torsten Bringmann, Andy Buckley, José Eliel Camargo-Molina, Marcin Chrząszcz, Jonathan Cornell, Matthias Danninger, Joakim Edsjö, Ben Farmer, Andrew Fowlie, Tomás E. Gonzalo, Will Handley, Sebastian Hoof, Seilm Hotnih, Felti Kahlhoefer, Anders Kvellestad, Julia Harz, Paul Jackson, Farvah Mahmoudi, Greg Martinez, Are Raklev, Janina Renk, Chris Rogan, Roberto Ruiz de Austri, Pat Scott, Patrick Stöcker, Aaron Vincent, Christoph Weniger, Martin White, Yang Zhang

40+ participants in 11 experiments and 14 major theory codes

DM and ν global fits

Structure of GAMBIT

MODULES (Bits)

• Physics Modules

- \rightarrow ColliderBit: collider searches [GAMBIT, Eur.Phys.J. C77 (2017) no.11, 795]
- $\rightarrow~DarkBit:$ relic density, dd,... [GAMBIT, Eur.Phys.J. C77 (2017) no.12, 831]
- \rightarrow FlavBit: flavour observables [GAMBIT, Eur.Phys.J. C77 (2017) no.11, 786]
- $\rightarrow~{\bf SpecBit:}$ spectra, RGE running [GAMBIT, Eur.Phys.J. C78 (2018) no.1, 22]
- \rightarrow DecayBit: decay widths $$$ [GAMBIT, Eur.Phys.J. C78 (2018) no.1, 22]$ }$
- \rightarrow PrecisionBit: precision tests [GAMBIT, Eur.Phys.J. C78 (2018) no.1, 22]
- \rightarrow NeutrinoBit: neutrino likelihoods [GAMBIT, upcoming]
- ScannerBit : stats and sampling [GAMBIT, Eur.Phys.J. C77 (2017) no.11, 761] (Diver, GreAT, Multinest, ...)

BACKENDS (Pythia, DarkSUSY, MicrOMEGAs, SPheno, SuperISO,...) CORE [GAMBIT, Eur.Phys.J. C78 (2018) no.2, 98]

- Models
- Dependency resolution

Structure of GAMBIT

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019 12 / 44

Backends

External tools and libraries to calculate observables C, C++, Fortran, Mathematica, Python

HlggsBounds	4.2.1	Backends/installed/higgsbounds/4.2.1/lib/libhiggsbounds.so	absent/broken	10	0	0
		Backends/installed/higgsbounds/4.3.1/lib/libhiggsbounds.so				0
HiggsSignals		Backends/installed/higgssignals/1.4.0/lib/libhiggssignals.so				0
LibFarrayTest		Backends/examples/libFarrayTest.so				0
LibFirst		Backends/examples/libfirst.so				0
		Backends/examples/libfirst.so				0
LibFortran		Backends/examples/libfortran.so				0
LibSecond		Backends/examples/libsecond/1.0/libsecond_1_0.py				0
		Backends/examples/libsecond/i.i/libsecond_i_i.py				0
		Backends/examples/libsecond/1.2/libsecond_1_2.py				0
LibThird		Backends/examples/libthird/1.0/libthird_1_0				0
		Backends/examples/libthird/1.1/libthird_1_1				0
		Backends/examples/libthird/1.2/libthird_1_2				0
HicrOmegas_DiracSingletDH_Z2		Backends/installed/nicromegas/3.6.9.2/DiracSingletDM_22/libmicromegas.so				0
HicrOnegas_HSSH		Backends/installed/nicronegas/3.6.9.2/MSSH/libnicronegas.so				0
NicrOmegas_HajoranaSingletDH_Z2		Backends/installed/micromegas/3.6.9.2/MajoranaSingletDM_22/libmicromegas.so				0
NicrOmegas_ScalarSingletDH_Z2		Backends/installed/nicromegas/3.6.9.2/ScalarSingletDM_Z2/libmicromegas.so				0
NicrOmegas_ScalarSingletDH_Z3		Backends/installed/nicromegas/3.6.9.2/ScalarSingletDM_Z3/libmicromegas.so				0
NicrOmegas_VectorSingletDH_Z2		Backends/installed/nicromegas/3.6.9.2/VectorSingletDM_Z2/libmicromegas.so				0
Pythia		Backends/installed/pythia/8.212/lib/libpythia8.so				109
Pythia_EM		no path in config/backend_locations.yaml.default				109
SPheno		Backends/installed/spheno/3.3.8/lib/libSPheno.so				0
SUSYHD		Backends/installed/susyhd/1.0.2/SUSYHD.m				0
SUSYPOPE		no path in config/backend_locations.yaml.default				0
SUSY_HIT		Backends/installed/susyhit/1.5/libsusyhit.so				0
SuperIso		Backends/installed/superiso/3.6/libsuperiso.so				0
ganLike		Backends/installed/ganlike/1.0.0/lib/ganLike.so				0
gm2calc		Backends/installed/gn2calc/1.2.0/src/libgn2calc.so				14
		Backends/installed/gn2calc/1.3.0/src/libgn2calc.so				14
libHathenaticaTest		Backends/examples/libHathematicaTest.m				0
nulike Gambit diagnostic backend line :	1.0.4 23 (press h for help or q	Backends/installed/nulike/1.0.4/lib/libnulike.so to quit)				0

T. Gonzalo (Monash U)

DM and ν global fits

Results Right-handed Neutrinos

[M.Chrzaszcz, M.Drewes, T.G., J.Harz, S.Krishnamurthy, C.Weniger, upcoming]

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

14 / 44

- Right-handed neutrinos $N_{1,2,3}$
- N_j are **SM singlets** $N_j \in \{1, 1, 0\}$
- \bullet Yukawa couplings \rightarrow \mathbf{Dirac} mass terms

$$\mathcal{L} \supset Y_{\nu}^{ij} L_i N_j \phi = M_D^{ij} \nu_i N_j$$

•
$$Y_{\nu}/Y_t \lesssim 10^{12-15}$$

- Majorana mass term for N_j
- $\mathcal{L} \supset Y_{\nu}^{ij} L_i N_j \phi + M^{ij} N_i N_j$ $= M_D^{ij} \nu_i N_j + M_M^{ij} N_i N_j$

$$M_{\nu} = \begin{pmatrix} \delta m_{\nu}^{1-loop} & M_D \\ M_D^T & M_M \end{pmatrix}$$

