What is the 750 GeV γγ resonance?

... and what to do with it?

Roberto Franceschini (CERN) May 30th 2016 - MPI Kernphysik (Heidelberg)

1512.04933, 1512.05330, 1604.06446

Bellazzini, Sala, Serra, Giudice, Kamenik, McCullough, Pomarol, Rattazzi, Redi, Riva, Strumia, and Torre

Déjà vu?

Jamboree 2011-15

Jamboree 2011-15 **EPS 2011**

BSM means operating in this moving field

BSM means operating in this moving field

Join the dots

Join the dots

Overwhelming amount of interpretations

ets

Properties of sideband and excess regions

SPIN-0 ANALYSIS

Properties of sideband and excess regions Ermiss

SPIN-0 ANALYSIS

Marco Delmastro

Diphoton searches in ATLAS

Properties of sideband and excess regions

SPIN-0 ANALYSIS

Marco Delmastro

Diphoton searches in ATLAS

 $\mathbf{D}_{\mathbf{T}}^{\mathbf{Y}\mathbf{Y}}$

Properties of sideband and excess regions $\cos\theta_{vv}^*$

SPIN-0 ANALYSIS

Marco Delmastro

Diphoton searches in ATLAS

 $F \to \gamma \gamma$

• spin

- CP (eigenstate?)
- flavor properties
- SU(2) charge

Comparison with 8 TeV

Comparison with 8 TeV

Spin

1602.02793 1603.04248 1604.06948

Spin-0: dim-5 $F \cdot F^{\mu\nu} F_{\mu\nu}$ Spin-1: Landau-Yang Spin-2: Tree-level coupling (*e.g.* $h_{\mu\nu} \cdot T^{\mu\nu}$)

Spin-2 and leptons

the absence of a signal in leptons points to a non-universally coupled spin-2

1603.08913 1603.06980 1603.08250 1602.02793 1603.05574

strong interactions at the TeV are typical in such frameworks

Spin-2 and leptons

the absence of a signal in leptons points to a non-universally coupled spin-2

1603.08913 1603.06980 1603.08250 1602.02793 1603.05574

strong interactions at the TeV are typical in such frameworks

$$\sigma(pp \to S \to \gamma\gamma) = \frac{2J+1}{M\Gamma s} \bigg[\sum_{\wp} C_{\wp\bar{\wp}} \Gamma(S \to \wp\bar{\wp}) \bigg] \Gamma(S \to \gamma\gamma)$$

1512.08307 1512.08500 1602.01460

|5|2.08307 |5|2.08500 |602.0|460

new strong interactions

Other resonance channels

	$\sigma(pp \to \gamma\gamma)$	$\sqrt{s} = 8 \mathrm{TeV}$			$\sqrt{s} = 13 \mathrm{TeV}$		
		narrow	bro	ad	narrow	v broa	ad
	CMS	0.63 ± 0.31	fb 0.99 ± 100	$1.05\mathrm{fb}$	4.8 ± 2.1	fb 7.7 ± 4	.8 fb
	ATLAS	0.21 ± 0.22	fb $0.88 \pm$	0.46 fb	5.5 ± 1.5	fb 7.6 ± 1	.9 fb
	final	σ at $$	$\sqrt{s} = 8 \mathrm{TeV}$		σ at $\sqrt{s} = 13 \mathrm{TeV}$		7
	state f	observed	expected	ref.	observed	expected	ref.
L	$\boxed{e^+e^-,\mu^+\mu^-}$	$< 1.2 { m ~fb}$	< 1.2 fb	[3]	$< 5\mathrm{fb}$	$< 5\mathrm{fb}$	[78]
	$\tau^+\tau^-$	$< 12 { m fb}$	< 15 fb	[3]	$< 60{\rm fb}$	$< 67{\rm fb}$	[79]
	$Z\gamma$	< 11 fb	$< 11~{\rm fb}$	[3]	$< 28{\rm fb}$	$< 40\mathrm{fb}$	[80]
	ZZ	$< 12 { m ~fb}$	$<20~{\rm fb}$	[3]	$< 200{\rm fb}$	$< 220{\rm fb}$	[81]
	Zh	$< 19 { m ~fb}$	$<28~{\rm fb}$	[3]	$< 116{\rm fb}$	$< 116{\rm fb}$	[82]
	hh	< 39 fb	< 42 fb	[3]	$< 120{\rm fb}$	$< 110{\rm fb}$	[83]
	W^+W^-	$< 40 { m ~fb}$	$<70~{\rm fb}$	[3]	$< 300{\rm fb}$	$< 300{\rm fb}$	[84]
	$t\bar{t}$	$< 450 { m ~fb}$	$< 600 { m ~fb}$	[3]			
	invisible	< 0.8 pb	-	[3]			
•	$b\overline{b}$	$\lesssim 1\mathrm{pb}$	$\lesssim 1\mathrm{pb}$	[3]			
	jj	$ \lesssim 2.5 \text{ pb}$	-	[3]			

