The search for sterile neutrinos at high-energy colliders

Oliver Fischer

UNI BASEL

Astroteilchen Seminar, MPIK May the 15th, 2017

based on: Basso, OF, van der Bij [1310.2057] Antusch, OF [1407.6607], [1502.05915] Antusch, Cazzato, OF [1512.06035], [1604.00208], [1604.02420], [1612.02728]

& work in progress

(日) (월) (분) (분)

æ

Outline

- 1) Motivating sterile neutrinos
- 2) Future particle colliders
- 3) Collider phenomenology (of sterile neutrinos)

◆□▶ ◆舂▶ ◆注≯ ◆注≯ □注□

Part 1: Motivating sterile neutrinos

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Neutrino oscillations, theoretical perspective

- Mass eigenstates: linear combination of flavour eigenstates.
- Transformation between the two bases via unitary matrices.
- Oscillations allow to infer mixing angles, phases.
- In practice this is not very easy and requires dedicated experiments.

Oliver Fischer

- 4 週 ト - 4 ヨ ト - 4 ヨ ト - -

Neutrino oscillations & the Standard Model

courtsy M. Shaposhnikov

- ► No right-handed neutrinos in the Standard Model (SM).
- ▶ No mass matrix, no mixing of the neutrino flavour states.
- \Rightarrow Neutrino oscillations are evidence of physics beyond the SM.

A D A D A D A

э

The Seesaw mechanism with right-handed neutrinos

- Elegant and economic: a number of Fermionic singlets, speak: "Right-handed" or "sterile" neutrinos.
- ► Two mass-differences ⇒ *at least* two sterile neutrinos.
- New mass scale, a priori unrelated to the known ones.
- Many constraints from experiments on all energy scales.
- May be connected to e.g. Dark Matter and Baryogenesis.

イロト 不得下 イヨト イヨト

The "naïve" type I seesaw

• The simplified version: $(1 \nu_L, 1 \nu_R)$

* Mass matrix
$$\sim \begin{pmatrix} 0 & m \\ m & M \end{pmatrix}$$
, with $m = y_{\nu} v_{\rm EW} \ll M$.
* Light neutrino mass: $m_{\nu} = \frac{1}{2} \frac{v_{\rm EW}^2 |y_{\nu}|^2}{M_R}$.

• More realistic case: $(2 \nu_L, 2 \nu_R)$

$$egin{aligned} Y_
u &= egin{pmatrix} \mathcal{O}(y_
u) & 0 \ 0 & \mathcal{O}(y_
u) \end{pmatrix}, & egin{pmatrix} M_R & 0 \ 0 & M_R(1+arepsilon) \end{pmatrix} \ &\Rightarrow m_{
u_i} &= rac{v_{ ext{EW}}^2 \mathcal{O}(y_
u^2)}{M_R}(1+\delta_{i2}arepsilon) \end{aligned}$$

 \Rightarrow The m_{ν_i} fix a relation between y_{ν} and M_R .

Oliver Fischer

The effect of protective symmetries

- Specific structures of the Yukawa and mass matrices can be realised by symmetries (no fine tuning).
- A $(2 \nu_L, 2 \nu_R)$ example:

Y

$$egin{aligned} & \mathcal{L}_{
u} = \begin{pmatrix} \mathcal{O}(y_{
u}) & 0 \\ \mathcal{O}(y_{
u}) & 0 \end{pmatrix}, & \begin{pmatrix} 0 & M_R \\ M_R & arepsilon \end{pmatrix} \ & \Rightarrow m_{
u_i} = 0 + arepsilon rac{v_{\mathrm{EW}}^2 \mathcal{O}(y_{
u}^2)}{M_R^2} \end{aligned}$$

- "Symmetry violating" parameter ε controls magnitude of m_{ν_i} .
- \Rightarrow No fixed relation between y_{ν} , M_R and m_{ν_i} .
- \Rightarrow Large y_{ν} can be compatible with neutrino oscillations if $\varepsilon \sim 0$.

The Big Picture

▲ @ ▶ < ∃ ▶</p>

- < ∃ →

æ

Part 2: Future particle colliders

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Why now?

The LHC just achieved the record energy of 13 TeV.