• "Naturally" light neutrino masses

 $m_{\nu} \sim M_D^T M_M^{-1} M_D, \quad m_N \sim M_M$

• Neutrino **mixing** matrix

$$\mathcal{U}_{\nu} = \begin{pmatrix} V_{\nu} & \Theta \\ \Theta^T & V_N \end{pmatrix} \approx \begin{pmatrix} 1 - \frac{1}{2}\theta\theta^{\dagger} & \theta \\ -\theta^{\dagger} & 1 - \frac{1}{2}\theta^{\dagger}\theta \end{pmatrix} \begin{pmatrix} U_{\nu} & 0 \\ 0 & U_N \end{pmatrix}$$

44

- Θ parametrizes the active sterile neutrino \mathbf{mixing}
- CI parametrization [J. A. Casas & A. Ibarra, Nuc. Phys. B618, (1-2), 2001]

$$\Theta = i U_{\nu} \sqrt{m_{\nu}^{diag}} \mathcal{R} \sqrt{\tilde{M}^{diag}}^{-1}$$

$$\tilde{M}_{IJ} \simeq \tilde{M}_{IJ}^{\text{diag}} = M_I \delta_{IJ} \left(1 - \frac{M_I^2}{v^2} l(M_I) \right)$$

• Rotation matrix $\mathcal{R} = \mathcal{R}^{23} \mathcal{R}^{13} \mathcal{R}^{12}$

$$\mathcal{R}_{ii}^{ij} = \mathcal{R}_{jj}^{ij} = \cos \omega_{ij}$$

 $\mathcal{R}_{ij}^{ij} = -\mathcal{R}_{ji}^{ij} = \sin \omega_{ij}$

• Permutations of \mathcal{R}^{ij} to remove bias

T. Gonzalo (Monash U)

17 / 44

• Approximate B - L symmetry

 $F_{\alpha I} = \Theta_{\alpha I} M_I / v$

$$M_{M} = \begin{pmatrix} M(1-\mu) & 0 & 0\\ 0 & M(1+\mu) & 0\\ 0 & 0 & M' \end{pmatrix},$$

$$F = \begin{pmatrix} F_{e}(1+\epsilon_{e}) & iF_{e}(1-\epsilon_{e}) & F_{e}\epsilon'_{e}\\ F_{\mu}(1+\epsilon_{\mu}) & iF_{\mu}(1-\epsilon_{\mu}) & F_{\mu}\epsilon'_{\mu}\\ F_{\tau}(1+\epsilon_{\tau}) & iF_{\tau}(1-\epsilon_{\tau}) & F_{\tau}\epsilon'_{\tau} \end{pmatrix}$$

• Two-degenerate RHNs \rightarrow pseudo-Dirac fermion

$$u, \epsilon_{\alpha}, \epsilon'_{\alpha} \ll 1$$

$$M_1 \sim M_2, \quad \Theta_{\alpha 1} \sim i\Theta_{\alpha 2}$$

- Oscillation data does not constraint $|U_{\alpha_I}|^2 \equiv |\Theta_{\alpha I}|^2$
- Upper limit purely from other experimental constraints
- Necessary and sufficient $m_{\nu_0} \rightarrow 0$ [Moffat, Pascoli, Weiland, arXiv:1712.07611] T. Gonzalo (Monash U) DM and ν global fits MPIK H. 17/6/2019 18 /

• Light (left-handed) neutrino masses

$$m_{\nu_i} \quad i \in \{1, 2, 3\} \quad \to \quad m_{\nu_0}, \ \Delta m_{12}^2, \ \Delta m_{3l}^2$$

• Heavy (right-handed) neutrino masses

$$M_I \quad I \in \{1, 2, 3\} \quad \rightarrow \quad M_1, \ \Delta M_{21}, \ M_3$$

• Active neutrino mixing parameters

$$\{\theta_{12}, \theta_{13}, \theta_{23}, \alpha_1, \alpha_2, \delta_{CP}\}$$

• Active-sterile neutrino mixing angles

$$\Re(\omega_{ij}), \Im(\omega_{ij})$$

T. Gonzalo (Monash U)

DM and ν global fits

44

• Active neutrino parameters [NuFit, JHEP 1608 (2016) 033] • Sum of neutrino masses $\sum m_{\nu} < 0.23 \text{ eV}$ $\sin^2 \theta_{\text{eff}}, m_W, \Gamma_{Z \rightarrow \text{inv}}, \Gamma_W \rightarrow l_W$ • Electroweak precision observables • Direct searches PIENU, PS-191, E949, CHARM, NuTeV, DELPHI, ATLAS, CMS • Lepton flavour violating decays $l \rightarrow l\gamma, l \rightarrow 3l, \mu - e$ • Big Bang Nucleosynthesis $\tau_N < 0.1s$ • Neutrinoless Double β decay GERDA, KamLAND-Zen $R^X_{\alpha\beta}, R_K, R^*_K$ • Lepton Universality $|V_{us}^{CKM}|^2 + |V_{ud}^{CKM}|^2 = 1$ • CKM Unitarity $F < 4\pi$ • Perturbativity of Yukawas

MONASH University

Results

• Profile likelihood plots M_I vs $|U_{\alpha I}|^2$

21 / 44

• Profile likelihood plots M_I vs $|U_{\alpha I}|^2$

[Deppisch, Dev, Pilaftsis, New J.Phys. 17 (2015) no.7, 075019]

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

22 / 44

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019 23 / 44

- Full likelihood
- Excess in lnL at large $|U_{\tau}|^2$
 - \rightarrow Invisible width Γ_Z
 - $\rightarrow~{\rm Fit}$ to CKM entries
 - \rightarrow Lepton universality R_{τ}

• Excess in lnL at large $|U_e|^2$ \rightarrow Lepton universality R_K

10

 M_1 [GeV]

 10^{2}

• Low significance $\lesssim 1\sigma$

 $|U_{\tau 1}|^2$

MONASH University

Results

• Seesaw and BBN limits

• Massless neutrino limit $m_{\nu_0} \to 0 \rightsquigarrow \text{approximate } B - L$

• Future constraints

Results Higgs portal DM

[GAMBIT, Eur.Phys.J. C77 (2017) no.8, 568]

