

Adam Falkowski

Constraínts on EFT from neutríno oscillations

Heidelberg, 06 May 2019

Based on [arXiv:1901.04553] with Martin Gonzalez-Alonso and Zahra Tabrizi

In this talk Focus on reactor antineutrino oscillations

but with some obvious modifications discussion applicable to other neutrino experiments

Why EFT

- Efficient and model-independent description can be developed under assumption that no non-SM degrees of freedom are produced on-shell in a given experiment. This leads to the universal language of effective field theory (EFT)
- Wealth of low-energy observables probing different aspects of particle interactions are described within one consistent framework. Constraints from different observables can be meaningfully compared
- Results obtained in the language of EFT can be easily translated into constraints on any particular new physics model

EFT ladder

EFT below the weak scale

- For most low-energy precision observables, the characteristic energy scale is much smaller than the W and Z boson mass
- Below m_W, the only SM degrees of freedom available are leptons, photon, gluons, and 3, 4, or 5 flavors of quark, while H/W/Z bosons and top quark are integrated out
- I refer to it as the WEFT (also known as the Fermi theory, WET, LEFT ,...)
- WEFT is an EFT with SU(3)×U(1) local symmetry group and fermionic matter spectrum, where the expansion parameter is E/m_W, m_W≈80 GeV.
- Huge parameter space to explore and constrain every experimental input counts!

In the context of neutrino physics, WEFT implies important assumptions: only SM neutrinos are present; no additional sterile neutrinos and no right-handed neutrinos!

Charged currents in WEFT at LO

NSI relevant for beta decays parametrized by five 3-vectors $[\epsilon_X]_{e\beta}$, and these parameters can be probed also in reactor oscillation experiments We keep track of linear effects in ϵ_X only

Neutrino conventions

$$\nu_{\alpha} \quad \alpha = e, \mu, \tau$$

Neutrinos carry the "flavor index" α but these are not "flavor eigenstates" !

Quadratic terms in this basis:

$$\begin{aligned} \mathscr{L}_{\mathrm{WEFT}} \supset i \sum_{\alpha} \bar{\nu}_{\alpha} \gamma_{\mu} \partial_{\mu} \nu_{\alpha} - \frac{1}{2} \sum_{\alpha \beta} \left(\nu_{\alpha} M_{\alpha \beta} \nu_{\beta} + \mathrm{h.c.} \right) \\ \uparrow \\ \text{Diagonal kinetic terms} \quad \text{In general non-diagonal mass terms} \end{aligned}$$

We also define the neutrino mass eigenstates

 $\nu_k \quad k = 1, 2, 3$

$$\nu_{\alpha} = \sum_{k=1}^{3} U_{\alpha k} \nu_{k}$$

3x3 unitary matrix called PMNS matrix

$$U_{\alpha j} M_{\alpha \beta} U_{\beta k} = \delta_{jk} m_k$$

 $U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & e^{-i\delta_{\rm CP}}s_{13} \\ -s_{12}c_{23} - e^{i\delta_{\rm CP}}c_{12}s_{13}s_{23} & c_{12}c_{23} - e^{i\delta_{\rm CP}}s_{12}s_{13}s_{23} & c_{13}s_{23} \\ s_{12}s_{23} - e^{i\delta_{\rm CP}}c_{12}s_{13}c_{23} & -c_{12}s_{23} - e^{i\delta_{\rm CP}}s_{12}s_{13}c_{23} & c_{13}c_{23} \end{pmatrix}$

Neutrino conventions

- "Flavor basis" v_{α} is not uniquely defined. Any unitary transformation takes v_{α} to a different but equivalent basis with different values of the NSI parameters $[\epsilon_X]_{\alpha\beta}$. Physics does not depend on which basis is used
- "Flavor eigenstates" cannot be defined in the presence of general WEFT interactions. In general, one charged flavor l_α couples to one linear combination of neutrinos v_α + [ε_L]_{αβ} v_β in the V-A term, and to a different linear combination [ε_X]_{αβ} v_β in the remaining terms
- Flavor eigenstates could be defined if only V-A interactions are present, eigenstate(α) = v_α + [ε_L]_{αβ} v_β. However eigenstate(α) corresponding to different flavor α in general would not be orthogonal. In our analysis we never define neutrino flavor eigenstates.
- Mass eigenstate basis is uniquely defined (up to Majorana phases)
- I use standard parametrization of the PMNS matrix, but one should keep in mind that in the presence of NSI mixing angles and CP phase may have different values than those determined in the SM context

Down the EFT rabbit hole

Lee-Yang Lagrangian for nucleon interactions with electrons and τ/μ neutrinos, matched to the WEFT Lagrangian

lookoon at al

$$\begin{aligned} \mathcal{L}_{LY} &\supset -\frac{V_{ud}}{v^2} \Big\{ g_V \big[\epsilon_L + \epsilon_R \big]_{e\beta} (\bar{p}\gamma^{\mu}n) (\bar{e}\gamma_{\mu}P_L\nu_{\beta}) - g_A \big[\epsilon_L - \epsilon_R \big]_{e\beta} (\bar{p}\gamma^{\mu}\gamma_5 n) (\bar{e}\bar{\gamma}_{\mu}P_L\nu_{\beta}) \\ &+ g_S \big[\epsilon_S \big]_{e\beta} (\bar{p}n) (\bar{e}P_L\nu_{\beta}) - g_P \big[\epsilon_P \big]_{e\beta} (\bar{p}\gamma_5 n) (\bar{e}P_L\nu_{\beta}) + \frac{1}{2} g_T \big[\epsilon_T \big]_{e\beta} (\bar{p}\sigma^{\mu\nu}n) (\bar{e}\sigma_{\mu\nu}P_L\nu_{\beta}) \Big\} \\ &+ h.c. \\ &\beta = e, \mu, \tau \end{aligned}$$

Non-perturbative physics of nucleons summarized by charges gx

Lattice + theory + experiment fix SM parameters (perturbative and non-perturbative)

Further down the EFT rabbit hole

Leading order non-relativistic effective Lagrangian

Higher-order in $\frac{\nabla \psi}{2m_n}$

No dependence on **EP** here !

No sensitivity to pseudo-scalar interactions at leading order!