Oliver Fischer

The search for sterile neutrinos at high-energy colliders 7 / 27

Why at all?

Oliver Fischer

8 / 27 The search for sterile neutrinos at high-energy colliders

3

Motivation* from the LHC?

- There is no sign of new physics at the LHC up to date.
- \Rightarrow Ask carefully: Why?
 - Pessimistic answer not to be discussed here.
 - Optimistic answer: New physics exists, but it ...
 - ... is covered in SM backgrounds.
 - ... interacts very weakly.
 - ... is too heavy to have been produced.

What can we do to improve the prospects of a discovery? Lessons from the past:

- Lepton colliders: very precise but low energy reach.
- ► Hadron colliders: high energy reach but limited precision.
- LEP & LHC share the same tunnel \Rightarrow collider package.
- \Rightarrow Complementarity!

Where, who, and what?

- ★ CERN: existing infrastructure and know-how.
 - High-Luminosity Large Hadron Collider (HL-LHC)
 - ► Large Hadron-electron Collider (LHeC) ← Ask about this
 - Future Circular Collider project (FCC-ee, FCC-hh, FCC-eh, includes also the HE-LHC)
 - Compact Linear Collider (CLIC)
- ★ Japan: Strong support from Asia, America, and DESY
 - International Linear Collider (ILC) Completed technical design reports (TDR)
- $\star\,$ China: expertise in civil engineering & accelerators
 - Circular Electron-Positron Collider
 - Super Proton-Proton Collider
 - Electron-proton option

Oliver Fischer

The search for sterile neutrinos at high-energy colliders

10 / 27

イロト 不得 トイヨト イヨト

European strategy update 2013

Aimed at CERN, but also influencing China and Japan

"CERN should undertake design studies for accelerator projects in a *global* context, with emphasis on **proton-proton** and **electron-positron** high-energy frontier machines."

- No host for CLIC!
- Use of existing infrastructure (LHC→ booster).
- First step: lepton colliders
- Focus on the hadron colliders.
- Consider lepton-hadron mode.
- Geological constraints.

Next update planned 2018/2019.

Oliver Fischer

The search for sterile neutrinos at high-energy colliders

11 / 27

A story in pictures

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The LHC upgrade with an electron beam: the LHeC

Oliver Fischer

The search for sterile neutrinos at high-energy colliders 12 / 27

(日) (同) (日) (日) (日)

3

The Future Circular Collider project (CERN)

Oliver Fischer

The search for sterile neutrinos at high-energy colliders

13 / 27

Legend

CERN existing LHC
Potential underground siting :
 CLIC 500 Gev

CLIC 1.5 TeV CLIC 3 TeV The Compact Linear Collider (CERN)

Jura Mountains

P

Oliver Fischer

The search for sterile neutrinos at high-energy colliders

14 / 27

The International Linear Collider (Japan)

Candidate site announced 2013.

- Planned length: 30 km.
- ► Higher beam energy ⇔ longer tunnel.
- Cost: 7.8 billion "Dollars" and 23 million person hours.

Oliver Fischer

Comparing the future colliders

- Electron-positron:
 - Center-of-mass energy limited
 - ► Large luminosity at √s ~ m_Z
- Hadron colliders:
 - Luminosity limited to 10^{34} cm⁻²s⁻¹ (pileup).

103

10

-uminosity [1034 cm⁻²s-

- Center-of-mass energies of up to 100 TeV.
- Large number of QCD background.
- Electron-Proton colliders:
 - ▶ Electron beams with 60 GeV, polarisation possible (baseline).

24 x 10³⁶ cm

1000

- Center-of-mass energy \sim 1 TeV (LHeC), \sim 3.5 TeV (FCC-eh).
- ▶ 100 fb⁻¹ per year.