[GAMBIT, Eur.Phys.J. C79 (2019) no.1, 38]

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019 28 / 44

• Scalar singlet S with \mathbb{Z}_2

$$\mathcal{L}_{S} = \frac{1}{2}\mu_{S}^{2}|S|^{2} + \frac{1}{4}\lambda_{S}|S|^{4} + \frac{1}{2}\lambda_{hS}|S|^{2}|H|^{2}$$

• Vector singlet V with \mathbb{Z}_2

$$\mathcal{L}_{S} = \frac{1}{2}\mu_{V}^{2}V_{\mu}V^{\mu} + \frac{1}{4!}\lambda_{V}(V_{\mu}V^{\mu})^{2} + \frac{1}{2}\lambda_{hV}V_{\mu}V^{\mu}|H|^{2}$$

• Fermion singlet with \mathbb{Z}_2 . Dirac ψ or Majorana χ

$$\mathcal{L}_{\psi} = -\mu_{\psi}\bar{\psi}\psi - \frac{\lambda_{h\psi}}{\Lambda_{\psi}}\left(\cos\theta\bar{\psi}\psi + \sin\theta\bar{\psi}i\gamma_{5}\psi\right)|H|^{2}$$
$$\mathcal{L}_{\chi} = -\frac{1}{2}\mu_{\chi}\bar{\chi}\chi - \frac{1}{2}\frac{\lambda_{h\chi}}{\Lambda_{\chi}}\left(\cos\theta\bar{\chi}\chi + \sin\theta\bar{\chi}i\gamma_{5}\chi\right)|H|^{2}$$

T. Gonzalo (Monash U)

MPIK H, 17/6/2019

29 / 44

- Scalar singlet S with \mathbb{Z}_2 $\{m_S, \lambda_{hS}\}$
- Vector singlet V with \mathbb{Z}_2 $\{m_V, \lambda_{hV}\}, \qquad m_V^2 = \mu_V^2 + \frac{1}{2}\lambda_{hV}v_0^2$
- Fermion singlet with \mathbb{Z}_2 . Dirac ψ or Majorana χ $\{m_{\psi/\chi}, \lambda_{h\psi/\chi}/\Lambda_{\psi/\chi}, \xi\}$

$$m_{\psi/\chi}^2 = \left(\mu_{\psi/\chi}^2 + \frac{1}{2}\frac{\lambda_{h\psi/\chi}}{\Lambda_{\psi/\chi}}v_0^2\cos\theta\right)^2 + \left(\frac{1}{2}\frac{\lambda_{h\psi/\chi}}{\Lambda_{\psi/\chi}}v_0^2\sin\theta\right)^2,$$
$$\cos\xi = \frac{\mu_{\psi/\chi}}{m_{\psi/\chi}}\left(\cos\theta + \frac{1}{2}\frac{\lambda_{h\psi/\chi}}{\Lambda_{\psi/\chi}}\frac{v_0^2}{\mu_{\psi/\chi}}\right)$$

• Nuisance parameters

$$\{\rho_0, v_{\text{peak}}, v_{\text{esc}}\}, \{\sigma_s, \sigma_l\}, \{m_h, \alpha_s^{\overline{MS}}(m_Z)\}$$

T. Gonzalo (Monash U)

Model parameters

• Scalar singlet S

 $\{m_S, \lambda_{hS}\}$

• Vector singlet V

 $\{m_V, \lambda_{hV}\}$

Parameter	Minimum	Maximum	Prior
λ_{hs}	10^{-4}	10	\log
m_s (full-range scan)	$45\mathrm{GeV}$	$10 \mathrm{TeV}$	\log
$m_{\scriptscriptstyle S}$ (low-mass scan)	$45\mathrm{GeV}$	$70{ m GeV}$	flat

Parameter	Minimum	Maximum	Prior type
λ_{hV}	10^{-4}	10	log
m_V (low mass)	$45\mathrm{GeV}$	$70{ m GeV}$	flat
m_V (high mass)	$45\mathrm{GeV}$	$10\mathrm{TeV}$	log

• Fermion singlet χ/ψ

 $\{m_{\psi/\chi},\lambda_{h\psi/\chi}/\Lambda_{\psi/\chi},\xi\}$

Parameter	Minimum	Maximum	Prior type
$\lambda_{h\chi,h\psi}/\Lambda_{\chi,\psi}$	$10^{-6} { m GeV^{-1}}$	1 GeV^{-1}	\log
ξ	0	π	flat
$m_{\chi,\psi}$ (low mass)	$45\mathrm{GeV}$	$70{ m GeV}$	flat
$m_{\chi,\psi}$ (high mass)	$45\mathrm{GeV}$	$10\mathrm{TeV}$	log

• Thermal relic density of DM

 $\Omega_{
m DM} h^2 < 0.1188$ [Planck, 2015] DarkSUSY

 $BR(H \rightarrow inv.) < 0.19$

- Higgs invisible width
- Direct detection constraints

 \rightarrow S: LUX 2016, PandaX 2016, SuperCDMS, Xenon100 \rightarrow V/F: PandaX 2017, CDMSlite, CRESST-II, PICO-60, DarkSide-50, Xenon1T

DDCalc

- Capture and annihilation of DM in the Sun IceCube Capt'n General, nulike
- Indirect detection through gamma rays

Fermi-LAT

gamLike

• Nuisance likelihoods $\{\rho_0, v_{\text{peak}}, v_{\text{esc}}\}, \{\sigma_s, \sigma_l\}, \{m_h, \alpha_s^{\overline{MS}}(m_Z)\}$

• Scalar DM

MPIK H, 17/6/2019 33 / 44

• Vector DM

• Fermion DM (both Majorana and Dirac)

• Fermion DM (both Majorana and Dirac)

Results

• Posterior Probability

• Bayes factor

$$B = \frac{\mathcal{Z}(M1)}{\mathcal{Z}(M2)}, \qquad \mathcal{Z}(M) = \int \mathcal{L}(D|\theta) P(\theta) d\theta$$

• CP-odd vs CP-even fermion DM

Model	Compa	rison model a	and priors	Odds
$\xi = 0$	m_{χ} : log	$\lambda_{h\chi}/\Lambda_{\chi}$: le	og ξ : flat	70:1
$g_{\rm p}/\Lambda_{\rm p}=0$	m_{χ} : log	$g_{\rm s}/\Lambda_{\rm s}$: log	$g_{\rm p}/\Lambda_{\rm p}$: log	140:1