Scalar and vector (tensor and axial) interactions are almost the same They only differ by electron chirality flip, leading to relative suppression of the former by m_e/E_e (Fierz interference terms)

Caveat for lepton-flavor diagonal terms

Lee-Yang Lagrangian for nucleon interactions with electrons and neutrinos matched to the WEFT Lagrangian

$$\mathscr{L}_{LY} \supset -\frac{V_{ud}}{v^2} \Big\{ g_V \Big(1 + \big[\epsilon_L + \epsilon_R \big]_{ee} \Big) (\bar{p}\gamma^{\mu}n) (\bar{e}\gamma_{\mu}P_L\nu_e) - g_A \Big(1 + \big[\epsilon_L - \epsilon_R \big]_{ee} \Big) (\bar{p}\gamma^{\mu}\gamma_5 n) (\bar{e}\bar{\gamma}_{\mu}P_L\nu_e) + g_S \big[\epsilon_S \big]_{ee} (\bar{p}n) (\bar{e}P_L\nu_e) - g_P \big[\epsilon_P \big]_{ee} (\bar{p}\gamma_5 n) (\bar{e}P_L\nu_e) + \frac{1}{2} g_T \big[\epsilon_T \big]_{ee} (\bar{p}\sigma^{\mu\nu}n) (\bar{e}\sigma_{\mu\nu}P_L\nu_e) \Big\} + h.c.$$

Rescale SM parameters:
$$V_{ud} \rightarrow V_{ud} \left(1 - \left[\epsilon_L + \epsilon_R \right]_{ee} \right), \quad g_A \rightarrow g_A \left(1 + 2 \left[\epsilon_R \right]_{ee} \right)$$

$$\mathcal{L}_{\rm LY} \supset -\frac{V_{ud}}{v^2} \Big\{ g_V(\bar{p}\gamma^\mu n)(\bar{e}\gamma_\mu P_L \nu_e) - g_A(\bar{p}\gamma^\mu \gamma_5 n)(\bar{e}\bar{\gamma}_\mu P_L \nu_e) - g_A(\bar{p}\gamma^\mu \gamma_5 n)(\bar{e}\bar{\gamma}_\mu P_L \nu_e) \Big\} + \frac{1}{v^2} \Big\} \Big\}$$

$$+g_{S}\left[\epsilon_{S}\right]_{ee}(\bar{p}n)(\bar{e}P_{L}\nu_{e})-g_{P}\left[\epsilon_{P}\right]_{ee}(\bar{p}\gamma_{5}n)(\bar{e}P_{L}\nu_{e})+\frac{1}{2}g_{T}\left[\epsilon_{T}\right]_{ee}(\bar{p}\sigma^{\mu\nu}n)(\bar{e}\sigma_{\mu\nu}P_{L}\nu_{e})\right\}+\mathrm{h.c}\,.$$

Dependence on diagonal BSM parameters [ɛL]ee and [ɛR]ee is absorbed into phenomenological values of SM parameters. These parameters are totally <u>unobservable</u> in reactor oscillation experiments!

(theoretically, one can just better measure V_{ud} and g_A in these experiments) Gonzalez-Alonso et al

arXiv:1803.08732

 $V_{ud} = 0.974569 \pm 0.000038$, $g_V \approx 1$, $g_A = 1.2728 \pm 0.0017$, $g_S = 0.987 \pm 0.055$, $g_P = 349 \pm 9$, $g_T = 1.278 \pm 0.033$.

Model independent constraints on diagonal NSI

Diagonal NSI probed at linear level by many non-oscillation experiments

$$\begin{pmatrix} V_{ud} \\ [\epsilon_R]_{ee} \\ [\epsilon_S^e]_{ee} \\ [\epsilon_P^e]_{ee} \\ [\epsilon_T^e]_{ee} \end{pmatrix} = \begin{pmatrix} 0.974569(38) \\ -0.0006(48) \\ 0.0016(12) \\ -0.000005(21) \\ -0.0012(22) \end{pmatrix}$$

$$\mathcal{L}_{WEFT} \supset -\frac{2V_{ud}}{v^2} \left[e\beta \bar{e}\gamma_{\mu}P_L\nu_e \cdot \bar{u}_L\gamma^{\mu}d_L \right. \\ \left. + \left[\epsilon_R \right]_{ee} \bar{e}\gamma_{\mu}P_L\nu_e \cdot \bar{u}_R\gamma^{\mu}d_R \\ \left. + \frac{1}{2}\bar{e}P_L\nu_e \cdot \bar{u} \left[\epsilon_S - \epsilon_P\gamma_5 \right]_{ee} d \right. \\ \left. + \frac{1}{4} \left[\epsilon_T \right]_{ee} \bar{e}\sigma_{\mu\nu}P_L\nu_e \cdot \bar{u}_L\sigma^{\mu\nu}d_L \right] + h .$$

Gonzalez-Alonso, Camalich 1605.07114 + updates

С.

Diagonal NSI probed at linear level by many different (non-)oscillation experiments Lepton-flavor off-diagonal NSI probed at linear level only by oscillation experiments!

In the following, constraint on off-diagonal NSI from reactor neutrino oscillations

Standard NSI formalism

Flavor eigenstate at the source

Flavor eigenstate at the detector

Oscillation probability (in absence of NSI in propagation):

Standard NSI formalism

Neutrino oscillations can be consistently derived in QFT

see e.g. Giunti et al. [hep-ph/9305276] Akhmedov Kopp [arXiv:1001.4815] Kobach et al. [arXiv:1711.07491]

Process described by matrix element

$$\operatorname{out} \langle k_e - k_{N'} k_{e^+} k_n | N_x p_y \rangle$$

Neutrinos are simply intermediate particles in Feynman diagrams

Localized wave packets 16 (superposition of "in" momentum states)

Process dominated by intermediate neutrinos close to mass shell, where amplitudes factorize into production and detection parts

$$\mathcal{M}(Np \to N'e^-ne^+) = \sum_{k=1}^3 \frac{\mathcal{M}(N \to N'e^-\nu_k)\mathcal{M}(\nu_k p \to ne^-)}{q^2 - m_k^2 + i\epsilon} \equiv \sum_{k=1}^3 \frac{\mathcal{M}_k^P \mathcal{M}_k^D}{q^2 - m_k^2 + i\epsilon}$$

Oscillations due to interference between different neutrino mass eigenstates, possible thanks to momentum spread of source and target particles

For massless neutrinos one would instead get

$$\frac{dR^{\text{n.o.}}}{dE_{\nu}} = \frac{1}{128\pi^4 L^2 m_N m_p} \int d\Pi'_P \sum_{k=1}^3 |\mathcal{M}_k^P|^2 \int d\Pi_D \sum_{l=1}^3 |\mathcal{M}_l^D|^2$$

The rest is totally straightforward...

