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The theta-parameter in Yang—Mills theory

Consider SU(2) Yang-Mills with Ny = 1 massive fermions
(can be generalized to SU(N), Ny > 1):

1 by T . ia~y® 1 [y
L=— 2—92trFle“ + w(llD —me'* ) + @HUF/WFH
toplogical term
T .
1)y =8, — 1AZ? = Oy 1 Al VD) IO = =i,
T ~ 1
F‘[LV :ngE ELV - ig,uupferU

Theta term (topological term) is C'P-odd
Yiy’msina v is CP-odd



Extended solutions in Euclidean space

Theta term is a total divergence

1 ~ 1 1
zter,Fw, == aMKM KM == em,agtr §AyaaAB + gAVAO‘A,B

— Equivalent to a surface term, i.e. the flux of the current through the
boundary of the integration volume

So does it vanish?
T Ty

x2 + p?

Surface term decays as 1/|z|> — surface integral does not need to vanish

Cf. anti-instanton: AM“U =



For 2 — oo, the field becomes a pure gauge:

i fege ovewtubion
Ay — — =(0,20)07" where Q € SU(2)
g
1
K, —>65W,\ptr[((2_18,,9)(Q_lﬁAQ)(Q_lﬁpQ)]
dus1 dwsz
1 4 ~ 1 3 ﬂ
An = 6.2 d*zF, F,, = o d°cK |
S3
dus0

Integrand is a Haar measure and maps S — 53 du-t

(Anti-)instanton is a configuration with winding number An = (—)1

Theta term contributes to the action though being a total derivative



Theta vacuum

Now consider intitial and final states, taking x4 — +o0
— Pure gauge configurations on these surfaces, with

1 -
An = = /d41:FWFW =Noo — N_wno gauge invariant
s
1
Ntoo :ﬁ / BoK L not gauge invariant
T
zt=4o0c0

Gauge transformations {2 change ni., by same number of integer units

N_oo — |N)

Minkowskian boundary conditions fixed by prevacua:
Noo — (N

Gauge invariant (up to phase) state [vac) = 3 e"?|n)

n
Alternatively, set |vac) = > |n) and absorb 6 in topological term
n

Consequence: In the path integral, sum over all topological sectors
An, weigh these by exp(iAnf)



Summation necessary because boundary conditions set at ¢ = o0

Not how we usually impose boundary conditions on the path
integral
Neither a natural requirement in Euclidean space

Alternatively: Cluster-decompostion argument



Cluster-decompostion argument

Consider expectation value of an operator O in spacetime volume (2
z f(An) f D O e=5al?]
< O>Q _ An=—00

Z f(An) ngbe*SﬂW’]

An=—o00

Asssume An(Q) = Ani(Q1) + Ang(Q2)

Factorize path integral into volume contributions:

S S f(Any+ Any) [ DgOe Sl [ DyeSenld

Ani=—00 Ang=—00 Anq Ang

(O1)a = = -
> S f(Any + Any) [ Dpe5uldl [ Dpe 5219

Ani=—00 Ang=—00 Ang Ang

Independence of (O;)q from the fluctuations in 29 is achieved if the
contributions from )y cancel:

f(Any + Any) = f(Any) f(Any) = f(An) = e"



Fermions & CP violation
Add fermion 1 in fundamental representation of SU(2)
Mass: 1m exp(iay?)1)

Chiral transformation of fermion field — rephasing of 6, «: [Fujikawa (1979,80)]
Y =P 05 0+28, a—a—283

Massless fermion — no C'P violation

Massive fermion — can shuffle phases forth and back between
topological term and fermion mass but cannot remove C' P-odd phase
« + 6 in general

Standard picture: C P-violating effects mediated by instantons and can
be described by the effective 't Hooft vertex: [ mooft (1976,86)]:

Ny Ny
L — L—Tne [T PLiby) — Tvpe ™ T [ (05 Preby),
j=1 j=1

where I' Ny IS a coeflicient



Claim:
Deriving the fermion correlation functions with boundary conditions of
vanishing physical fields from the path integral leads to:

[Ai, Cruz, BG, Tamarit (2020)]

Ny Ny Ny
L—L—-Tye @ H(%PL%) — 'y e H(¢jPR¢j) o= Zo‘j
j=1 Jj=1 J

Effective operator inferred from
Green’s functions — correlation functions






Euclidean Green’s function

Euclidean Green’s function S¥(z®, 2™ satisfies

(ID + mg + i7°my) ST (28, 2¥) = 64 (2P — =)

Construct S* from the spectral sum in the massless limit

Spectrum:

P = (9 +7EAE)¢E:A%E

R S, o) i% )

Since the Euclidean Dirac operator lﬁ is anti-Hermitian, its
eigenfunctions can readily be assumed to be orthonormal.