• Scalar vs Vector vs Fermion DM

Model	Parameters and priors	Odds
S	m_S : log λ_{hS} : log	1:1
V_{μ}	m_V : log λ_{hV} : log	6:1
χ	m_{χ} : log $\lambda_{h\chi}/\Lambda_{\chi}$: log ξ : flat	1:1
ψ	m_{ψ} : log $\lambda_{h\psi}/\Lambda_{\psi}$: log ξ : flat	1:1

T. Gonzalo (Monash U)

Summary

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

- Global fits are great!
 - $\rightarrow\,$ Models with many parameters $\rightarrow\,$ smart sampling
 - $\rightarrow~$ Multitude of constraints \rightarrow composite likelihoods
 - $\rightarrow~$ Statistical interpretation \rightarrow frequentist / Bayesian
- **GAMBIT** is well suited for this
 - $\rightarrow\,$ Plug-in external tools and scanning algorithms

• Right-handed neutrinos

- \rightarrow RHNs can explain m_{ν} with reasonable Yukawas
- $\rightarrow\,$ Preference for an approximate B-L symmetry
- $\rightarrow\,$ Strongly constrained by direct searches & BBN

• Higgs portal Dark matter

- $\rightarrow\,$ WIMP DM is alive where DD is suppressed
- $\rightarrow\,$ Slight preference for scalar/fermion over vector
- \rightarrow Strong CP-odd vs CP-even

Bonus content

• Supersymmetric DM

Backup

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

The Core

 \bullet Model hierarchy : SUSY & Singlet DM

The Core

 \bullet Model hierarchy : ${\bf SUSY}$ & ${\bf Singlet}~{\bf DM}$

 \bullet Dependency resolution : ${\bf CMSSM}$

- $\rightarrow~$ The core automatically determines the evaluation order
- \rightarrow Each function is only run once per parameter point

Neutrinos in the Standard Model

- The SM has 3 **active** neutrinos
- $SU(2)_L$ doublets

 $L_i \to \begin{pmatrix} \nu_i \\ l_i \end{pmatrix}$

• Interact weakly with W or Z

- Neutrinos have masses!
- Super-Kamiokande observed the oscillation of atmospheric νs

[Super-K, Phys.Rev.Lett. 81 (1998) 1562-1567]

• Neutrinos from cosmic rays

$$\pi^+ \to \mu^+ + \nu_\mu$$
$$\mu^+ \to e^+ + \bar{\nu}_\mu + \nu_e$$

- Disappearance of $\nu_{\mu} (\rightarrow \nu_{\tau})$
- Probability of oscillation $\nu_{\alpha} \rightarrow \nu_{\beta}$

$$P_{\alpha \to \beta} \approx \sin^2(2\theta) \sin^2 \frac{\Delta m^2 L}{2E}$$

 \bullet Observation of oscillations \leadsto evidence for massive neutrinos

Neutrino masses

• Three-neutrino **mixing**

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = U_{PMNS} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- Oscillations of all flavour eigenstates $\nu_{\alpha} \rightarrow \nu_{\beta}$
- Mixing matrix

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 0 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$P_{\alpha \to \beta} = \delta_{\alpha\beta} - 4\Re(U_{\alpha i}^*U_{\beta i}U_{\alpha j}U_{\beta j}^*)\sin^2\frac{\Delta m_{ij}^2L}{2E} + 2\Im(U_{\alpha i}^*U_{\beta i}U_{\alpha j}U_{\beta j}^*)\sin\frac{\Delta m_{ij}^2L}{2E}$$

• Solar neutrino oscillation: ν_e disappearance $(\nu_e \rightarrow \nu_\mu)$

 $\theta_{12}, \, \Delta m_{12}^2$

[Chlorine, GALLEX/GNO, SAGE, Super-Kamiokande, SNO, Borexino]

• Atmospheric neutrino oscillation: ν_{μ} disappearance $\theta_{23}, \Delta m_{23}^2$

[IceCube, Super-Kamiokande, DeepCore]

• **Reactor** neutrino oscillation

 $\theta_{12}, \, \theta_{13}, \, \Delta m_{12}^2$

[ILL, Goesgen, Krasnoyarsk, Rovno, Bugey-3, Bugey-4, SRP, NEOS, DANSS, Double Chooz, RENO, Daya

Bay, KamLAND]

• **Beam** neutrino oscillation

$$\theta_{13}, \, \theta_{23}, \, \Delta m_{23}^2$$

[LSND, MiniBooNE, KARMEN, NOMAD, E776, ICARUS, OPERA]

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

- LSND, 3.8σ in ν_e appearance
- MiniBooNE, 4.5σ in ν_e appearance and ν_{μ} disappearance
- 3σ in other reactor (Daya Bay) and radiactive source experiments (Gallium) in ν_e disappearance
- Sterile neutrino cannot fully explain all excesses

- Neutrinos are massive (at least two)
- **BSM** models must provide a mechanism for neutrino masses
- RH neutrinos and type-I seesaw

Neutrino masses

• **Fit** to neutrino oscillation data [NUFIT, JHEP 01 (2019) 106 [arXiv:1811.05487]]

	Normal Ore	lering (best fit)	Inverted Ordering $(\Delta \chi^2 = 9.3)$	
	bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range
$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$
$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$
$\sin^2 \theta_{23}$	$0.582^{+0.015}_{-0.019}$	$0.428 \rightarrow 0.624$	$0.582\substack{+0.015\\-0.018}$	$0.433 \rightarrow 0.623$
$\theta_{23}/^\circ$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	$49.7^{+0.9}_{-1.0}$	$41.2 \rightarrow 52.1$
$\sin^2\theta_{13}$	$0.02240\substack{+0.00065\\-0.00066}$	$0.02044 \to 0.02437$	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \to 0.02461$
$\theta_{13}/^{\circ}$	$8.61\substack{+0.12\\-0.13}$	$8.22 \rightarrow 8.98$	$8.65_{-0.13}^{+0.12}$	$8.27 \rightarrow 9.03$
$\delta_{\rm CP}/^{\circ}$	217^{+40}_{-28}	$135 \to 366$	280^{+25}_{-28}	$196 \to 351$
$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV}^2}$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$	$7.39\substack{+0.21 \\ -0.20}$	$6.79 \rightarrow 8.01$
$\frac{\Delta m^2_{3\ell}}{10^{-3}~{\rm eV^2}}$	$+2.525\substack{+0.033\\-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512\substack{+0.034\\-0.031}$	$-2.606 \rightarrow -2.413$