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = \frac{\sum_{k,l=1}^3 \exp\left(-i\frac{L(m_k^2 - m_l^2)}{2E_\nu}\right) \int d\Pi'_P \mathcal{M}_k^P \bar{\mathcal{M}}_l^P \int d\Pi_D \mathcal{M}_k^D \bar{\mathcal{M}}_l^D}{\int d\Pi'_P \sum_{k=1}^3 |\mathcal{M}_k^P|^2 \int d\Pi_D \sum_{l=1}^3 |\mathcal{M}_l^D|^2}$$

Relevant Lagrangian describing production and detection in reactor experiments:

$$\begin{aligned} \mathscr{L}_{WEFT} \supset -\frac{2V_{ud}}{v^2} \left[\left[1 + \epsilon_L \right]_{e\beta} \bar{e} \gamma_{\mu} P_L \nu_{\beta} \cdot \bar{u}_L \gamma^{\mu} d_L \right. \\ &+ \left[\epsilon_R \right]_{e\beta} \bar{e} \gamma_{\mu} P_L \nu_{\beta} \cdot \bar{u}_R \gamma^{\mu} d_R \\ &+ \frac{1}{2} \bar{e} P_L \nu_{\beta} \cdot \bar{u} \left[\epsilon_S - \epsilon_P \gamma_5 \right]_{e\beta} d \\ &+ \frac{1}{4} \left[\epsilon_T \right]_{e\beta} \bar{e} \sigma_{\mu\nu} P_L \nu_{\beta} \cdot \bar{u}_L \sigma^{\mu\nu} d_L \right] + \text{h.c.} \end{aligned} \qquad \begin{aligned} \nu_{\beta} &= \sum_{k=1}^3 U_{\beta k} \nu_{k} \\ k=1 \\ U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & e^{-i\delta_{CP}s_{13}} \\ -s_{12}c_{23} - e^{i\delta_{CP}s_{12}s_{13}s_{23}} & c_{13}s_{23} \\ s_{12}s_{23} - e^{i\delta_{CP}s_{12}s_{13}s_{23}} & -c_{12}s_{23} - e^{i\delta_{CP}s_{12}s_{13}c_{23}} & c_{13}c_{23} \end{pmatrix} \end{aligned}$$

21

Calculate and expand in WEFT:

$$\mathscr{M}_k^P \equiv \mathscr{M}(N \to N'e^-\nu_k)$$

$$\mathcal{M}_k^D \equiv \mathcal{M}(\nu_k p \to n e^-)$$

Two-flavor oscillation limit

In typical reactor oscillation experiments:

$$\frac{L(m_2^2 - m_1^2)}{E_{\nu}} \ll 1$$

Then one can set:
$$m_2^2 - m_1^2 = 0$$
, $m_3^2 - m_1^2 = m_3^2 - m_2^2 = \Delta m_{31}^2$

The survival probability has a simple form:

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = A + B \cos\left(\frac{\Delta m_{31}^2 L}{2E_{\nu}}\right) + C \sin\left(\frac{\Delta m_{31}^2 L}{2E_{\nu}}\right)$$
$$= A' - B' \sin^2\left(\frac{\Delta m_{31}^2 L}{4E_{\nu}}\right) + C \sin\left(\frac{\Delta m_{31}^2 L}{2E_{\nu}}\right)$$
"
"Zero-distance" CP-conserving oscillations oscillations

Simple application: SM limit

$$\begin{split} P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} &= \frac{\sum_{k,l=1}^{3} \exp\left(-i\frac{L(m_{k}^{2} - m_{l}^{2})}{2E_{\nu}}\right) \int d\Pi'_{P} \mathcal{M}_{k}^{P} \overline{\mathcal{M}}_{l}^{P} \int d\Pi_{D} \mathcal{M}_{k}^{D} \overline{\mathcal{M}}_{l}^{D}}{\int d\Pi'_{P} \sum_{k=1}^{3} |\mathcal{M}_{k}^{P}|^{2} \int d\Pi_{D} \sum_{l=1}^{3} |\mathcal{M}_{l}^{D}|^{2}} \\ \mathcal{L}_{LY}^{NR} &= -\frac{V_{ud}}{v^{2}} (\bar{\psi}_{p} \psi_{n}) \left\{ \left[1 + \epsilon_{X}^{*} + \epsilon_{X}^{*}\right]_{e\beta} (\bar{e}\gamma^{0}P_{L}\nu_{\beta}) + g_{S} \left[\mathbf{M}_{e\beta}^{*}\right]_{e\beta} (\bar{e}P_{L}\nu_{\beta}) \right\} \\ &+ \frac{V_{ud}}{v^{2}} (\bar{\psi}_{p} \sigma^{k} \psi_{n}) \left\{ g_{A} \left[1 + \epsilon_{X}^{*} - \mathbf{M}_{e}^{*}\right]_{e\beta} (\bar{e}\gamma^{0}\sigma^{k}P_{L}\nu_{e}) - g_{T} \left[\mathbf{M}_{e\beta}^{*}\right]_{e\beta} (\bar{e}\sigma^{k}P_{L}\nu_{\beta}) \right\} + \text{h.c.} + \dots \\ \mathbf{Matrix elements factorize as} \\ \mathcal{M}_{k}^{P} &= \left[U\right]_{ek} \mathcal{M}_{k}^{P} \qquad \mathcal{M}_{k}^{P} = \left[U^{*}\right]_{ek} \mathcal{M}^{D} \\ \mathbf{Same for all mass eigenstates k} \\ \mathbf{Standard formula:} \\ P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} &= \sum_{k,l=1}^{3} \exp\left(-i\frac{L(m_{k}^{2} - m_{l}^{2})}{2E_{\nu}}\right) \left[U\right]_{ek} \left[U^{*}\right]_{el} \left[U^{*}\right]_{ek} \left[U\right]_{el} \\ &= 1 - \sin^{2}(2\theta_{13})\sin^{2}\left(\frac{\Delta m_{31}^{2}L}{4E_{\nu}}\right) \end{aligned}$$