F

	$rac{\sigma_{13{ m TeV}}}{\sigma_{8{ m TeV}}}$	$10^2 \times$	r_{WW}^{γ}	r_{ZZ}^{γ}	$r^{\gamma}_{Z\gamma}$	r_{hh}^{γ}	$r_{tar{t}}^\gamma$	$r^{\gamma}_{ auar{ au}}$	$r_{\ell ar{\ell}}^{\gamma}$	r_{gg}^γ
ATLAS	2.9 [5]*		3.0 [7]	13 [9]*	19 [10]*	4.1 [11]*	0.22 [13]	15 [15]	124 [17]*	0.14 [19]
CMS	4.0 [6]		0.5 [8]	4.6 [8]		2.8 [12]*	0.33 [14]	7.4 [16]	114 [18]*	0.083 [20]*

Strong interactions

pseudo-Nambu-Goldstone bosons of:

- A. internal symmetries
- B. "susy"
- C. conformal
- o Quarkonium (and quirks)
- Ο...

Goldstone bosons

1512.05330

 π^{0} in QCD is an inspiring template

 $\pi^{0} \rightarrow \gamma \gamma$

unlike the QCD pion

- 1. the large absolute width $\Gamma(F \rightarrow \gamma \gamma)$ suggest lots of states ($\Gamma(F \rightarrow \gamma \gamma)/M \ge 10^{-6}$, 10^{-4} in most scenarios, vs $\Gamma(\pi^0 \rightarrow \gamma \gamma)/m_{\pi} \sim 10^{-7}$)
- 2. for a generic scalar expect a proportionally large contribution to the mass of **F**

shift symmetry protection to the mass of the GB!

Goldstone bosons

- 1. the large absolute width $\Gamma(F \rightarrow \gamma \gamma)$ suggest lots of states ($\Gamma(F \rightarrow \gamma \gamma)/M \ge 10^{-6}$, 10^{-4} in most scenarios, vs $\Gamma(\pi^0 \rightarrow \gamma \gamma)/m_{\pi} \sim 10^{-7}$)
- 2. for a generic scalar expect a proportionally large contribution to the mass of **F**

shift symmetry protection to the mass of the GB!

coupling to all gauge bosons (can) naturally arise at the same order

couplings to fermions protected by chiral symmetry

$$\mathcal{L}_{I}^{\Phi=\eta} = -i\frac{\eta}{f} \left(C_{t}m_{t}\bar{t}\gamma^{5}t + C_{b}m_{b}\bar{b}\gamma^{5}b + C_{\tau}m_{\tau}\bar{\tau}\gamma^{5}\tau \right)$$

$$-\frac{\eta}{f} \left(C_{gg}\frac{\alpha_{3}}{8\pi}G_{\mu\nu}^{a}\tilde{G}^{a\,\mu\nu} + C_{\gamma\gamma}\frac{\alpha_{e}}{8\pi}F_{\mu\nu}\tilde{F}_{\mu\nu} \right)$$

$$-\frac{\eta}{f} \left(C_{WW}\frac{\alpha_{2}}{4\pi}W_{\mu\nu}^{+}\tilde{W}^{-\,\mu\nu} + C_{ZZ}\frac{\alpha_{2}\cos^{2}\theta_{W}}{8\pi}Z_{\mu\nu}\tilde{Z}^{\mu\nu} + C_{Z\gamma}\frac{\alpha_{e}}{4\pi\tan\theta_{W}}Z_{\mu\nu}\tilde{F}^{\mu\nu} \right)$$

$$-\frac{\eta}{f} \left(C_{WW}\frac{\alpha_{2}}{4\pi}W_{\mu\nu}^{+}\tilde{W}^{-\,\mu\nu} + C_{ZZ}\frac{\alpha_{2}\cos^{2}\theta_{W}}{8\pi}Z_{\mu\nu}\tilde{Z}^{\mu\nu} + C_{Z\gamma}\frac{\alpha_{e}}{4\pi\tan\theta_{W}}Z_{\mu\nu}\tilde{F}^{\mu\nu} \right)$$

Higgs + F as Goldstone (η) global symmetry breaking G → H (*e.g.* SU(3)² → SU(2))