CC-ee (Crab Waist) LC LC (Lumi Upgrade)

3000

vs [GeV]

2000

(日) (同) (三) (三)

Part 3: High-energy phenomenology (of sterile neutrinos)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Symmetry Protected Seesaw Scenario

Benchmark model, defined in Antusch, OF; JHEP **1505** (2015) 053 Similar to e.g.: Mohapatra, Valle (1986); Malinsky, Romao Valle (2005); Shaposhnikov (2007);

 Collider phenomenology dominated by two sterile neutrinos N_i with protective symmetry, such that

$$\mathscr{L}_{N} = -\frac{1}{2}\overline{N_{R}^{1}}M(N_{R}^{2})^{c} - y_{\nu\alpha}\overline{N_{R}^{1}}\widetilde{\phi}^{\dagger}L^{\alpha} + \mathrm{H.c.}$$

- ► Further "decoupled" sterile neutrinos included.
- The mass matrix:

$$\mathcal{M}_{\nu n} = -\frac{1}{2} \left(\begin{array}{ccc} 0 & \frac{y_{\nu_{\alpha}} v_{\rm EW}}{\sqrt{s}} & 0 \\ \frac{y_{\nu_{\alpha}} v_{\rm EW}}{\sqrt{s}} & 0 & M \\ 0 & M & 0 \end{array} \right) + \ \text{H.c.}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Neutrino mixing

- Active-sterile mixing: $\theta_{\alpha} = y_{\nu_{\alpha}} \frac{v_{\rm EW}}{\sqrt{2}M}, \ \theta^2 \equiv \sum_{\alpha} |\theta_{\alpha}|^2$
- The leptonic mixing matrix to leading order in θ_{α} :

$$\mathcal{U} = \begin{pmatrix} \mathcal{N}_{e1} & \mathcal{N}_{e2} & \mathcal{N}_{e3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{e} & \frac{1}{\sqrt{2}}\theta_{e} \\ \mathcal{N}_{\mu1} & \mathcal{N}_{\mu2} & \mathcal{N}_{\mu3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{\mu} & \frac{1}{\sqrt{2}}\theta_{\mu} \\ \mathcal{N}_{\tau1} & \mathcal{N}_{\tau2} & \mathcal{N}_{\tau3} & -\frac{\mathrm{i}}{\sqrt{2}}\theta_{\tau} & \frac{1}{\sqrt{2}}\theta_{\tau} \\ 0 & 0 & 0 & \frac{\mathrm{i}}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\theta_{e}^{*} & -\theta_{\mu}^{*} & -\theta_{\tau}^{*} & -\frac{\mathrm{i}}{\sqrt{2}}\left(1-\frac{\theta^{2}}{2}\right) & \frac{1}{\sqrt{2}}\left(1-\frac{\theta^{2}}{2}\right) \end{pmatrix}$$

N ~ PMNS as submatrix in general **not** unitary (*NN*[†] ≠ 1).
 Modification of the weak currents with light neutrinos:

$$(J^{\mu,\pm})_{\alpha i} = \ell_{\alpha} \gamma^{\mu} \nu_{i} \mathcal{N}_{\alpha i}, \qquad (J^{\mu,0})_{ij} = \nu_{i} \gamma^{\mu} \nu_{j} \left(\mathcal{N}^{\dagger} \mathcal{N} \right)_{ij}$$

Oliver Fischer

Heavy neutrino interactions

Charged current (CC):

$$j_{\mu}^{\pm} = \frac{g}{2} \,\theta_{\alpha} \,\bar{\ell}_{\alpha} \,\gamma_{\mu} \left(-\mathrm{i} N_{1} + N_{2}\right)$$

Neutral current (NC):

$$j^{0}_{\mu} = \frac{g}{2 c_{W}} \left[\theta^{2} \bar{N}_{2} \gamma_{\mu} N_{2} + (\bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 1} N_{1} + \bar{\nu}_{i} \gamma_{\mu} \xi_{\alpha 2} N_{2} + \text{H.c}) \right]$$

Higgs boson Yukawa interaction:

$$\mathscr{L}_{\text{Yukawa}} = \sum_{i=1}^{3} \xi_{\alpha 2} \frac{\sqrt{2} M}{v_{\text{EW}}} \nu_{i} \phi^{0} \left(\overline{N}_{1} + \overline{N}_{2} \right)$$

• With the mixing parameters: $\xi_{\alpha 1} = (-i) \mathcal{N}^*_{\alpha \beta} \frac{\theta_{\beta}}{\sqrt{2}}, \ \xi_{\alpha 2} = i \xi_{\alpha 1}$

Oliver Fischer

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Constraints on PMNS non-unitarity from precision data