Simple application: V-A NSI

$$\begin{split} & \left[P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} = \frac{\sum_{k,l=1}^{3} \exp\left(-i\frac{L(m_{k}^{2} - m_{l}^{2})}{2E_{\nu}}\right) \int d\Pi'_{P}\mathcal{M}_{k}^{P}\bar{\mathcal{M}}_{l}^{P} \int d\Pi_{D}\mathcal{M}_{k}^{D}\bar{\mathcal{M}}_{l}^{D}}{\int d\Pi'_{P}\sum_{k=1}^{3} |\mathcal{M}_{k}^{P}|^{2} \int d\Pi_{D}\sum_{l=1}^{3} |\mathcal{M}_{l}^{P}|^{2}} \right] \\ \mathcal{L}_{LY}^{NR} = -\frac{V_{ud}}{v^{2}} (\bar{\psi}_{p}\psi_{n}) \left\{ \left[1 + \epsilon_{L} + \frac{\epsilon_{k}}{k}\right]_{e\beta} (\bar{e}\gamma^{0}P_{L}\nu_{\beta}) + g_{S}\left[\frac{\epsilon_{k}}{2}\right]_{e\beta} (\bar{e}P_{L}\nu_{\beta}) \right\} \\ + \frac{V_{ud}}{v^{2}} (\bar{\psi}_{p}\sigma^{k}\psi_{n}) \left\{ g_{A} \left[1 + \epsilon_{L} - \frac{\epsilon_{k}}{2}\right]_{e\beta} (\bar{e}\gamma^{0}\sigma^{k}P_{l}\nu_{e}) - g_{T}\left[\frac{\epsilon_{k}}{2}\right]_{e\beta} (\bar{e}\sigma^{k}P_{l}\nu_{\beta}) \right\} + h.c. + ... \\ \text{Matrix elements factorize as} \qquad \mathcal{M}_{k}^{P} = \left[U + \epsilon_{L}U\right]_{ek}M^{P} \qquad \mathcal{M}_{k}^{D} = \left[U + \epsilon_{L}U\right]_{ek}^{*}M^{D} \\ P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} = \frac{\sum_{k,l=1}^{3} \exp\left(-i\frac{L(m_{k}^{2} - m_{l}^{2})}{2E_{\nu}}\right) \left[U + \epsilon_{L}U\right]_{ek}\left[U + \epsilon_{L}U\right]_{el}^{*}\left[U + \epsilon_{L}U\right]_{el}^{*}\left[U + \epsilon_{L}U\right]_{el}^{*}}{\sum_{k}\left[U + \epsilon_{L}U\right]_{ek}\left[U + \epsilon_{L}U\right]_{el}^{*}\left[U + \epsilon_{L}U\right]_{el}^{*}} \\ = 1 - \sin^{2}(2\tilde{\theta}_{13})\sin^{2}\left(\frac{\Delta m_{3}^{2}L}{4E_{\nu}}\right) \qquad \tilde{\theta}_{13} = \theta_{13} + \operatorname{Re}[e^{i\delta_{CP}}\left(s_{23}[\epsilon_{X}]_{e\mu} + c_{23}[\epsilon_{X}]_{e\tau}\right)] + \mathcal{O}(\epsilon_{L}^{2}) \\ \end{array}$$

Effects of left-handed (V-A) currents $[\varepsilon_L]_{e\mu}$ and $[\varepsilon_L]_{e\tau}$ are unobservable in reactor experiments alone!

T. Ohlsson and H. Zhang [arXiv:0809.4835]

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = \frac{\sum_{k,l=1}^3 \exp\left(-i\frac{L(m_k^2 - m_l^2)}{2E_\nu}\right) \int d\Pi'_P \mathcal{M}_k^P \bar{\mathcal{M}}_l^P \int d\Pi_D \mathcal{M}_k^D \bar{\mathcal{M}}_l^D}{\int d\Pi'_P \sum_{k=1}^3 |\mathcal{M}_k^P|^2 \int d\Pi_D \sum_{l=1}^3 |\mathcal{M}_l^P|^2}$$

Short-baseline oscillations of electron antineutrinos produced in reactors

Relevant for Daya Bay, RENO, Double Chooz

$$P_{\bar{\nu}_e \to \bar{\nu}_e} = 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_\nu} \right) \sin^2 \left(2\tilde{\theta}_{13} - \alpha_D \frac{m_e}{E_e} - \alpha_P \frac{m_e}{f_T(E_\nu)} \right) + \sin \left(\frac{\Delta m_{31}^2 L}{2E_\nu} \right) \sin(2\tilde{\theta}_{13}) \left(\gamma_R + \beta_D \frac{m_e}{E_e} - \beta_P \frac{m_e}{f_T(E_\nu)} \right) + \mathcal{O}(\epsilon_X^2) + \mathcal{O}(\Delta m_{21}^2)$$

Matches Kopp et al. [arXiv:0708.0152]

CP-violating oscillations (flips the sign for electron neutrinos)

$$P_{\bar{\nu}_e \to \bar{\nu}_e} \approx 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_{\nu}} \right) \sin^2 \left(2\tilde{\theta}_{13} - \alpha_D \frac{m_e}{E_e} - \alpha_P \frac{m_e}{f_T(E_{\nu})} \right) + \sin \left(\frac{\Delta m_{31}^2 L}{2E_{\nu}} \right) \sin^2 2\tilde{\theta}_{13} \left(\gamma_R + \beta_D \frac{m_e}{E_e} - \beta_P \frac{m_e}{f_T(E_{\nu})} \right)$$

Standard Θ_{13} mixing angle replaced by effective angle:

$$\tilde{\theta}_{13} = \theta_{13} + \operatorname{Re}[L] - \frac{3g_A^2}{3g_A^2 + 1} \operatorname{Re}[R]$$

$$\int_{\substack{f \\ \text{Original PMNS} \\ \text{mixing angle}}} [X] \equiv e^{i\delta_{CP}} \left(s_{23}[\epsilon_X]_{e\mu} + c_{23}[\epsilon_X]_{e\tau} \right)$$

$$\mathscr{L}_{WEFT} \supset -\frac{2V_{ud}}{V^2} \left[\left[1 + \epsilon_L \right]_{e\beta} \bar{e} \gamma_\mu P_L \nu_\beta \cdot \bar{u}_L \gamma^\mu d_L + \left[\epsilon_R \right]_{e\beta} \bar{e} \gamma_\mu P_L \nu_\beta \cdot \bar{u}_R \gamma^\mu d_R + \dots \right] + \text{h.c.}$$

$$P_{\bar{\nu}_e \to \bar{\nu}_e} \approx 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_\nu} \right) \sin^2 \left(2\tilde{\theta}_{13} - \alpha_D \frac{m_e}{E_e} - \alpha_P \frac{m_e}{f_T(E_\nu)} \right) \\ + \sin \left(\frac{\Delta m_{31}^2 L}{2E_\nu} \right) \sin^2 2\tilde{\theta}_{13} \left(\gamma_R + \beta_D \frac{m_e}{E_e} - \beta_P \frac{m_e}{f_T(E_\nu)} \right)$$

Part of BSM effects absorbed into effective Θ₁₃ mixing angle, and are unobservable in reactor experiments alone

Effects of left-handed (V-A) currents [ε_L]_{eµ} and [ε_L]_{eτ} are unobservable T. Ohlsson and H. Zhang [arXiv:0809.4835]

CP-violating combination of right-handed off-diagonal currents is <u>observable</u>,

as it affects CP-violating part of survival probability

Combined

Effects of scalar and tensor currents on detection amplitude lead to "energy-dependent mixing angle":

$$\alpha_{D} = \frac{g_{S}}{3g_{A}^{2} + 1} \operatorname{Re} \left[S \right] - \frac{3g_{A}g_{T}}{3g_{A}^{2} + 1} \operatorname{Re} \left[T \right] \qquad [X] \equiv e^{i\delta_{CP}} \left(s_{23}[\epsilon_{X}]_{e\mu} + c_{23}[\epsilon_{X}]_{e\tau} \right)$$
$$\beta_{D} = \frac{g_{S}}{3g_{A}^{2} + 1} \operatorname{Im} \left[S \right] - \frac{3g_{A}g_{T}}{3g_{A}^{2} + 1} \operatorname{Im} \left[T \right], \qquad \mathscr{L}_{WEFT} \supset -\frac{V_{ud}}{v^{2}} \left[\bar{e}P_{L}\nu_{\beta} \cdot \bar{u}e_{S} \right]_{e\beta} d$$
$$+ \frac{1}{2} \left[\epsilon_{T} \right]_{e\beta} \bar{e}\sigma_{\mu\nu} P_{L}\nu_{\beta} \cdot \bar{u}_{L}\sigma^{\mu\nu} d_{L} + \ldots \right] + \text{h.c.}$$