Likelihoods and observables

- Active neutrino parameters
 - [E. Fernandez-Martinez, J. Hernandez-Garcia,
 - J. Lopez-Pavon, JHEP 1608 (2016) 033]

	NH	IH	
$\sin^2 \theta_{12}$	$0.306^{+0.012}_{-0.012}$	$0.306^{+0.012}_{-0.012}$	
$\sin^2 \theta_{23}$	$0.441^{+0.027}_{-0.021}$	$0.587^{+0.020}_{-0.024}$	
$\sin^2 \theta_{13}$	$0.02166\substack{+0.00075\\-0.00075}$	$0.02179^{+0.00076}_{-0.00076}$	
δ_{CP}	261^{+51}_{-59}	277^{+40}_{-46}	
$\frac{\Delta m_{21}^2}{10^{-5} \text{ eV}^2}$	$7.50^{+0.19}_{-0.17}$	$7.50^{+0.19}_{-0.17}$	
$\frac{\Delta m_{3l}^2}{10^{-5} \text{ eV}^2}$	$2.524_{-0.040}^{+0.039}$	$-2.514\substack{+0.038\\-0.041}$	

- 2D gaussian likelihoods
- Planck limit $\sum m_{\nu} < 0.23$ eV

X 7 1

• Modified Fermi constant

$$\frac{m_W^2}{[m_W^2]_{SM}} = \frac{[s_w^2]_{SM}}{s_w^2} \sqrt{1 - (\theta \theta^{\dagger})_{\mu\mu} - (\theta \theta^{\dagger})_{ee}} ,$$

• EWPO decays
$$\Gamma_{\text{inv}} = \frac{G_{\mu}m_Z^3}{12\sqrt{2\pi}}\sum_{ij}\frac{(V_{\nu}V_{\nu}^{\dagger})_{ij}}{\sqrt{1-(\theta\theta^{\dagger})_{\mu\mu}-(\theta\theta^{\dagger})_{ee}}}$$

$$\Gamma_{W \to l_{\alpha}\bar{\nu}} = \frac{G_{\mu}m_W^3}{6\sqrt{2}\pi} \frac{(1 - \frac{1}{2}(\theta\theta^{\dagger})_{\alpha\alpha})(1 - x_{\alpha})^2(1 + x_{\alpha})}{\sqrt{1 - (\theta\theta^{\dagger})_{\mu\mu} - (\theta\theta^{\dagger})_{ee}}}$$

T. Gonzalo (Monash U)

 $(W^{\pm})^*$

Likelihoods and observables

- Direct searches for RHN in meson, tau and gauge boson decays
- Beam dump and peak search experiments
- M_i vs $|\Theta_{\alpha i}|^2$ exclusion limits
- Poisson likelihoods

PIENU PS191 E949 CHARM NuTeV DELPHI (S) DELPHI (L)	0.06 - 0.129 GeV 0.02 - 0.45 GeV 0.175 - 0.3 GeV 0.01 - 2.8 GeV 0.25 - 2 GeV 3 - 50 GeV 0.5 - 4 2 GeV	$ \begin{array}{c} \Theta_{ei} \\ \Theta_{ei}, \Theta_{\mu i} \\ \Theta_{\mu i} \\ \Theta_{ei}, \Theta_{\mu i}, \Theta_{\tau i} \\ \Theta_{\mu i} \\ \Theta_{ei}, \Theta_{\mu i}, \Theta_{\tau i} \\ \Theta_{ei}, \Theta_{ei}, \Theta_{ei} \end{array} $	 [M. Aoki et al, Phys. Rev. D, 84(5), 2011] [G. Bernardi et al, Phys. Lett. B, 203(3), 1988] [A. V. Artamonov et al, Phys. Rev. D 91, 2015] [CHARM, Phys. Lett. B166(4), 1986] [FNAL-E815, Phys. Rev. Lett. 83, 1999] [DELPHI, Z. Phys. C, 74(1), 1997] [DELPHI, Z. Phys. C, 74(1), 1997]
NuTeV DELPHI (S) DELPHI (L) ATLAS	0.01 - 2.8 GeV 0.25 - 2 GeV 3 - 50 GeV 0.5 - 4.2 GeV 50 - 500 GeV	$ \begin{array}{c} \Theta_{ei}, \Theta_{\mu i}, \Theta_{\tau i} \\ \Theta_{\mu i} \\ \Theta_{ei}, \Theta_{\mu i}, \Theta_{\tau i} \\ \Theta_{ei}, \Theta_{\mu i}, \Theta_{\tau i} \\ \Theta_{ei}, \Theta_{\mu i} \end{array} $	[CHARM, Phys. Lett. B166(4), 1986] [FNAL-E815, Phys. Rev. Lett. 83, 1999] [DELPHI, Z. Phys. C, 74(1), 1997] [DELPHI, Z. Phys. C, 74(1), 1997] [ATLAS, JHEP 07:162, 2015]
CMS	$1 - 10^3 \text{ GeV}$	$\Theta_{ei}, \Theta_{\mu i}$	[CMS, arXiv:1802.02965v1]

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

44 / 44

 \bar{a}_d

• Lepton flavour violating decays

Process	Branch. Frac.	Reference
$\mu^- \rightarrow e^- \gamma$	4.2×10^{-13}	[MEG]
$\tau^- \to e^- \gamma$	5.4×10^{-8}	[BaBar,Belle]
$\tau^- ightarrow \mu^- \gamma$	5.0×10^{-8}	[BaBar, Belle]
$\mu^- ightarrow e^- e^- e^+$	1.0×10^{-12}	[SINDRUM]
$\tau^- ightarrow e^- e^- e^+$	1.4×10^{-8}	[BaBar, Belle]
$\tau^- ightarrow \mu^- \mu^- \mu^+$	$1.2 imes 10^{-8}$	[ATLAS, BaBar, Belle, LHCb]
$\tau^- ightarrow \mu^- e^- e^+$	1.1×10^{-8}	[BaBar, Belle]
$\tau^- \rightarrow e^- e^- \mu^+$	0.84×10^{-8}	[BaBar, Belle]
$\tau^- ightarrow e^- \mu^- \mu^+$	$1.6 imes 10^{-8}$	[BaBar, Belle]
$\tau^- ightarrow \mu^- \mu^- e^+$	0.98×10^{-8}	[BaBar, Belle]
$\mu - e$ (Ti)	1.7×10^{-12}	[SINDRUM II]
$\mu - e \text{ (Pb)}$	4.6×10^{-11}	[SINDRUM II]

