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INTRODUCTIONINTRODUCTION



The theta-parameter in Yang�Mills theory

Consider SU(2) Yang�Mills with Nf = 1 massive fermions
(can be generalized to SU(N), Nf > 1):

L =− 1

2g2
trFµνF

µν + ψ̄(i /D −meiαγ5
)ψ +

1

16π2
θ trFµνF̃

µν︸ ︷︷ ︸
toplogical term

Dµ =∂µ − iAaµ
τa

2
= ∂µ +Aµ [Dµ, Dν ] = −iFµν

Fµν =F aµν
τa

2
F̃µν =

1

2
εµνρσF

ρσ

Theta term (topological term) is CP -odd
ψ̄iγ5m sinαψ is CP -odd



Extended solutions in Euclidean space

Theta term is a total divergence

1

4
trFµνF̃µν = ∂µKµ Kµ = εµναβtr

[
1

2
Aν∂αAβ +

1

3
AνAαAβ

]
→ Equivalent to a surface term, i.e. the �ux of the current through the

boundary of the integration volume

So does it vanish?

Cf. anti-instanton: Aµ
u
v = −

σµν
u
vxν

x2 + ρ2

Surface term decays as 1/|x|3 → surface integral does not need to vanish



For x2 →∞, the �eld becomes a pure gauge:

Aµ →−
i

g
(∂µΩ)Ω−1 where Ω ∈ SU(2)

Kµ →
1

6
εµνλρtr[(Ω

−1∂νΩ)(Ω−1∂λΩ)(Ω−1∂ρΩ)]

∆n =
1

16π2

ˆ
d4xFµνF̃µν =

1

4π2

˛

S3

d3σK⊥

Integrand is a Haar measure and maps S3 → S3

(Anti-)instanton is a con�guration with winding number ∆n = (−)1

Theta term contributes to the action though being a total derivative



Theta vacuum

Now consider intitial and �nal states, taking x4 → ±∞
→ Pure gauge con�gurations on these surfaces, with

∆n =
1

16π2

ˆ
d4xFµνF̃µν = n∞ − n−∞ gauge invariant

n±∞ =
1

4π2

ˆ

x4=±∞

d3σK⊥ not gauge invariant

Gauge transformations Ω change n±∞ by same number of integer units

Minkowskian boundary conditions �xed by prevacua:
n−∞ → |n〉
n∞ → 〈n|

Gauge invariant (up to phase) state |vac〉 =
∑
n

einθ|n〉

Alternatively, set |vac〉 =
∑
n
|n〉 and absorb θ in topological term

Consequence: In the path integral, sum over all topological sectors
∆n, weigh these by exp(i∆nθ)



Summation necessary because boundary conditions set at t = ±∞
Not how we usually impose boundary conditions on the path
integral

Neither a natural requirement in Euclidean space

Alternatively: Cluster-decompostion argument



Cluster-decompostion argument

Consider expectation value of an operator O in spacetime volume Ω

〈O〉Ω =

∞∑
∆n=−∞

f(∆n)
´

∆n

DφO e−SΩ[φ]

∞∑
∆n=−∞

f(∆n)
´

∆n

Dφ e−SΩ[φ]

Asssume ∆n(Ω) = ∆n1(Ω1) + ∆n2(Ω2)

Factorize path integral into volume contributions:

〈O1〉Ω =

∞∑
∆n1=−∞

∞∑
∆n2=−∞

f(∆n1 + ∆n2)
´

∆n1

DφO1 e−SΩ1
[φ]
´

∆n2

Dφ e−SΩ2
[φ]

∞∑
∆n1=−∞

∞∑
∆n2=−∞

f(∆n1 + ∆n2)
´

∆n1

Dφ e−SΩ1
[φ]
´

∆n2

Dφ e−SΩ2
[φ]

Independence of 〈O1〉Ω from the �uctuations in Ω2 is achieved if the
contributions from Ω2 cancel:

f(∆n1 + ∆n2) = f(∆n1)f(∆n2)⇒ f(∆n) = eiθ∆n



Fermions & CP violation

Add fermion ψ in fundamental representation of SU(2)
Mass: ψ̄m exp(iαγ5)ψ

Chiral transformation of fermion �eld→ rephasing of θ, α: [Fujikawa (1979,80)]

ψ → eiβγ5ψ , θ → θ + 2β , α→ α− 2β

Massless fermion→ no CP violation

Massive fermion→ can shu�e phases forth and back between
topological term and fermion mass but cannot remove CP -odd phase
α+ θ in general