Good handle to constrain these effects, as neutrino experiments quote results in energy bins

$$\begin{split} P_{\bar{\nu}_e \to \bar{\nu}_e} &\approx 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_\nu} \right) \sin^2 \left(2\tilde{\theta}_{13} - \alpha_D \frac{m_e}{E_e} - \alpha_P \frac{m_e}{f_T(E_\nu)} \right) \\ &+ \sin \left(\frac{\Delta m_{31}^2 L}{2E_\nu} \right) \sin(2\tilde{\theta}_{13}) \left(\gamma_R + \beta_D \frac{m_e}{E_e} - \beta_P \frac{m_e}{f_T(E_\nu)} \right) \end{split}$$

Effects of tensor currents on production amplitude lead to "energy-dependent mixing angle" :

$$\alpha_{P} = \frac{g_{T}}{g_{A}} \operatorname{Re}\left[T\right]$$

$$\beta_{P} = \frac{g_{T}}{g_{A}} \operatorname{Im}\left[T\right]$$

$$\beta_{P} = \frac{g_{T}}{g_{A}} \operatorname{Im}\left[T\right]$$

$$\beta_{P} = \frac{g_{T}}{g_{A}} \operatorname{Im}\left[T\right]$$

$$f_{T}(E_{\nu}) = \frac{\sum_{i=1}^{n} w_{i}(\Delta_{i} - E_{\nu})\sqrt{(\Delta_{i} - E_{\nu} - m_{e})(\Delta_{i} - E_{\nu} + m_{e})}}{\sum_{i=1}^{n} w_{i}\sqrt{(\Delta_{i} - E_{\nu} - m_{e})(\Delta_{i} - E_{\nu} + m_{e})}}$$
(solution)

$$\begin{split} P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} &\approx 1 - \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E_{\nu}} \right) \sin^{2} \left(2\tilde{\theta}_{13} - \alpha_{D} \frac{m_{e}}{E_{e}} - \alpha_{P} \frac{m_{e}}{f_{T}(E_{\nu})} \right) \\ &+ \sin \left(\frac{\Delta m_{31}^{2} L}{2E_{\nu}} \right) \sin(2\tilde{\theta}_{13}) \left(\gamma_{R} + \beta_{D} \frac{m_{e}}{E_{e}} - \beta_{P} \frac{m_{e}}{f_{T}(E_{\nu})} \right) \\ &\alpha_{D} = \frac{g_{S}}{3g_{A}^{2} + 1} \operatorname{Re}\left[S \right] - \frac{3g_{A}g_{T}}{3g_{A}^{2} + 1} \operatorname{Re}\left[T \right] \qquad \alpha_{P} = \frac{g_{T}}{g_{A}} \operatorname{Re}\left[T \right] \qquad \gamma_{R} = -\frac{2}{3g_{A}^{2} + 1} \operatorname{Im}[R] \\ &\beta_{D} = \frac{g_{S}}{3g_{A}^{2} + 1} \operatorname{Im}\left[S \right] - \frac{3g_{A}g_{T}}{3g_{A}^{2} + 1} \operatorname{Im}\left[T \right], \qquad \beta_{P} = \frac{g_{T}}{g_{A}} \operatorname{Im}\left[T \right] \qquad \left[X \right] \equiv e^{i\delta_{CP}} \left(s_{23}[\epsilon_{X}]_{e\mu} + c_{23}[\epsilon_{X}]_{e\tau} \right) \end{split}$$

No dependence of survival probability on lepton-flavor diagonal Wilson coefficients

$$\begin{aligned} \mathscr{L}_{LY}^{NR} &= -\frac{V_{ud}}{v^2} (\bar{\psi}_p \psi_n) \left\{ (\bar{e}\gamma^0 P_L \nu_e) + g_S \left[\epsilon_S \right]_{ee} (\bar{e}P_L \nu_e) \right\} \\ &+ \frac{V_{ud}}{v^2} (\bar{\psi}_p \sigma^k \psi_n) \left\{ g_A (\bar{e}\gamma^0 \sigma^k P_L \nu_e) - g_T \left[\epsilon_T \right]_{ee} (\bar{e}\sigma^k P_L \nu_e) \right\} + \text{h.c.} \end{aligned}$$

$$P_{\bar{\nu}_e \to \bar{\nu}_e} \approx 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2 \left(2\tilde{\theta}_{13} - \alpha_D \frac{m_e}{E_e} - \alpha_P \frac{m_e}{f_T(E_\nu)}\right) + \sin \left(\frac{\Delta m_{31}^2 L}{2E_\nu}\right) \sin(2\tilde{\theta}_{13}) \left(\gamma_R + \beta_D \frac{m_e}{E_e} - \beta_P \frac{m_e}{f_T(E_\nu)}\right)$$

No dependence of survival probability on lepton-flavor diagonal Wilson coefficients

Dependence on $[\varepsilon_s]_{ee}$ and $[\varepsilon_T]_{ee}$ cancels in survival probability

$$P_{\bar{\nu}_{e} \to \bar{\nu}_{e}} = \frac{\sum_{k,l=1}^{3} \exp\left(-i\frac{L(m_{k}^{2} - m_{l}^{2})}{2E_{\nu}}\right) \int d\Pi'_{P} \mathcal{M}_{k}^{P} \bar{\mathcal{M}}_{l}^{P} \int d\Pi_{D} \mathcal{M}_{k}^{D} \bar{\mathcal{M}}_{l}^{D}}{\int d\Pi'_{P} \sum_{k=1}^{3} |\mathcal{M}_{k}^{P}|^{2} \int d\Pi_{D} \sum_{l=1}^{3} |\mathcal{M}_{l}^{D}|^{2}}$$

In any case, model-independent per-mille level on [ɛs]ee and [ɛד]ee from global fit Gonzalez-Alonso, Camalich 1605.07114

But in does not cancel in (differential) rate, which is observable

$$\frac{dR}{dE_{\nu}} = \frac{1}{128\pi^4 L^2 m_N m_p} \sum_{k,l=1}^3 \exp\left(-i\frac{L(m_k^2 - m_l^2)}{2E_{\nu}}\right) \int d\Pi'_P \mathcal{M}_k^P \bar{\mathcal{M}}_l^P \int d\Pi_D \mathcal{M}_k^D \bar{\mathcal{M}}_l^D$$