- Analysis of non-unitarity of the PMNS matrix.
- 34 precision observables: Electroweak Precision Observables (EWPO), lepton universality, charged lepton flavour violation, CKM unitarity
- ▶ Highest posterior density intervals at 90% Bayesian C.L.:

-0.0021	$\leq \varepsilon_{ee} \leq$	-0.0002	$ \varepsilon_{e\mu} $	<	$1.0 imes10^{-5}$
-0.0004	$\leq \varepsilon_{\mu\mu} \leq$	0	$ \varepsilon_{e\tau} $	<	$2.1 imes10^{-3}$
-0.0053	$\leq \varepsilon_{\tau\tau} \leq$	0	$ \varepsilon_{\mu\tau} $	<	$8.0 imes10^{-4}$

Antusch, OF; JHEP 1410 (2014) 094

イロト イポト イヨト イヨト

- * Non-unitarity parameters: $\varepsilon_{\alpha\alpha} = -\theta_{\alpha}^* \theta_{\alpha}$.
- * Weak statistical preference for non-zero mixing for ε_{ee} .

Oliver Fischer

Present Constraints (dominated by LEP & MEG)

► Z pole search: limits from Z branching ratios .

Abreu et al. Z.Phys. C74 (1997) 57-71

- Higgs decays: Best constraints from $h \rightarrow \gamma \gamma$.
- Direct Search: $\delta \sigma_{SM}^{WW} = 0.011_{stat} + 0.007_{syst}$

OPAL collaboration, Abbiendi et al. (2007)

Oliver Fischer

The search for sterile neutrinos at high-energy colliders

22 / 27

э.

イロト イポト イヨト イヨト

Collider signatures of sterile neutrinos at leading order

Antusch, Cazzato, OF, (2016); [1612.02728]

(日) (同) (日) (日) (日)

3

The search for sterile neutrinos at high-energy colliders 23 / 27

Promising signatures at lepton colliders

\star Comment on the violation of lepton number:

- Large unsuppressed backgrounds at parton level.
- ***** Displaced vertices
 - For $M < m_W$ the heavy neutrinos may be long lived.
 - Secondary vertex with visible displacement.
- ***** Indirect searches via EWPO:
 - The mixing matrix of the three active neutrinos is non-unitary.
 - Modification of the theory prediction of precision observables.
- ***** Indirect searches via Higgs boson properties:
 - Production at high energies (mono-Higgs).
 - New decay channel \Rightarrow modified branching ratios.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Promising signatures at colliders with proton beams

Unambiguous lepton-number-violating signatures:

- $\star\,$ Proton-proton: same-sign dileptons, e.g. $\mu^\pm\mu^\pm jj$
- \star Electron-proton: positrons, e.g. e^+jjj
- \star Both: strongly suppressed by $m_{
 u}$
- Unambiguous lepton-flavour-violating final states
 - * Proton-proton: $\ell_{\alpha}^{\pm}\ell_{\beta}^{\mp}jj$, and $\ell_{\alpha}^{\pm}\ell_{\beta}^{\mp}\ell_{\gamma}^{\pm}$.
 - \star Electron-proton: $\mu^{-}jjj$ and $\tau^{-}jjj$.

Missing P_t to separate signal from background with same final state plus additional neutrinos.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Overview of the estimated sensitivities

Antusch, Cazzato, OF, (2016); [1612.02728]

- 2

The combination of *ee* with *pp* and *ep* colliders provides complementary tests for symmetry protected sterile neutrinos.

Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conclusions

- Sterile neutrinos are well motivated extensions of the SM.
- Symmetry protected seesaw scenarios allow for electroweak scale sterile neutrino masses and O(1) active-sterile mixings.
- Present constraints: active-sterile mixing $|\theta|^2 \le 10^{-3}$.
- Lepton-flavour-violation entails great prospects at pp and ep colliders.
- Electron-positron colliders powerful via precision observables.
- Displaced vertex searches promising at all colliders.
- If HL-LHC finds no hints of sterile neutrinos:
 - * Active-sterile mixing too small (lepton collider),
 - \star Masses above \sim 500 GeV (ep collider).
 - $\star\,$ Of course, small mixing and large masses is a possibility.

Are we convinced we need more HEP colliders?