1512.05330

F is (less) light compared to the scale of symmetry breaking

Higgs is light compared to the scale of symmetry breaking

Higgs + F as Goldstone (η) global symmetry breaking G → H (*e.g.* SU(3)² → SU(2))

1512.05330

F is (less) light compared to the scale of symmetry breaking

Higgs is light compared to the scale of symmetry breaking

$$-\frac{1}{2\mathcal{F}}\int d^2\theta X \left(m_1 W^{\alpha} W_{\alpha} + m_2 W^{\alpha a_2} W_{\alpha}^{a_2} + m_3 W^{\alpha a_3} W_{\alpha}^{a_3}\right) + h.c.$$

coupling of the sGoldstino are proportional to the SUSY breaking masses

$$\Gamma_{gg} = \left(\frac{m_3}{2\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}, \qquad \Gamma_{\gamma\gamma} = \frac{1}{2} \left(\frac{m_{\sigma\gamma\gamma}}{4\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}, \qquad \begin{array}{c} \text{negligible decay to 2} \\ \text{invisible Goldstino} \end{array}$$
$$\Gamma_{ZZ} \simeq \frac{1}{2} \left(\frac{m_{\sigma ZZ}}{4\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}, \qquad \Gamma_{WW} \simeq \left(\frac{m_2}{4\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}, \qquad \Gamma_{Z\gamma} \simeq \left(\frac{m_{\sigma Z\gamma}}{4\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}.$$

F as a sGoldstino (Φ)

1512.05330

coupling of the sGoldstino are proportional to the SUSY breaking masses

$$\Gamma_{gg} = \left(\frac{m_3}{2\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}, \qquad \Gamma_{\gamma\gamma} = \frac{1}{2} \left(\frac{m_{\sigma\gamma\gamma}}{4\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}, \qquad \begin{array}{c} \text{negligible decay to 2} \\ \text{invisible Goldstino} \end{array}$$
$$\Gamma_{ZZ} \simeq \frac{1}{2} \left(\frac{m_{\sigma ZZ}}{4\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}, \qquad \Gamma_{WW} \simeq \left(\frac{m_2}{4\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}, \qquad \Gamma_{Z\gamma} \simeq \left(\frac{m_{\sigma Z\gamma}}{4\mathcal{F}}\right)^2 \frac{m_\sigma^3}{\pi}.$$

Fas a Dilaton (σ) spontaneous symmetry breaking of conformal symmetry

1512.05330

 $\sigma T^{\mu}_{\mu} \sim masses + \beta$ -functions

$$\frac{\sigma}{f}T^{\mu}_{\mu}^{\rm CFT} = \frac{\sigma}{f} \left(\frac{\alpha_3}{8\pi} \kappa_3 G^2_{\mu\nu} + \kappa_e \frac{\alpha_e}{8\pi} F^2_{\mu\nu} - y_t (1+\epsilon_t) \bar{q}_L \tilde{H} t_R + h.c. + 2(1+\epsilon_H) |D_{\mu}H|^2 + \dots \right)$$

tree-level coupling to Z and W (massive vectors)

loop-level coupling to gluon and photon (beta functions)

$$\Gamma_{ZZ} \simeq \Gamma_{WW}/2 \simeq \Gamma_{hh} \simeq \frac{m_{\sigma}^3}{32\pi f^2} \qquad \qquad r_{ZZ}^{\gamma} \approx 0.05 \left(\frac{\kappa_e}{240}\right)^2$$

 β functions of O(16 π^2) \rightarrow large dilaton mass correction

CP of F

1604.06446

critical importance

- greatest discriminator of many scenarios
- truly "fitfy-fitfy" (unlike for the Higgs boson CP)

shortcuts: $F \rightarrow HH$ or ZH

several challenges

important differences w.r.t the Higgs CP measurement

- I. no $F \rightarrow 4$ fermion final state
- 2. $M_F \gg m_h \Rightarrow small boost$

only $g^+ g^+ \rightarrow g^+ g^+ F$ scattering is sensitive to CP for other helicities $\mathcal{A} \sim M_F$

Thrust and $\Delta \phi(jj)$

1604.02029 1604.06446

1.0

Pair production of F

if strong interactions are behind F, multiple production is expect with no big suppression

$$U(\pi) = e^{i\pi/f} = 1 + \frac{\pi}{f} + \left(\frac{\pi}{f}\right)^2 + \dots$$

$$\mathcal{L} \sim \frac{c_5}{\Lambda} \cdot \mathcal{F}\mathcal{L}_5 + \frac{c_6}{\Lambda^2} \cdot \mathcal{F}^2\mathcal{L}_6$$