EFT ladder

Bosonic CP-even			Dir
O_H	$(H^{\dagger}H)^3$		
$O_{H\square}$	$(H^{\dagger}H)\Box(H^{\dagger}H)$		
O_{HD}	$\left H^{\dagger}D_{\mu}H ight ^{2}$		
O_{HG}	$H^{\dagger}HG^{a}_{\mu u}G^{a}_{\mu u}$	$O_{H\widetilde{G}}$	$H^{\dagger}H\widetilde{G}^{a}_{\mu\nu}G^{a}_{\mu\nu}$
O_{HW}	$H^{\dagger}HW^{i}_{\mu u}W^{i}_{\mu u}$	$O_{H\widetilde{W}}$	$H^{\dagger}H\widetilde{W}^{i}_{\mu\nu}W^{i}_{\mu\nu}$
O_{HB}	$H^{\dagger}HB_{\mu u}B_{\mu u}$	$O_{H\widetilde{B}}$	$H^{\dagger}H\widetilde{B}_{\mu u}B_{\mu u}$
O_{HWB}	$H^{\dagger}\sigma^{i}HW^{i}_{\mu u}B_{\mu u}$	$O_{H\widetilde{W}B}$	$H^{\dagger}\sigma^{i}H\widetilde{W}^{i}_{\mu\nu}B_{\mu\nu}$
O_W	$\epsilon^{ijk}W^i_{\mu u}W^j_{ u ho}W^j_{ ho\mu}$	$O_{\widetilde{W}}$	$\epsilon^{ijk}\widetilde{W}^i_{\mu\nu}W^j_{\nu\rho}W^k_{\rho\mu}$
O_G	$f^{abc}G^a_{\mu u}G^b_{ u ho}G^c_{ ho\mu}$	$O_{\widetilde{G}}$	$f^{abc}\widetilde{G}^a_{\mu\nu}G^b_{\nu\rho}G^c_{\rho\mu}$

Bosonic D=6 operators in the Warsaw basis. Table 2.2:

	$(\bar{R}R)(\bar{R}R)$			$(\bar{L}L)(\bar{R}R)$	
	O_{ee}	$\eta(e^c\sigma_\mu\bar{e}^c)(e^c\sigma_\mu\bar{e}^c)$	$O_{\ell e}$	$(\bar{\ell}\bar{\sigma}_{\mu}\ell)(e^{c}\sigma_{\mu}\bar{e}^{c})$	
	O_{uu}	$\eta(u^c\sigma_\mu\bar{u}^c)(u^c\sigma_\mu\bar{u}^c)$	$O_{\ell u}$	$(\bar{\ell}\bar{\sigma}_{\mu}\ell)(u^{c}\sigma_{\mu}\bar{u}^{c})$	
and a	O_{dd}	$\eta(d^c\sigma_\mu \bar{d}^c)(d^c\sigma_\mu \bar{d}^c)$	$O_{\ell d}$	$(\bar{\ell}\bar{\sigma}_{\mu}\ell)(d^{c}\sigma_{\mu}\bar{d}^{c})$	
di de la	O_{eu}	$(e^c \sigma_\mu \bar{e}^c)(u^c \sigma_\mu \bar{u}^c)$	O_{eq}	$(e^c \sigma_\mu \bar{e}^c)(\bar{q}\bar{\sigma}_\mu q)$	
e cher co in spino a-	O_{ed}	$(e^c\sigma_\mu ar e^c)(d^c\sigma_\mu ar d^c)$	O_{qu}	$(\bar{q}\bar{\sigma}_{\mu}q)(u^{c}\sigma_{\mu}\bar{u}^{c})$	
	O_{ud}	$(u^c \sigma_\mu \bar{u}^c) (d^c \sigma_\mu \bar{d}^c)$	O_{qu}'	$(\bar{q}\bar{\sigma}_{\mu}T^{a}q)(u^{c}\sigma_{\mu}T^{a}\bar{u}^{c})$	
	O_{ud}^{\prime}	$(u^c \sigma_\mu T^a \bar{u}^c) (d^c \sigma_\mu T^a \bar{d}^c)$	O_{qd}	$(\bar{q}\bar{\sigma}_{\mu}q)(d^{c}\sigma_{\mu}\bar{d}^{c})$	
			O_{qd}^{\prime}	$(\bar{q}\bar{\sigma}_{\mu}T^{a}q)(d^{c}\sigma_{\mu}T^{a}\bar{d}^{c})$	
		$(\bar{L}L)(\bar{L}L)$		$(\bar{L}R)(\bar{L}R)$	
	$O_{\ell\ell}$	$\eta(\bar{\ell}\bar{\sigma}_{\mu}\ell)(\bar{\ell}\bar{\sigma}_{\mu}\ell)$	O_{quqd}	$(u^c q^j)\epsilon_{jk}(d^c q^k)$	
	O_{qq}	$\eta(\bar{q}\bar{\sigma}_{\mu}q)(\bar{q}\bar{\sigma}_{\mu}q)$	O_{quqd}'	$(u^c T^a q^j) \epsilon_{jk} (d^c T^a q^k)$	
	O'_{qq}	$\eta(\bar{q}\bar{\sigma}_{\mu}\sigma^{i}q)(\bar{q}\bar{\sigma}_{\mu}\sigma^{i}q)$	$O_{\ell equ}$	$(e^c\ell^j)\epsilon_{jk}(u^cq^k)$	
	$O_{\ell q}$	$(\bar{\ell}\bar{\sigma}_{\mu}\ell)(\bar{q}\bar{\sigma}_{\mu}q)$	$O'_{\ell equ}$	$\left (e^c \bar{\sigma}_{\mu\nu} \ell^j) \epsilon_{jk} (u^c \bar{\sigma}^{\mu\nu} q^k) \right $	
	$O'_{\ell q}$	$(\bar{\ell}\bar{\sigma}_{\mu}\sigma^{i}\ell)(\bar{q}\bar{\sigma}_{\mu}\sigma^{i}q)$	$O_{\ell edq}$	$(\bar{\ell}\bar{e}^c)(d^cq)$	

Table 2.4: Four-fermion D=6 operators in the Warsaw basis. Flavor indices are suppressed here to reduce the clutter. The factor η is equal to 1/2 when all flavor indices are equal (e.g. in $[O_{ee}]_{1111}$), and $\eta = 1$ otherwise. For each complex operator the complex conjugate should be included.