Standard picture: CP -violating e�ects mediated by instantons and can
be described by the e�ective 't Hooft vertex: ['t Hooft (1976,86)]:

L → L− ΓNf eiθ

Nf∏
j=1

(ψ̄jPLψj)− ΓNf e−iθ

Nf∏
j=1

(ψ̄jPRψj),

where ΓNf is a coe�cient



Claim:
Deriving the fermion correlation functions with boundary conditions of
vanishing physical �elds from the path integral leads to:
[Ai, Cruz, BG, Tamarit (2020)]

L → L− ΓNf e−iᾱ

Nf∏
j=1

(ψ̄jPLψj)− ΓNf eiᾱ

Nf∏
j=1

(ψ̄jPRψj) ᾱ =

Nf∑
j

αj

E�ective operator inferred from
Green's functions→ correlation functions



GREEN’S FUNCTIONSGREEN’S FUNCTIONS



Euclidean Green's function

Euclidean Green's function SE(xE, xE′) satis�es

( /D
E

+mR + iγ5mI)S
E(xE, xE′) = δ4(xE − xE′)

Construct SE from the spectral sum in the massless limit

Spectrum:

/D
E
ψ̂E
λ =

(
/∂

E
+ γE

mA
E
m

)
ψ̂E
λ = λEψ̂E

λ

−→ SE(xE, xE′) =
∑̂
λE

ψ̂E
λ (xE)ψ̂E†

λ (xE′)

λE

Since the Euclidean Dirac operator /D
E
is anti-Hermitian, its

eigenfunctions can readily be assumed to be orthonormal.

Deal with small masses once spectrum is analyzed



Fermion zero-modes

Spectral sum for m = 0 is ill-de�ned because of the fermionic zero mode
λE = 0 in the instanton background

Euclidean index theorem: Winding number equals di�erence between
number of right-handed and left-handed zero modes
→ One left (right)-handed zero-mode for ∆n = −1 (∆n = 1)

Left-handed zero mode ['t Hooft (1976)]

ψ̂E
0L(xE) =

 χE
0 (xE)(

0
0

)  , where χE
0 (xE) =

%u

π [%2 + (xE)2]
3
2

, uαb = εαb

Now include mass @ �rst order in perturbation theory (∆n = −1
background) [Shifman, Vainshtein, Zakharov (1979)]

SE(xE, xE′) =
ψ̂E

0 (xE)ψ̂E†
0 (xE′)

me−iα
+
∑̂
λE 6=0

ψ̂E
λ (xE)ψ̂E†

λ (xE′)

λE



For α 6= 0 and arbitrary m, can use linear combinations of ψ̂E
λ and γ5ψ̂E

λ

as solutions to the eigenvalue problem in the case of general complex
masses
Eigenvalues are then given by

ξE
±(λE) = mR ±

√
(λE)2 −m2

I

→ No perturbative approximation needed if full massless spectrum is
known



Continuation to Minkowski spacetime

Analytic continuation:

x4 → e−i(ϑ−π
2

)t

t ∈ R ϑ = π/2: Euclidean metric ϑ = 0+: Minkowski metric

Continuation of Dirac operator:

/D
E

=(/∂
E
m + γE

mA
E
m)

→
(
−i

∂

∂x0
γE

4 + ~γE · ∇+ γE
4 A

E
4 (~x, x4 = ix0) + ~γE · ~AE(~x, x4 = ix0)

)

= − i

(
∂

∂x0
γ0 + ~γ · ∇+ γ0A0(x0, ~x) + ~γ · ~A(x0, ~x)

)
= −i /D ,

where ~γ · ∇ ≡
∑

i γ
i∂i and accordingly for ~γ · ~A, γ0 = γE

4 and
γi = iγE

i for i = 1, 2, 3

Green's functions, as they are inverse Dirac operators, transform
straightforwardly.



Continuation of the eigensystem

Issues of spectral representation in Minkowski spacetime:

The operator i /Dγ0 in Minkowski spacetime is not of de�nite
Hermiticity because of the complex gauge-�eld con�guration in the
analytically continued soliton background.

The inner product

ˆ
d4x ψ̄ξ(x)ψξ′(x) is not positive de�nite.

Zero-modes in anti-instanton (instanton) background are purely left
(right)-handed. An operator breaking chiral symmetry�such as the
e�ective instanton vertex�mixes left-and right chiral degrees of
freedom. How does this play out in Minkowski spacetime?