- Upper bounds on $|\Theta_{\alpha I}|^2$
- One-sided gaussian likelihoods

• Big Bang Nucleosynthesis \rightarrow lower bound on $|U_I|^2$

$$\begin{split} N_{I} &\to \pi^{0} \nu_{\alpha}, \ N_{I} \to H^{+} l_{\alpha}^{-}, \ N_{I} \to \eta \nu_{\alpha}, \ N_{I} \to \eta' \nu_{\alpha}, \ N_{I} \to \rho^{+} l_{\alpha}^{-}, \\ N_{I} \to \rho^{0} \nu_{\alpha}, \ N_{I} \to \sum_{\alpha,\beta} \nu_{\alpha} \bar{\nu_{\beta}} \nu_{\beta}, \ N_{I} \to l_{\alpha \neq \beta}^{-} l_{\beta}^{+} \nu_{\beta}, \ N_{I} \to \nu_{\alpha} l_{\beta}^{+} l_{\beta}^{-}, \\ N_{I} \to \nu_{\alpha} u \bar{u}, \ N_{I} \to \nu_{\alpha} d \bar{d}, \ N_{I} \to l_{\alpha} u_{n} \bar{d_{m}} \end{split}$$

 $\rightarrow\,$ Conservative limit on the lifetime $\tau_N \propto M_I^{-5} < 0.1s$ $\bullet\,$ Neutrinoless Double $\beta\,$ Decay

$$[T_{1/2}^{0\nu}]^{-1} = \mathcal{A} \left| m_p \sum_{I} \frac{\Theta_{eI}^2 M_I}{\langle p^2 \rangle + M_I^2} \right|^2 , \qquad T_{1/2}^{0\nu} \ge 2.1 \times 10^{25} \text{ yr, GERDA (Ge)} \\ T_{1/2}^{0\nu} \ge 1.07 \times 10^{26} \text{ yr, KamLAND-Zen (Xe)}$$

 \rightarrow Loses effectiviness in B - L limit

T. Gonzalo (Monash U)

DM and ν global fits

44

• Lepton Universality

$$\begin{aligned} R_{\alpha\beta}^{X} &= \frac{\Gamma(X^{+} \to l_{\alpha}^{+}\nu_{\alpha})}{\Gamma(X^{+} \to l_{\beta}^{+}\nu_{\beta})} , \quad X = \pi, \ K, \ \tau, \ W \\ R_{Y} &= \frac{\Gamma(B^{0/\pm} \to Y^{0/\pm} l_{\alpha}^{+} l_{\alpha}^{-})}{\Gamma(B^{0/\pm} \to Y^{0/\pm} l_{\beta}^{+} l_{\beta}^{-})} , \quad Y = K, \ K^{*} \end{aligned}$$

 $\rightarrow R_D$ and R_{D^*} are not impacted

• CKM Unitarity $|V_{us}^{CKM}|^2 + |V_{ud}^{CKM}|^2 = 1$

$$|(V_{CKM}^{exp})_{us,ud}^{i}|^{2} = |(V_{CKM})_{us,ud}|^{2}[1+f^{i}(\Theta)],$$

e.g. $K_{L} \to \pi^{+}e^{-}\bar{\nu}_{e}:1+f^{1}(\Theta) = \frac{G_{F}^{2}}{G_{\mu}^{2}}[1-(\theta\theta^{\dagger})_{ee}]$

T. Gonzalo (Monash U)

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019 44 / 44

• Massless neutrino limit $m_{\nu_0} \to 0 \rightsquigarrow \text{approximate } B - L$

44

Results

Results

Results

Results

Results

• Posterior Probability

Results: EW MSSM

[arXiv:1809.02097 [hep-ph]]]

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

EW MSSM

MSSM field content

	Name	\mathbf{Spin}	Gauge ES	$\mathbf{Mass}\ \mathbf{ES}$
-	Higgs bosons	0	$H^0_u H^0_d H^+_u H^d$	$h H A H^{\pm}$
	squarks	0	$ ilde{u}_L \; ilde{u}_R \; ilde{d}_L \; ilde{d}_R$	-
			$\tilde{c}_L \ \tilde{c}_R \ \tilde{s}_L \ \tilde{s}_R$	-
			${ ilde t}_L \; { ilde t}_R \; { ilde b}_R \; { ilde b}_R$	$\tilde{t}_1 \ \tilde{t}_2 \ \tilde{b}_1 \ \tilde{b}_2$
	sleptons	0	${ ilde e}_L \; { ilde e}_R \; { ilde u}_e$	-
			${ ilde \mu}_L { ilde \mu}_R { ilde u}_\mu$	-
			$ ilde{ au}_L \ ilde{ au}_R \ ilde{ u}_ au$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_{\tau}$
	neutralino	1/2	$ ilde{B} \ ilde{W}^3 \ ilde{H}^0_u \ ilde{H}^0_d$	$ ilde{\chi}^{0}_{1} \ ilde{\chi}^{0}_{2} \ ilde{\chi}^{0}_{3} \ ilde{\chi}^{0}_{4}$
	chargino	1/2	$\tilde{W}^{\pm} \tilde{H}_u^+ \tilde{H}_d^-$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\pm}$
	gluino	1/2	\widetilde{g}	