Deal with small masses once spectrum is analyzed



Fermion zero-modes
Spectral sum for m = 0 is ill-defined because of the fermionic zero mode
AF = 0 in the instanton background

Euclidean index theorem: Winding number equals difference between
number of right-handed and left-handed zero modes
— One left (right)-handed zero-mode for An = —1 (An = 1)

Left-handed zero mode pt mooft (1976)]

) X6 (27) o
) = where r)=——"— u¥ =¢
wOEL( E) 0 ) h XOE( E) 3 ob ab
0 [0 + (a)?]2
Now include mass @ first order in perturbation theory (An = —1
background) [Shifman, Vainshtein, Zakharov (1979)]
E/
5 B B V(P NG )
S (I‘ » L ) me—la I

AE=£0



For a # 0 and arbitrary m, can use linear combinations of 1&? and 751%]?

as solutions to the eigenvalue problem in the case of general complex
masses
Eigenvalues are then given by

EE(NF) = mr £/ (AF)2 —m}

— No perturbative approximation needed if full massless spectrum is
known



Continuation to Minkowski spacetime

Analytic continuation:
Ty — =3¢
t € R ¥ = 7/2: Euclidean metric ¥ = 0%: Minkowski metric
Continuation of Dirac operator:
D* =(@, + 15 AL)
— <—i(;§0’yf + 78V 4 AP ANE 1y = 12°) + A A(Z 1y = ix0)>

0 -
= =i (T VA8 47 A 8)) = iD.

where 7 -V = 3", 4'9; and accordingly for 7 - A, A0 = 7E and
7 =iyF for i =1,2,3

Green’s functions, as they are inverse Dirac operators, transform
straightforwardly.



Continuation of the eigensystem

Issues of spectral representation in Minkowski spacetime:

m The operator ip~° in Minkowski spacetime is not of definite
Hermiticity because of the complex gauge-field configuration in the
analytically continued soliton background.

m The inner product /d4x Ye(2)he () is not positive definite.

m Zero-modes in anti-instanton (instanton) background are purely left
(right)-handed. An operator breaking chiral symmetry—such as the
effective instanton vertex—mixes left-and right chiral degrees of
freedom. How does this play out in Minkowski spacetime?



Determine continuation by behaviour in asymptotic, homogeneous
spacetime region where the solutions go to either damped or oscillatory
exponentials [Ai, BG, Tamarit (2019)]

Discrete modes—straightforward continuation R
as modes remain properly normalizable for s / \
0<v < 7T/2Z s /

0.0
P8 () =yl (2%, &) = Vie W PE(7, x4 = ie 2% o5 U

6712:_67]? t

Continuum modes—continue time and
asymptotic k¥ (avoid blowup on one side,
use asymptotic plane waves to label

/
eigensystem) BV \4 \/

2

7vb?k} (z) =¢?k,ov,;} (xov T) = w?];,—iemko}(f’ T4 = ie_iﬁx()) - t

9 _ E
f{kO,E} - 5{12,716%}



This eigensystem is orthonormal with respect to the following inner
product:

(62,42 = / diz 3 (2) 2 ()

Un(a®, @) =VieT (4 (7, 24))! (2, 7))

x4:ie—“910 x0——e— 21070

— oY 0 T )
zq=ie10z0 ¢{k07’;} (I ’56) 20 — —e~ a0

19,0 kO — —210k0

ky=—ie




Green’s function in Minkowski spacetime

Application to zero mode in the n = —1 background gives

Yo (2%, %) = VigoL(2?, &) = Vivg,(7,ia°)

where
Xo () "
eor(z) = 0 7 Yola) = — 2
0 7T(Q2 — 1‘2) 2
Add contributions from far from the instanton [cf. piakonov, Petrov (1986)]
T /
T — X r —x
iS(x,ac’) :iSCOHt(x,x/)+(pOL( 0) SOOL( 0)
me™a
T /
T — X r —x
%iSOinst(x,x’)Jr(pOL( 0) SOQL( 0)
me—lOé

1
p? —m?2 +ie

4
1S0inst (T $/) = (=0, + imeia'Ys)/ d’p e~ ip(z—a)
’ g (2m)!