Determine continuation by behaviour in asymptotic, homogeneous
spacetime region where the solutions go to either damped or oscillatory
exponentials [Ai, BG, Tamarit (2019)]

Discrete modes�straightforward continuation
as modes remain properly normalizable for
0 < ϑ ≤ π/2:

ψϑn(x) =ψϑn(x0, ~x) =
√

ie−iϑ ψE
n (~x, x4 = ie−iϑx0)

ξϑn =− ξE
n

-4 -2 0 2 4

-0.5

0.0

0.5

1.0

t

ψ

Continuum modes�continue time and
asymptotic k0 (avoid blowup on one side,
use asymptotic plane waves to label
eigensystem)

ψϑ{k}(x) =ψϑ{k0,~k}(x
0, ~x)=ψE

{~k,−ieiϑk0}
(~x, x4 =ie−iϑx0)

ξϑ{k0,~k} =− ξE
{~k,−ieiϑk0}

-10 -5 0 5

-2

-1

0

1

2

3

t
ψ



This eigensystem is orthonormal with respect to the following inner
product:

(ψϑξ , ψ
ϑ
ξ′)ϑ =

ˆ
d4x ψ̃ϑξ (x)ψϑξ′(x)

ψ̃ϑn(x0, ~x)=
√

ie−iϑ (ψE
n (~x, x4))†

∣∣∣
x4=ie−iϑx0

=ie−iϑ(ψϑn(x0, ~x))†
∣∣∣
x0→−e−2iϑx0

ψ̃ϑ{k0,~k}(x
0, ~x)=

(
ψE
{~k,k4}

(~x, x4)
)†∣∣∣∣ x4 =ie−iϑx0

k4 =−ieiϑk0

= ψϑ{k0,~k}(x
0, ~x)†

∣∣∣ x0 → −e−2iϑx0

k0 → −e2iϑk0

Spectral representation in Minkowski spacetime

Sϑ(x, x′) ≡ (i /D
ϑ −meiαγ5)−1(x, x′) =

∑̂
ξϑ

1

ξϑ
ψϑξ (x)ψ̃ϑξ (x′)

=
∑
n

1

ξϑn
ψϑn(x)ψ̃ϑn(x′) +

ˆ
d4k

1

ξϑ{k}
ψϑ{k}(x)ψ̃ϑ{k}(x

′)



Green's function in Minkowski spacetime

Application to zero mode in the η = −1 background gives

ψ0L(x0, ~x) ≡
√

iϕ0L(x0, ~x) =
√

iψE
0L(~x, ix0)

where

ϕ0L(x) =

 χ0(x)(
0
0

)  , χ0(x) =
%u

π(%2 − x2)
3
2

Add contributions from far from the instanton [cf. Diakonov, Petrov (1986)]

iS(x, x′) = iScont(x, x
′)+

ϕ0L(x− x0)ϕ†0L(x′ − x0)

me−iα

≈ iS0inst(x, x
′)+

ϕ0L(x− x0)ϕ†0L(x′ − x0)

me−iα

iS0inst(x, x
′) = (−γµ∂µ + ime−iαγ5

)

ˆ
d4p

(2π)4
e−ip(x−x′) 1

p2 −m2 + iε



Green's function in n-instanton, n̄-anti-instanton background

iSn,n̄(x, x′) ≈ iS0inst(x, x
′)+

n̄∑
ν̄=1

ϕ0L(x− x0,ν̄)ϕ†0L(x′ − x0,ν̄)

me−iα

+

n∑
ν=1

ϕ0R(x− x0,ν)ϕ†0R(x′ − x0,ν)

meiα

Comments:

For small masses, zero-modes dominate close to the core of the
instantons, far away from the instanton the solution goes to the
zero-instanton con�guration

ϑ-inner product explains how zero-mode contribution in Minkowski
space can break χral symmetry

Alignment of phase α between Lagrangian mass and
instanton-induced χSB −→ No indication of CP -violation here

Perhaps expected�θ-vacuum has not entered calculation thus far

Yet check out interference between di�erent topological sectors ∆n



Can interference between topological sectors be observed?

Observer correponds to one or
more legs of a correlation
function (Feynman diagram)

Reconstruct the state of the
observer from amplitudes

Works for each topological
sector ∆n separately
(observer/system state evolves
separately for each sector ∆n)

Possible to observe the
interference between the
topological sectors of di�erent ∆n? Superobserver?