T. Gonzalo (Monash U)

DM and ν global fits

EW MSSM

MSSM field content

Name	\mathbf{Spin}	Gauge ES	$\mathbf{Mass}~\mathbf{ES}$
Higgs bosons	0	$H_{u}^{0} H_{d}^{0} H_{u}^{+} H_{d}^{-}$	$h H A H^{\pm}$
squarks	0	${ ilde u}_L { ilde u}_R { ilde d}_L { ilde d}_R$	-
		$\tilde{c}_L \ \tilde{c}_R \ \tilde{s}_L \ \tilde{s}_R$	-
		$\tilde{t}_L \ \tilde{t}_R \ \tilde{b}_R \ \tilde{b}_R$	$\tilde{t}_1 \ \tilde{t}_2 \ \tilde{b}_1 \ \tilde{b}_2$
sleptons	0	$\tilde{e}_L \ \tilde{e}_R \ \tilde{ u}_e$	-
		$\tilde{\mu}_L \ \tilde{\mu}_R \ \tilde{\nu}_\mu$	-
		$\tilde{\tau}_L \ \tilde{\tau}_R \ \tilde{\nu}_{\tau}$	$\tilde{\tau}_1 \ \tilde{\tau}_2 \ \tilde{\nu}_{\tau}$
neutralino	1/2	$\tilde{B} \ \tilde{W}^3 \ \tilde{H}^0_u \ \tilde{H}^0_d$	$ ilde{\chi}^{0}_{1} \ ilde{\chi}^{0}_{2} \ ilde{\chi}^{0}_{3} \ ilde{\chi}^{0}_{4}$
chargino	1/2	$\tilde{W}^{\pm} \tilde{H}_{u}^{+} \tilde{H}_{d}^{-}$	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{\pm}$
gluino	1/2	\widetilde{g}	_

T. Gonzalo (Monash U)

DM and ν global fits

EW MSSM

Parameters

• 4-D parameter space $(m_{H_d}^2, m_{H_u}^2 \to \mu, m_A)$

$$\begin{split} & m_h \rightarrow 125 \ \text{GeV} \\ & M_3, m_A \rightarrow 5 \ \text{TeV} \\ & m_{\tilde{l}}, m_{\tilde{q}} \rightarrow 3 \ \text{TeV} \\ & A_u, A_d, A_e \rightarrow 0 \end{split}$$

• Parameter ranges

Parameter	Range	Priors
$M_1(Q)$	[-2 TeV, 2 TeV]	hybrid, flat
$M_2(Q)$	[0, 2 TeV]	hybrid, flat
$\mu(Q)$	[-2 TeV, 2 TeV]	hybrid, flat
$\tan\beta(m_Z)$	[0, 70]	flat

Likelihoods

• Invisible decays $\Gamma(Z \rightarrow \text{inv.}) = 499.0 \pm 1.5 \text{ MeV} \text{ BF}(h \rightarrow \text{inv.}) \le 0.19$

Production	Signature	Experiment
$\tilde{\chi}_i^0 \tilde{\chi}_1^0$	$\tilde{\chi}_i^0 \to q \bar{q} \tilde{\chi}_1^0$	OPAL
(i = 2, 3, 4)	$\tilde{\chi}_i^0 \to \ell \bar{\ell} \tilde{\chi}_1^0$	L3
$\tilde{\chi}_i^+ \tilde{\chi}_i^-$	$\tilde{\chi}_i^+ \tilde{\chi}_i^- \to q \bar{q}' q \bar{q}' \tilde{\chi}_1^0 \tilde{\chi}_1^0$	OPAL
(i = 1, 2)	$\tilde{\chi}_i^+ \tilde{\chi}_i^- \to q \bar{q}' \ell \nu \tilde{\chi}_1^0 \tilde{\chi}_1^0$	OPAL
	$\tilde{\chi}_i^+ \tilde{\chi}_i^- \to \ell \nu \ell \nu \tilde{\chi}_1^0 \tilde{\chi}_1^0$	OPAL, L3
	$ISR \dot{\gamma} + missing energy$	OPAL

• LHC searches

• LEP limits

Likelihood label	Source
ATLAS_4b	ATLAS Higgsino search
ATLAS_4lep	ATLAS 4ℓ search
ATLAS_MultiLep_2lep_0jet	ATLAS multilepton EW search
ATLAS_MultiLep_2lep_jet	ATLAS multilepton EW search
ATLAS_MultiLep_3lep	ATLAS multilepton EW search
ATLAS_RJ_2lep_2jet	ATLAS recursive jigsaw EW search
ATLAS_RJ_3lep	ATLAS recursive jigsaw EW search
CMS_1lep_2b	CMS Wh search
CMS_2lep_soft	CMS 2 soft opposite-charge lepton search
CMS_20Slep	CMS 2 opposite-charge lepton search
CMS_MultiLep_2SSlep	CMS multilepton EW search
CMS_MultiLep_3lep	CMS multilepton EW search

T. Gonzalo (Monash U)

DM and ν global fits

Scan strategy

- First scans
 - \rightarrow Differential evolution scanner (Diver) on jDE mode
 - $\rightarrow\,$ Flat & hybrid (log-flat-log) priors
 - \rightarrow Targeted scans for $M_2 < 500$ GeV and $\mu < 500$ GeV
 - $\rightarrow\,$ Simulated 100k/500k Pythia events per parameter point
 - \rightarrow Samples contain ~ 2.4 M valid points

Scan strategy

- First scans
 - \rightarrow Differential evolution scanner (Diver) on jDE mode
 - $\rightarrow~{\rm Flat}$ & hybrid (log-flat-log) priors
 - $\rightarrow~{\rm Targeted}$ scans for $M_2 < 500~{\rm GeV}$ and $\mu < 500~{\rm GeV}$
 - $\rightarrow\,$ Simulated 100k/500k Pythia events per parameter point
 - \rightarrow Samples contain ~ 2.4 M valid points
- Sampling issues
 - \rightarrow Large MC uncertainty
 - $\rightarrow\,$ Signal region flip-flop

Scan strategy

- First scans
 - \rightarrow Differential evolution scanner (Diver) on jDE mode
 - $\rightarrow~{\rm Flat}$ & hybrid (log-flat-log) priors
 - $\rightarrow~{\rm Targeted}$ scans for $M_2 < 500~{\rm GeV}$ and $\mu < 500~{\rm GeV}$
 - $\rightarrow\,$ Simulated 100k/500k Pythia events per parameter point
 - \rightarrow Samples contain ~ 2.4 M valid points
- Sampling issues
 - \rightarrow Large MC uncertainty
 - $\rightarrow\,$ Signal region flip-flop
- Postprocessing
 - \rightarrow More Pythia events
 - $2\sigma/3\sigma \ge 4M$ events
 - $1\sigma \ge 16 M$ events
 - best 500 points \geq 4M events
 - $\rightarrow \sim 240$ k valid samples