(日) (同) (日) (日) (日)

Thank you for your attention.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Future of High-Energy Physics

イロト イポト イヨト イヨト

) Q (

3

Backup I - EWPO

Experimental results and SM predictions for the EWPO, and the modification^{*}, to first order in the "non-unitarity" parameters $\varepsilon_{\alpha\alpha} = \theta_{\alpha}^* \theta_{\beta}$. (formulae for $M \gg m_Z$)

Prediction in MUV	SM Prediction	Experiment
$\left[R_\ell ight]_{ m SM} \left(1 - 0.15 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	20.744(11)	20.767(25)
$\left[R_b ight]_{ m SM} \left(1 + 0.03 (arepsilon_{ee} + arepsilon_{\mu\mu}) ight)$	0.21577(4)	0.21629(66)
$\left[R_{c}\right]_{\mathrm{SM}}\left(1-0.06(arepsilon_{ee}+arepsilon_{\mu\mu}) ight)$	0.17226(6)	0.1721(30)
$\left[\sigma_{had}^{0}\right]_{\rm SM} (1 - 0.25(\varepsilon_{ee} + \varepsilon_{\mu\mu}) - 0.27\varepsilon_{\tau})/{\rm nb}$	41.470(15)	41.541(37)
$\left[R_{inv}\right]_{ m SM}(1+0.75(arepsilon_{ee}+arepsilon_{\mu\mu})+0.67arepsilon_{ au})$	5.9723(10)	5.942(16)
$[M_W]_{ m SM}(1-0.11(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m GeV}$	80.359(11)	80.385(15)
$[\Gamma_{ m lept}]_{ m SM}(1-0.59(arepsilon_{ee}+arepsilon_{\mu\mu}))/{ m MeV}$	83.966(12)	83.984(86)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{lep}})^2]_\mathrm{SM}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23113(21)
$[(s_{W,\mathrm{eff}}^{\ell,\mathrm{had}})^2]_\mathrm{SM}(1+0.71(arepsilon_{ee}+arepsilon_{\mu\mu}))$	0.23150(1)	0.23222(27)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

* Minimal Unitarity Violation scheme: Antusch et al.; JHEP 0610 (2006) 084.

Backup II - lepton universality

Modification due to sterile neutrinos (formulae for $M \gg m_Z$):

$${\it R}_{lphaeta} = \sqrt{rac{(NN^{\dagger})_{lphalpha}}{(NN^{\dagger})_{etaeta}}} \simeq 1 + rac{1}{2} \left(arepsilon_{lphalpha} - arepsilon_{etaeta}
ight) \,.$$

	Process	Bound		Process	Bound
$R^\ell_{\mu e}$	$\frac{\Gamma(\tau \to \nu_\tau \mu \bar{\nu}_\mu)}{\Gamma(\tau \to \nu_\tau e \bar{\nu}_e)}$	1.0018(14)	$R^{\pi}_{\mu e}$	$\left \begin{array}{c} \frac{\Gamma(\pi \to \mu \bar{\nu}_{\mu})}{\Gamma(\pi \to e \bar{\nu}_{e})} \end{array} \right $	1.0021(16)
$R^\ell_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_{\tau} e \bar{\nu}_{e})}{\Gamma(\mu \to \nu_{\mu} e \bar{\nu}_{e})}$	1.0006(21)	$R^{\pi}_{ au\mu}$	$\frac{\Gamma(\tau \to \nu_\tau \pi)}{\Gamma(\pi \to \mu \bar{\nu}_\mu)}$	0.9956(31)
$R^W_{e\mu}$	$rac{\Gamma(W ightarrow e ar{ u}_e)}{\Gamma(W ightarrow \mu ar{ u}_\mu)}$	1.0085(93)	$R^{K}_{ au\mu}$	$egin{array}{l} \Gamma(au o K u_ au) \ \overline{\Gamma(K o \mu ar{ u}_\mu)} \end{array}$	0.9852(72)
$R^W_{ au\mu}$	$\frac{\Gamma(W \to \tau \bar{\nu}_{\tau})}{\Gamma(W \to \mu \bar{\nu}_{e})}$	1.032(11)	$R_{ au e}^K$	$\left \begin{array}{c} \Gamma(au o K u_ au) \ \overline{\Gamma(K o e ar{ u}_e)} \end{array} ight $	1.018(42)