Dimension-6 operators in SMEFT

Warsaw basis

Yukawa					
$[O_{eH}^{\dagger}]_{IJ}$	$H^{\dagger}He_{I}^{c}H^{\dagger}\ell_{J}$				
$[O_{uH}^{\dagger}]_{IJ}$	$H^{\dagger}Hu_{I}^{c}\widetilde{H}^{\dagger}q_{J}$				
$[O_{dH}^{\dagger}]_{IJ}$	$H^{\dagger}Hd_{I}^{c}H^{\dagger}q_{J}$				

Vertex		Dipole		
$[O_{H\ell}^{(1)}]_{IJ}$	$i\bar{\ell}_I\bar{\sigma}_\mu\ell_JH^\dagger\overleftrightarrow{D_\mu}H$		$[O_{eW}^{\dagger}]_{IJ}$	$e_I^c \sigma_{\mu\nu} H^{\dagger} \sigma^i \ell_J W^i_{\mu\nu}$
$[O_{H\ell}^{(3)}]_{IJ}$	$i\bar{\ell}_{I}\sigma^{i}\bar{\sigma}_{\mu}\ell_{J}H^{\dagger}\sigma^{i}\overleftrightarrow{D_{\mu}}H$		$[O_{eB}^{\dagger}]_{IJ}$	$e_I^c \sigma_{\mu\nu} H^\dagger \ell_J B_{\mu\nu}$
$[O_{He}]_{IJ}$	$ie_{I}^{c}\sigma_{\mu}\bar{e}_{J}^{c}H^{\dagger}\overleftrightarrow{D_{\mu}}H$		$[O_{uG}^{\dagger}]_{IJ}$	$u_I^c \sigma_{\mu\nu} T^a \widetilde{H}^\dagger q_J G^a_{\mu\nu}$
$[O_{Hq}^{(1)}]_{IJ}$	$i\bar{q}_I\bar{\sigma}_\mu q_J H^\dagger \overleftrightarrow{D_\mu} H$		$[O_{uW}^{\dagger}]_{IJ}$	$u_I^c \sigma_{\mu u} \widetilde{H}^\dagger \sigma^i q_J W^i_{\mu u}$
$[O_{Hq}^{(3)}]_{IJ}$	$i\bar{q}_I\sigma^i\bar{\sigma}_\mu q_J H^\dagger\sigma^i\overleftrightarrow{D_\mu} H$		$[O_{uB}^{\dagger}]_{IJ}$	$u_I^c \sigma_{\mu\nu} \widetilde{H}^\dagger q_J B_{\mu\nu}$
$[O_{Hu}]_{IJ}$	$i u_I^c \sigma_\mu \bar{u}_J^c H^\dagger \overleftrightarrow{D_\mu} H$		$[O_{dG}^{\dagger}]_{IJ}$	$d_I^c \sigma_{\mu\nu} T^a H^\dagger q_J G^a_{\mu\nu}$
$[O_{Hd}]_{IJ}$	$i d_{I}^{c} \sigma_{\mu} \bar{d}_{J}^{c} H^{\dagger} \overleftrightarrow{D_{\mu}} H$		$[O_{dW}^{\dagger}]_{IJ}$	$d_I^c \sigma_{\mu u} \bar{H}^\dagger \sigma^i q_J W^i_{\mu u}$
$[O_{Hud}]_{IJ}$	$i u_I^c \sigma_\mu \bar{d}_J^c \tilde{H}^\dagger D_\mu H$		$[O_{dB}^{\dagger}]_{IJ}$	$d_I^c \sigma_{\mu\nu} H^\dagger q_J B_{\mu\nu}$

Table 2.3: Two-fermion D=6 operators in the Warsaw basis. The flavor indices are denoted by I, J. For complex operators (O_{Hud} and all Yukawa and dipole operators) the corresponding complex conjugate operator is implicitly included.

Full set has 2499 distinct operators, including flavor structure and CP conjugates

Alonso et al 1312.2014, Henning et al 1512.03433

What changes in SMEFT vs WEFT

Several dimension-6 SMEFT operators affecting left-handed WEFT NSI parameters

$$\begin{split} [\epsilon_{L}]_{\alpha\beta} &= \frac{v^{2}}{\Lambda^{2}V_{ud}} \left(V_{ud}[c_{Hl}^{(3)}]_{\alpha\beta} + V_{jd}[c_{Hq}^{(3)}]_{1j}\delta_{\alpha\beta} - V_{jd}[c_{lq}^{(3)}]_{\alpha\beta1j} \right) \\ [\epsilon_{R}]_{\alpha\beta} &= \frac{v^{2}}{2\Lambda^{2}V_{ud}} [c_{Hud}]_{11}\delta_{\alpha\beta} \\ [\epsilon_{S}]_{\alpha\beta} &= -\frac{v^{2}}{2\Lambda^{2}V_{ud}} \left(V_{jd}[c_{lequ}^{(1)}]_{\beta\alphaj1}^{*} + [c_{ledq}]_{\beta\alpha11}^{*} \right) \\ [\epsilon_{P}]_{\alpha\beta} &= -\frac{v^{2}}{2\Lambda^{2}V_{ud}} \left(V_{jd}[c_{lequ}^{(1)}]_{\beta\alphaj1}^{*} - [c_{ledq}]_{\beta\alpha11}^{*} \right) \\ [\epsilon_{T}]_{\alpha\beta} &= -\frac{2v^{2}}{\Lambda^{2}V_{ud}} V_{jd}[c_{lequ}^{(3)}]_{\beta\alphaj1}^{*} - [c_{ledq}]_{\beta\alpha11}^{*} \right) \end{split}$$
For scalar, pseudoscalar, and to one-to-one mapping between dimension-6 SMEET.

alar, and tensor ing between dimension-6 SMEFT and WEFT NSI parameters

WEFT from SMEFT

In the SMEFT, at the level of dimension-6 operators, two types of effects leading to contact interactions between quarks and leptons at low-energies:

One is via W exchange, much as in the SM

Dimension-6 operators generate W coupling to right-handed quarks, in addition to the usual SM one to left-handed quarks

$$\mathscr{L}_{\text{SMEFT}} \supset \frac{c_{Hud}}{\Lambda^2} (\tilde{H}^{\dagger} D_{\mu} H) (\bar{u}_R \gamma_{\mu} d_R) + \text{h.c.} \longrightarrow \delta g_R^{Wq_1} = c_{Hud} \frac{V^2}{2\Lambda^2}$$
$$\mathscr{L}_{\text{SMEFT}} \supset \frac{g_L}{\sqrt{2}} W^{\mu +} \left[\bar{\nu}_e \gamma_\mu (1 + \delta g_L^{We}) e_L + \bar{u}_L \gamma_\mu \left(V_{ud} + \delta g_L^{Wq_1} \right) d_L + \delta g_R^{Wq_1} \bar{u}_R \gamma_\mu d_R \right] + \text{h.c}$$

0

WEFT from SMEFT

In the SMEFT, at the level of dimension-6 operators, two types of effects leading to contact interactions between quarks and leptons at low-energies:

One is via W exchange, much as in the SM

$$\mathcal{L}_{\text{SMEFT}} \supset \frac{g_L}{\sqrt{2}} W^{\mu +} \left[\bar{\nu}_e \gamma_\mu (1 + \delta g_L^{We}) e_L + \bar{u}_L \gamma_\mu \left(V_{ud} + \delta g_L^{Wq_1} \right) d_L + \delta g_R^{Wq_1} \bar{u}_R \gamma_\mu d_R \right] + \text{h.c.}$$

$$\begin{aligned} \mathscr{L}_{\text{WEFT}} \supset &-\frac{g_L^2}{2m_W^2} \bigg[\bar{\nu}_e \gamma_\mu (1 + \delta g_L^{We}) e_L + \bar{u}_L \gamma_\mu \left(V_{ud} + \delta g_L^{Wq_1} \right) d_L + \delta g_R^{Wq_1} \bar{u}_R \gamma_\mu d_R \bigg] \\ & \times \left[\bar{e}_L \gamma_\mu (1 + \delta g_L^{We}) \nu_e + \bar{d}_L \gamma_\mu \left(V_{ud} + \delta g_L^{Wq_1} \right) u_L + \left(\delta g_R^{Wq_1} \right)^* \bar{d}_R \gamma_\mu u_R \right] \end{aligned}$$

WEFT from SMEFT

In the SMEFT, at the level of dimension-6 operators, two types of effects leading to contact interactions between quarks and leptons at low-energies:

The other is contact 4-fermion interactions in SMEFT

 $\mathcal{L}_{\text{SMEFT}} \supset \frac{1}{\Lambda^2} \left[c_{lq}^{(3)}(\bar{L}\gamma_{\mu}\sigma^i L)(\bar{Q}\gamma^{\mu}\sigma^i Q) + c_{lequ}(\bar{L}e)(\bar{Q}u) + c_{ledq}(\bar{L}e)(\bar{d}Q) + c_{lequ}^{(3)}(\bar{L}\sigma_{\mu\nu}e)(\bar{Q}\sigma^{\mu\nu}u) \right]$

Only left-handed, scalar, pseudoscalar, and tensor generated. None leads to right NSI!

Off-diagonal right-handed NSI generated only by dimension-8 SMEFT operators e.g.

$$\mathcal{L}_{\text{SMEFT}} \supset (\bar{L}_{\alpha} H \gamma_{\mu} L H_{\beta}) (\bar{u} \gamma^{\mu} \sigma^{i} d)$$

$$P_{\bar{\nu}_e \to \bar{\nu}_e} \approx 1 - \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_\nu}\right) \sin^2 \left(2\tilde{\theta}_{13} - \alpha_D \frac{m_e}{E_e} - \alpha_P \frac{m_e}{f_T(E_\nu)}\right) + \sin \left(\frac{\Delta m_{31}^2 L}{2E_\nu}\right) \sin(2\tilde{\theta}_{13}) \left(\beta_D \frac{m_e}{E_e} - \beta_P \frac{m_e}{f_T(E_\nu)}\right)$$

$$\alpha_{D} = \frac{g_{S}}{3g_{A}^{2} + 1} \operatorname{Re}\left[S\right] - \frac{3g_{A}g_{T}}{3g_{A}^{2} + 1} \operatorname{Re}\left[T\right] \qquad \alpha_{P} = \frac{g_{T}}{g_{A}} \operatorname{Re}\left[T\right] \qquad \tilde{\theta}_{13} = \theta_{13} + \operatorname{Re}[L]$$
$$\beta_{D} = \frac{g_{S}}{3g_{A}^{2} + 1} \operatorname{Im}\left[S\right] - \frac{3g_{A}g_{T}}{3g_{A}^{2} + 1} \operatorname{Im}\left[T\right], \qquad \beta_{P} = \frac{g_{T}}{g_{A}} \operatorname{Im}\left[T\right] \qquad [X] \equiv e^{i\delta_{CP}} \left(s_{23}[\epsilon_{X}]_{e\mu} + c_{23}[\epsilon_{X}]_{e\tau}\right)$$

In SMEFT, simplified expression for effective mixing angle and for CP violating oscillations

All in all, short baseline reactor neutrino oscillations sensitive to 5 distinct linear combinations of dimension-6 SMEFT operators

Constraints from non-oscillation experiments

(Not completely robust) constraints due to quadratic contributions of off-diagonal NSI to several observables

- Beta decays: $|[\epsilon_S]_{e\alpha}| \le 6.4 \times 10^{-2}$, $|[\epsilon_T]_{e\alpha}| \le 4.4 \times 10^{-2}$
- CKM unitarity $|[\epsilon_S]_{e\alpha}| \le 2.0 \times 10^{-2}$
- Pion decays

$$\left| \begin{bmatrix} \epsilon_P \end{bmatrix}_{e\alpha} \right|_{\mu=2 \text{ GeV}} \le 7.5 \times 10^{-6} .$$

$$\left| \begin{bmatrix} \epsilon_T \end{bmatrix}_{e\alpha} + 3 \times 10^{-4} \begin{bmatrix} \epsilon_S \end{bmatrix}_{e\alpha} \right|_{\mu=2 \text{ GeV}} \le 1.0 \times 10^{-3}$$

• Drell-Yan LHC

$$\left(\sum_{\alpha} |[\epsilon_S]_{e\alpha}|^2\right)^{1/2} \lesssim 2 \times 10^{-3} , \qquad \left(\sum_{\alpha} |[\epsilon_T]_{e\alpha}|^2\right)^{1/2} \lesssim 2 \times 10^{-3}$$

- Muon Conversion $|\epsilon_S|_{e\mu} \lesssim 3 \times 10^{-6}$
- $\tau \rightarrow e \pi \pi$ $|\epsilon_S|_{e\tau} \leq 4 \times 10^{-4}$

Summary

- EFTs offers a concise and efficient language to discuss lowenergy precision measurement, including neutrino oscillations
- Reactor oscillation experiments can be interpreted as constraint on Wilson coefficients in the WEFT, leading to novel constraints on lepton-flavor-off-diagonal scalar, tensor, and right-handed charged currents involved in beta decays
- To my knowledge, neutrino oscillations are the only observables where these parameters can be probed at the linear level in WEFT Wilson coefficients
- Systematic EFT approach facilitates separating SM input parameters from genuinely observable effects of new physics

Summary

- Recast of current bounds from Daya Bay and RENO leads to percent level bounds on WEFT Wilson coefficients parametrizing scalar, tensor, and right-handed charged currents in beta decays.
- These can be improved in the future by more statistics, more targeted experimental analyses, and extension of the analysis to other types of neutrino oscillation experiments
- From the point of the WEFT, these are novel constraints on the parameter space, probing different linear combinations of parameters than other observables
- In concrete BSM models, there is a competition of constraints from CKM unitarity, beta decays, pion decays, LHC Drell-Yan ev production, charged lepton-flavor violation, which typically lead to stronger bounds than current oscillation experiments

Fantastic Beasts and Where To Find Them

τηληκ γου