Topological phases ei∆n(α+θ) appear globally for each topological sector.
It is not clear how an observer made up of local quantum �elds can
access separate sectors neither should ∆n be observable for V T →∞ to
avoid collapse of the θ-vacuum.

Resolution: Turns out interferences are immaterial in the limit V T →∞



CORRELATION FUNCTIONS &CORRELATION FUNCTIONS &
EFFECTIVE OPERATORSEFFECTIVE OPERATORS



Integrating out the �uctuations

Choose θ-vacuum in Minkowski spacetime as |vac〉 =
∑
nCS

|nCS〉

Absorb CP -odd phase in topological term/fermion mass
Evaluate correlation and partition function �rst for �xed ∆n

〈ψ(x)ψ̄(x′)〉∆n

=
∑
m

out〈m+ ∆n|ψ(x)ψ̄(x′)|m〉in =
∑
n̄,n≥0

n−n̄=∆n

ˆ
DAn̄,nDψ̄Dψ ψ(x)ψ̄(x′)eiSn̄,n

=
∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

 n̄∏
ν̄=1

ˆ

V T

d4x0,ν̄dΩν̄Jν̄

 n∏
ν=1

ˆ

V T

d4x0,νdΩνJν

 iS(x, x′)

× |det(i/∂ −meiαγ5
)| (detA=0)−1/2 e−SE(n̄+n)e−i(n̄−n)(α+θ)(−Θ$)(n̄+n)

dΩνJν : Zero modes & pertaining Jacobians
Θ,$ : Reduced fermion & gauge/ghost determinants in instanton background
Note: The explicit determinants in above formula are vacuum determinants.



Likewise, partition function:

Z∆n =
∑
m

out〈m+ ∆n|m〉in =
∑
n̄,n≥0

n−n̄=∆n

ˆ
DAn̄,nDψ̄Dψ eiSn̄,n

=
∑
n̄,n≥0

n−n̄=∆n

1

n̄!n!

(
−
´
dΩ J V T Θ$ e−SE

)(n̄+n)

× | det(i/∂ −meiαγ5
)| (detA=0)−1/2e−i(n̄−n)(α+θ)



Integrate out locations of the instantonˆ

V T

d4x0,ν̄ iS(x, x′)

≈
ˆ

V T

d4x0,ν̄

[
iS0inst(x, x

′)+
ϕ0L(x− x0,ν̄)ϕ†0L(x′ − x0,ν̄)

me−iα
+ · · ·

]
=V T (iS0inst(x, x

′) + · · · )+m−1eiαh(x, x′)PL

Dots represent contributions from the zero modes of the
(anti)-instantons whose centres were not integrated over

h(x, x′) is de�ned as a block-diagonal matrix (with two identical blocks):

h(x, x′)PL =

ˆ

V T

d4x0,ν̄ ϕ0L(x− x0,ν̄)ϕ†0L(x′ − x0,ν̄)

h(x, x′)PR =

ˆ

V T

d4x0,ν̄ ϕ0R(x− x0,ν̄)ϕ†0R(x′ − x0,ν̄)

h̄(x, x′) ≡
´
dΩh(x, x′)´

dΩ



Integrating over all locations −→ Correlation function for �xed ∆n:

〈ψ(x)ψ̄(x′)〉∆n

=
∑

n̄,n≥0
n−n̄=∆n

1

n̄!n!

[
h̄(x, x′)

( n̄

me−iα
PL +

n

meiα
PR

)
(V T )n̄+n−1 + iS0inst(x, x

′) (V T )n̄+n
]

× (iκ)n̄+n(−1)n+n̄ei∆n(α+θ)

=

[(
eiαI∆n+1(2iκV T )PL + e−iαI∆n−1(2iκV T )PR

) iκ

m
h̄(x, x′) + I∆n(2iκV T )iS0inst(x, x

′)

]
× (−1)∆nei∆n(α+θ)

where iκ =
´
dΩ J Θ$ e−SE and Iα(x) is the modi�ed Bessel function

Sum is dominated by particular value of n ≈ n̄:

〈n〉 =

∑∞
n=0 n

(αV T )n

n!∑∞
n=0

(αV T )n

n!