Results

• Capped likelihood

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

Results

• Profile likelihoods for $m_{\tilde{\chi}_i^{0,\pm}}$

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019 44 / 44

Results

T. Gonzalo (Monash U)

$m_{ ilde{\chi}_1^0}$

DM and ν global fits

electroweakinos \rightarrow Careful with simplified models

• Favoured by several analyses

• No clear exclusion for light

 \rightarrow ATLAS 4l,

EW MSSM

Conclusions

- \rightarrow ATLAS RJ 3*l*,
- \rightarrow ATLAS multi-l (2l, 3l)
- Minor excess
 - $\rightarrow m_{\tilde{\chi}_1^0} \sim 50 \text{ GeV}$
 - \rightarrow Local significace 3.5σ
- Might be a hint of new physics
- Moriond?

MPIK H, 17/6/2019

•

Analysis: results

- Contribution from each analysis to the 1o, 2o and 3o best-fit regions
 - $\ln \mathcal{L}(s+b) \ln \mathcal{L}(b)$
- ٠ Blue: better than background-only Red: worse than background-only
- Most important contributions to best-fit region:
 - ATLAS 4lep
 - ATLAS_RJ_3lep
 - ATLAS MultiLep 2lep jet
 - ATLAS MultiLep 3lep
 - CMS MultiLep 3lep

T. Gonzalo (Monash U)

DM and ν global fits

17/6/2019

Analysis: results

- More detailed look on
 - · ATLAS_4lep

.

- · ATLAS_RJ_3lep
- ATLAS_MultiLep_2lep_jet
- ATLAS_MultiLep_3lep
- Sudden changes in likelihood due to changes in most sensitive SR
- Light \$\tilde{\chi}_3^0\$ preferred by ATLAS_4lep and ATLAS_MultiLep_3Lep
- Heavy $\tilde{\chi}_4^0$ disfavoured by ATLAS_MultiLep_2lep_jet and ATLAS_MultiLep_3Lep
- The «expected» tension between ATLAS_MultiLep_3Lep and ATLAS_RJ_3lep observed for heavy \$\tilde{\chi}_4^0\$ (production of higgsino \$\tilde{\chi}_2^0, \$\tilde{\chi}_3^0, \$\tilde{\chi}_1^1\$)

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019

MONASH University

Results

Lots of processes relevant for the best-fit point:

$$\begin{array}{l} - \bar{\chi}_{2}^{0} \bar{\chi}_{3}^{0} \mbox{ production, with e.g.} \\ \bar{\chi}_{2}^{0} \to Z + \bar{\chi}_{1}^{0}, \bar{\chi}_{3}^{0} \to W^{-} + \bar{\chi}_{1}^{+} \to W^{-} + W^{+} + \bar{\chi}_{1}^{0} \\ - \bar{\chi}_{2}^{\pm} \bar{\chi}_{2}^{\pm} \mbox{ production, with e.g.} \\ \bar{\chi}_{2}^{\pm} \to W^{\pm} + \bar{\chi}_{2}^{0} \to W^{\pm} + Z + \bar{\chi}_{1}^{0} \\ - \bar{\chi}_{2}^{\pm} \bar{\chi}_{3}^{0} \mbox{ production, with e.g.} \\ \bar{\chi}_{2}^{\pm} \to W^{\pm} + \bar{\chi}_{1}^{0}, \bar{\chi}_{3}^{0} \to Z + Z + \bar{\chi}_{1}^{0} \\ - \bar{\chi}_{2}^{\pm} \bar{\chi}_{3}^{0} \mbox{ production, with e.g.} \\ \bar{\chi}_{2}^{\pm} \to W^{\pm} + \bar{\chi}_{2}^{0} \to W^{\pm} + Z + \bar{\chi}_{1}^{0} \\ - \bar{\chi}_{2}^{\pm} \bar{\chi}_{3}^{0} \mbox{ production, with e.g.} \\ \bar{\chi}_{3}^{\pm} \to W^{\pm} + \bar{\chi}_{2}^{0} \to W^{\pm} + Z + \bar{\chi}_{1}^{0} \\ \bar{\chi}_{3}^{0} \to W^{-} + \bar{\chi}_{1}^{+} \to W^{-} + W^{+} + \bar{\chi}_{1}^{0} \end{array}$$

$$\begin{array}{l} -\tilde{\chi}_2^\pm \tilde{\chi}_4^0 \mbox{ production, with e.g.} \\ \tilde{\chi}_2^\pm \rightarrow W^\pm + \tilde{\chi}_2^0 \rightarrow W^\pm + Z + \tilde{\chi}_1^0, \ \tilde{\chi}_4^0 \rightarrow Z + \tilde{\chi}_1^0 \\ \tilde{\chi}_2^\pm \tilde{\chi}_2^0 \mbox{ production, with e.g.} \\ \tilde{\chi}_2^\pm \rightarrow h + \tilde{\chi}_1^\pm \rightarrow h + W^\pm + \tilde{\chi}_1^0, \ \tilde{\chi}_2^0 \rightarrow Z + \tilde{\chi}_1^0 \\ - \tilde{\chi}_1^\pm \tilde{\chi}_3^0 \mbox{ production, with e.g.} \\ \tilde{\chi}_1^\pm \rightarrow W^\pm + \tilde{\chi}_1^0, \ \tilde{\chi}_3^0 \rightarrow W^- + \tilde{\chi}_1^+ \rightarrow W^+ + W^- + \tilde{\chi}_1^0 \\ - \tilde{\chi}_2^\pm \tilde{\chi}_1^0 \mbox{ production, with e.g.} \\ \tilde{\chi}_2^\pm \rightarrow Z + \tilde{\chi}_1^\pm \rightarrow Z + W^\pm + \tilde{\chi}_1^0, \\ \tilde{\chi}_4^0 \rightarrow h + \tilde{\chi}_2^0 \rightarrow h + Z + \tilde{\chi}_1^0 \\ \end{array}$$

...

T. Gonzalo (Monash U)

DM and ν global fits

MPIK H, 17/6/2019