Backup III - CKM unitarity constraint

Current world averages: $V_{ud} = 0.97427(15)$, $V_{ub} = 0.00351(15)$

$$\begin{split} |V_{ij}^{th}|^2 &= |V_{ij}^{exp}|^2 (1 + f^{\text{process}}(\varepsilon_{\alpha\alpha})) ,\\ |V_{ud}^{th}|^2 &= |V_{ud}^{exp,\beta}|^2 (NN^{\dagger})_{\mu\mu} .\\ \text{For the kaon decay processes we have:} \\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{\mu\mu} ,\\ |V_{us}^{th}|^2 &= |V_{us}^{exp,K \to \mu}|^2 (NN^{\dagger})_{ee} . \end{split}$$

Process	$V_{us}f_+(0)$	
$K_L ightarrow \pi e \nu$	0.2163(6)	
$K_L ightarrow \pi \mu u$	0.2166(6)	
$K_S ightarrow \pi e u$	0.2155(13)	
$K^{\pm} ightarrow \pi e u$	0.2160(11)	
$K^{\pm} ightarrow \pi \mu u$	0.2158(14)	
Average	0.2163(5)	

Processes involving tau leptons:

Process	$f^{ m process}(arepsilon)$	$ V_{us} $
$\frac{B(\tau \rightarrow K \nu)}{B(\tau \rightarrow \pi \nu)}$	$arepsilon_{\mu\mu}$	0.2262(13)
$ au ightarrow K \nu$	$\varepsilon_{ee} + \varepsilon_{\mu\mu} - \varepsilon_{\tau\tau}$	0.2214(22)
$\tau \to \ell, \tau \to s$	$0.2arepsilon_{ee} - 0.9arepsilon_{\mu\mu} - 0.2arepsilon_{ au au}$	0.2173(22)

Backup IV - lepton flavour violation

Process	MUV Prediction	Bound	Constraint on $ \varepsilon_{\alpha\beta} $
$\mu ightarrow e\gamma$	$2.4 imes10^{-3}arepsilon_{\mu e}arepsilon^2$	5.7×10^{-13}	$arepsilon_{\mu e} < 1.5 imes 10^{-5}$
$ au ightarrow {\it e} \gamma$	$4.3 imes 10^{-4} arepsilon_{ au e} ^2$	$1.5 imes 10^{-8}$	$arepsilon_{ au e} < 5.9 imes 10^{-3}$
$\tau \to \mu \gamma$	$4.1 imes 10^{-4}arepsilon_{ au\mu}arepsilon^2$	1.8×10^{-8}	$arepsilon_{ au\mu} < 6.6 imes 10^{-3}$

Estimated sensitivities of planned experiments at 90% C.L.:

Process	MUV Prediction	Bound	Sensitivity
$Br_{ au e}$	$4.3 imes10^{-4}arepsilon_{ au e}arepsilon^2$	10 ⁻⁹	$arepsilon_{ au e} \geq 1.5 imes 10^{-3}$
$Br_{ au\mu}$	$4.1 imes10^{-4}arepsilon_{ au\mu}arepsilon^2$	10^{-9}	$arepsilon_{ au\mu} \geq 1.6 imes 10^{-3}$
$Br_{\mu eee}$	$1.8 imes10^{-5} arepsilon_{\mu e} ^2$	10^{-16}	$\varepsilon_{\mu e} \geq 2.4 imes 10^{-6}$
$R_{\mu e}^{Ti}$	$1.5 imes 10^{-5}ertarepsilon_{\mu e}ert^2$	$2 imes 10^{-18}$	$arepsilon_{\mu e} \geq 3.6 imes 10^{-7}$

 $\Rightarrow R_{\mu e}^{Ti}$ yields a sensitivity to m_{ν_R} up to 0.3 PeV.

Backup V: ILC direct searches

(日) (四) (王) (王) (王)

æ

- Operation scenario G-20, with 4 ab^{-1} at $\sqrt{s} = 500$ GeV.
- Using 1 ab^{-1} at $\sqrt{s} = 1.0$ TeV.
- Displaced vertex searches possible for $M < m_W$.