 $\sigma_{FF}/\sigma_{F} \sim (10^{-2} - 10^{-4}) \cdot (C_{6}/C_{5})^{2}$

internal symmetries more easily suppress single production than double production $|F|^2 G_{\mu\nu} G^{\mu\nu}$

F couples to	$\sigma_{FF}/\sigma_F = \sigma_{\gamma\gamma F}/2\sigma_{\gamma\gamma}$
$b\overline{b}$	$0.015\% ({ m TeV}/\Lambda)^2 (c_b^{(6)}/c_b)^2$
$d \overline{d}$	$0.050\% ({ m TeV}/\Lambda)^2 (c_d^{(\widehat{6})}/c_d)^2$
GG	$0.13\% ({\rm TeV}/\Lambda)^2 (c_{gg}^{(6)}/c_{gg})^2$
$\gamma\gamma$	$1.9\% (\mathrm{TeV}/\Lambda)^2 (c_{\gamma\gamma}^{(6)}/c_{\gamma\gamma})^2$

 $\sigma_{FF}/\sigma_F \sim y_F/M \sim 1/f$

$pp \rightarrow F \rightarrow 4j$		4γ	4 t	
LHC8	<100 fb	<26 fb	<70 fb	

$$v_Q \equiv M_Q/y_Q$$
 and $v_L \equiv M_L/y_L$

Conclusions

- $gg \rightarrow F \rightarrow \gamma \gamma$ is the most compelling
- heavy quark initial state is also possible(b,c,s)
- light, coupling to gauge bosons → Goldstone boson
 GB of internal symmetry linked to strong EWSB
 SUSY partner of GB of SUSY
 GB of conformal invariance
- **CP of F** is one of the most pressing questions
- F pair production is worth searching, great reward
- <u>Outlook:</u>
 - * more decay channels $F \rightarrow jj$, tt, Z γ , ZZ, WW, HH, invisible, 3&4-body
 - direct search of states in the loop
 - other companions from the new theory of TeV physics

Conclusions

Citation: Particle Data Group, 2016 update

 $I(J^P) = ?(0^?)$ J needs confirmation

OMITTED FROM SUMMARY TABLE Needs confirmation.

F MASS

VALUE (GeV) EVTS	DOCUMENT ID	TECN	COMMENT
$750 \pm 30 \text{ OUR AVERAGE}$	ATLAS, CMS		$pp \to F$
• • We do not use the following	data for avorage fi	ta limita	oto e e

• • We do not use the following data for average, fits, limits, etc. • • •

F WIDTH

VALUE (GeV)	$\mathrm{CL}\%$	DOCUMENT ID	TECN	COMMENT
<100	95	ATLAS, CMS		$pp \to F$
• • • We do not	t use the following data for average	, fits, limits, etc. \bullet	• •	

		F DECAY MODES
	Mode	Fraction (Γ_i/Γ)
Γ_1	$\gamma\gamma$	$\operatorname{seen}(?)$
Γ_2	$\gamma Z, ZZ, WW, jj$	expected
Γ_3	$t\bar{t}, b\bar{b}, \text{ invisible}$	possible
Γ_4	3-body, 4-body	predicted

Thank you!

Quarkonium and Quirks

1602.08819 1604.06180

Pair production mechanism

QCD Goldstone bosons and Quarkonium

	BR	Mass
π0	Photon 0.98798	134.9766 MeV/c ²
K_L	Photon 0.000547 Photon	497.648 MeV/c ²
K_S	Photon 2.71×10^{-6}	497.648 MeV/c ²
η	Photon 0.3938 Photon	547.51 MeV/c^2
η^'(958)	Photon 0.0212	957.78 MeV/c ²
f_0(980)	Photon	980. MeV/c^2
a_0^0(980)	Photon	984.7 MeV/c ²
f_0(1370)	Photon	$1350.\mathrm{MeV}/c^2$
D0	Photon $0. \times 10^{-5}$ Photon	$1864.5 \text{ MeV}/c^2$
D0-bar	Photon $0. \times 10^{-5}$ Photon	$1864.5 \text{ MeV}/c^2$
f_2(1950)	Photon	1944. MeV/c ²
f_2(2300)	Photon	$2297.\mathrm{MeV}/c^2$
η_c(1S)	Photon 0.000240	$2980.4~{\rm MeV}/c^2$
χ_c0(1P)	Photon Photon 0.000235	3414.76 MeV/c ²
χ_c2(1P)	Photon 0.000243	$3556.2 \text{ MeV}/c^2$
η_c(2S)	Photon $0. \times 10^{-4}$	$3638.\mathrm{MeV}/c^2$
ψ(2S)	Photon $0. \times 10^{-4}$	3686.093 MeV/c ²