= αV T ,
〈∆n〉
〈n〉

=
1√
αV T

Cf. limx→∞ I∆n(ix e−i0+
)/I∆n′(ix e−i0+

) = 1

−→ No relative CP phase between mass and instanton induced breaking
of χral symmetry�alignment



Correspondingly, partition function for �xed ∆n:

Z∆n = I∆n(2iκV T ) (−1)∆nei∆n(α+θ)

Note: The topological phase ei∆n(α+θ) multiplies 〈ψ(x)ψ̄(x′)〉∆n and
Z∆n entirely�not just the contributions induced by instantons.

Now, interfere over all ∆n (i.e. sum over topological sectors) and see
whether this makes a di�erence

Ordering of the limits

∆n only well-de�ned for V T →∞ (unless periodic boundary conditions)
−→ Implies use of limx→∞ I∆n(ix e−i0+

)/I∆n′(ix e−i0+
) = 1



Sum over topological sectors: interference

Partition function in θ-vacuum (recall phase resides in topological term):

Z =out〈vac|vac〉in =
∑
m,n

out〈m|n〉in =

∞∑
∆n=−∞

∑
m

out〈m+ ∆n|m〉in =

∞∑
∆n=−∞

Z∆n

Fermion correlator

〈ψ(x)ψ̄(x′)〉 ≡ 1

Z
out〈vac|ψ(x)ψ̄(x′)|vac〉in

=

∞∑
∆n=−∞

∑
n

out〈n+ ∆n|ψ(x)ψ̄(x′)|n〉in∑∞
∆n=−∞ Z∆n

= lim
N→∞
N∈N

lim
V T→∞

N∑
∆n=−N

〈ψ(x)ψ̄(x′)〉∆n∑N
∆n=−N Z∆n

=iS0inst(x, x
′) + iκh̄(x, x′)m−1e−iαγ5

(same as for �xed ∆n)

Recall: iS0inst(x, x
′) = (−γµ∂µ + ime−iαγ5

)
´ d4p

(2π)4 e−ip(x−x′) 1
p2−m2+iε

−→ No relative CP -phase between mass and instanton term



Limits ordered the other way around

First sum over all ∆n as well:∑
n̄,n≥0

1

n̄!n!

[
h̄(x, x′)(n̄m−1eiαPL + nm−1e−iαPR) (V T )n̄+n−1+ iS0inst(x, x

′) (V T )n̄+n
]

× (−miκ)n̄+nei∆n(α+θ)

=

[
−
(

e−iθPL + eiθPR

) iκ

m
h̄(x, x′) + iS0inst(x, x

′)

]
e−2iκV T cos(α+θ)

Z →
∑
n,n̄

1

n!n̄!
(−iκV T )n̄+ne−i(n̄−n)(α+θ) = e−2iκV T cos(α+θ)

Then, V T →∞ trivial as V T -dependence cancels
−→ Relative CP phase leading to CP -violating observables

However: The order of the limits is not a choice but dictated by the fact
that boundary conditions for the theta-vacuum are imposed at t = ±∞.



E�ective operators

E�ective interactions in the theory with fermions (present analysis)
−→ E�ective operators in χral perturbation theory
−→ Observables such as neutron EDM, η′ → ππ

V T →∞ before
∑

∆n

L → L− ψ̄(x)Γeiαγ5
ψ(x)

Alignment with ψ̄m exp(iαγ5)ψ

No CP -violating observables

∑
∆n before V T →∞

L → L+ ψ̄(x)Γe−iθγ5
ψ(x)

Misaligned with ψ̄m exp(iαγ5)ψ

CP -violating observables

Note: both operators transform in compliance with χral anomaly:
ψ → eiβγ5ψ, ψ̄ → ψ̄ eiβγ5 , α→ α− 2β, θ → θ + 2β

Nf �avours: L → L− ΓNf e−iᾱ
∏Nf
j=1(ψ̄jPLψj)− ΓNf eiᾱ

∏Nf
j=1(ψ̄jPRψj)

Can also compute more general correlation functions, where again
factors

∑
∆n (−1)∆nei∆n(α+θ) cancel when taking V T →∞ �rst



CONCLUSIONSCONCLUSIONS



Conclusions

Have derived Green's functions for massive fermion in Yang�Mills
theory (instantons) with general chiral phase, Euclidean &
Minkowskian versions
−→ Alignment of χral phases from mass and instanton terms

From these, have obtained correlation functions in theta vacuum

In the in�nite spacetime volume V T →∞, also the correlators show
the alignment of χral phases.

Thus, the absence CP -violating observables in QCD is explained
without setting α+ θ = 0 or requiring an extension of the Standard
Model.