Green’s function in n-instanton, n-anti-instanton background

i R,
s : POL\T — Z0,5)Por, (T — Zo,z
WS il x') = 1Spinst (z, ')+ g ( T:L)e—?‘%( »)
v=1

n i @or (z — wo,u)SO(T)R(wl — W)
« meia
v=

Comments:

For small masses, zero-modes dominate close to the core of the
instantons, far away from the instanton the solution goes to the
zero-instanton configuration

J-inner product explains how zero-mode contribution in Minkowski
space can break yral symmetry

Alignment of phase o between Lagrangian mass and
instanton-induced xSB —— No indication of C P-violation here

Perhaps expected—60-vacuum has not entered calculation thus far

Yet check out interference between different topological sectors An



Can interference between topological sectors be observed?

m Observer correponds to one or 1os
more legs of a correlation
. . O 44‘7 =-7
function (Feynman diagram) @«g 0

m Reconstruct the state of the
observer from amplitudes

m Works for each topological %«E

sector An separately
(observer /system state evolves

Qo

Adn=g

2 7PeiIgp msignju

separately for each sector An) @«g 2 Am=+4q
m Possible to observe the
interference between the e

topological sectors of different An? Superobserver?

Topological phases elAn(atd) anpear globally for each topological sector.
It is not clear how an observer made up of local quantum fields can
access separate sectors neither should An be observable for VI — oo to
avoid collapse of the #-vacuum.

Resolution: Turns out interferences are immaterial in the limit V1T — oo






Integrating out the fluctuations

Choose #-vacuum in Minkowski spacetime as |vac) = Y |ncs)
ncs

Absorb C'P-odd phase in topological term /fermion mass
Evaluate correlation and partition function first for fixed An

(6(@)P(a")) s
=3 ol + Al ()i = 3 [ DA DEDY b))

n—n=An

1 n n
= 3 o 11 / d*z0pd% 5 | | ] / d*zo,dQ,J, | iS(z, 2"
e AN v=tvr

x | det(iff — meiavs)‘ (det g—g) /2 e~ SB (4N o —i(A—n)(a+0) (_ g o) (Rtn)

dQ,J,:  Zero modes & pertaining Jacobians
O, : Reduced fermion & gauge/ghost determinants in instanton background
Note: The explicit determinants in above formula are vacuum determinants.



Likewise, partition function:

Zan= Yo+ By = Y [ DA, DIDY S

m n,n>0
n—n=An

=Y n‘ln (—fdQ T VT @ e )"
n—n=an x | det(iff — me'®?”)| (det 4—g) "/ 2e 71T (@F0)



Integrate out locations of the instanton
/d4zno,l, iS(x, )
VT

T
T — 20,0 r — To.p
~ /d4960,17 [iSOinst(x,(L'/)—f—(pOL( 0.)Pou( 0, )+

me—ia
vT

=VT (iSpinst (@, ') + - - - )+m L' (z, 2") Py,
Dots represent contributions from the zero modes of the
(anti)-instantons whose centres were not integrated over

h(z,z") is defined as a block-diagonal matrix (with two identical blocks):

he,2')P = / 20,5 por (% — T0.0) by (2" — 70.0)
vT

h(z,2")Pgr = / d*zo,5 or (T — SUO,;)(P:SR(UC, — Z0,5)
VT

h(z, 2" Eif de};(;;’ )



Integrating over all locations — Correlation function for fixed An:
(P(2)P(a))an
1 - ’ n n A+n— . ’ n+n
=3[R ( Pt~ P ) (VD)™ 4 S (2, 2') (V)™

mefia
ﬁ,zgo . n n_iAn(a+6)
n—n=An % (lli)n+n(—1)n+nel

_ [(eiaIAnH(QiKVT)PL + e*i"IAn,l(szT)PR) % Az, 2") + Tan(206V T)iSoms: (2, x’)}
% (71)AnoiAn(a+(~))

where ix = [dQJ ©we °F and I. () is the modified Bessel function

Sum is dominated by particular value of n ~ n:

_ TRttt (An) 1
(n) = o @V = aVT, =
Zn:() n! <n> VT

Cf. limg—so0 Inn(iz e 0 /Tnp (i e 07) = 1

— No relative C'P phase between mass and instanton induced breaking
of yral symmetry—alignment



Correspondingly, partition function for fixed An:
Zan = Ian(2ikVT) (—1)Anci8nt0)

Note: The topological phase ™9 multiplies ((z)(2'))an and
Z Ay entirely—not just the contributions induced by instantons.

Now, interfere over all An (i.e. sum over topological sectors) and see
whether this makes a difference

Ordering of the limits

An only well-defined for VT — oo (unless periodic boundary conditions)
— Implies use of lim,_,o0 Ian (i e_i0+)/IAn/ (ix e_iO+) =1



Sum over topological sectors: interference

Partition function in #-vacuum (recall phase resides in topological term)'

Z :out<VaC|VaC>in— Zout m|n in = Z Zout m + An|7n in = ZZAn

An=—ocom An=—o00

Fermion correlator

(H@)P) = 5 oulvacll@i (o) vachn

N _
> Ceutn + Anf(@)d(a) n)in 2. (W(@)P(a))an
S = lim lim 2°==N
2 An=—o0 Zn New VI9% Can=—n Zan

1_—iay®

=1S0inst (z, ') + ikh(z,z")m e (same as for fixed An)

Recall: iSpinst (2, 2") = (—7#"0y + ime™ iory® ) [ (d Do Pl x)m

— No relative C'P-phase between mass and instanton term



Limits ordered the other way around

First sum over all An as well:

1 r- . , ) )
Z 7ﬁ'n' |:h(£L‘7 x’)(ﬁ mflelaPL +n m—leflaPR) (VT)n+n71+ iSoinst (x, m/) (VT)n+ni|
An>0 % (—mi/{)ﬁ+7leiAn(a+g)

_ [_ (einPL + eiepR) ﬁﬁ(%m/) + iSotmst (2, ') o 2inV T cos(a+0)
m

1 . n —i(n— —2ik 0S
7 — Z ﬁ(—mVT)"JF"e (A=n)(a+0) _ o~2ikVT cos(a-+0)
n,n

Then, VT — oo trivial as VT-dependence cancels
— Relative C'P phase leading to C' P-violating observables

However: The order of the limits is not a choice but dictated by the fact
that boundary conditions for the theta-vacuum are imposed at ¢t = too.



Effective operators

Effective interactions in the theory with fermions (present analysis)
— Effective operators in yral perturbation theory
— Observables such as neutron EDM, ' — 7w

VT — oo before ., YA, before VI — oo

L — L —p(z)Te®’ (z) L — L+ P(z)Te 0y (x)
Alignment with ¢¥m exp(iay®)y Misaligned with ¢m exp(iary® )1
No C'P-violating observables C P-violating observables

Note: both operators transform in compliance with yral anomaly:
P — P ) — elbrs, a— a—20, 0—0+25

—ia 77N5 (7, ia T7Nr (.7,
Nf flavours: £ — L — FNfe Hj:fl(ﬂ)jPLi/Jj) — FNfe Hj:fl(i/)jPRT/Jj)

Can also compute more general correlation functions, where again
factors 3. A, (—1)2"e 2740 cancel when taking VT — oo first






Conclusions

m Have derived Green’s functions for massive fermion in Yang—Mills
theory (instantons) with general chiral phase, Euclidean &
Minkowskian versions
— Alignment of xral phases from mass and instanton terms

m From these, have obtained correlation functions in theta vacuum

m In the infinite spacetime volume VT — oo, also the correlators show
the alignment of xral phases.
m Thus, the absence C' P-violating observables in QCD is explained

without setting o 4+ 6 = 0 or requiring an extension of the Standard
Model.



