Investigating cosmic discordances

May 3rd, 2021 Max-Planck-Institute for Nuclear Physics Particle and Astroparticle theory seminar Heidelberg

Eleonora Di Valentino Institute of Advanced Study, Addison-Wheeler fellow Durham University (UK)

The model that has now practically been selected as the "standard" cosmological model is the Lambda Cold Dark Matter (ACDM) model, that provides an amazing description of a wide range of astrophysical and astronomical data.

Over the last few years, the parameters governing ACDM have been constrained with unprecedented accuracy.

However, despite its incredible success, ACDM still cannot explain key concepts in our understanding understanding of the structure and evolution of the Universe, at the moment based on unknown quantities. At the moment, their physical evidence comes solely from cosmology and astrophysics without strong theoretical motivations.

Unknown quantities:

- an early stage of accelerated expansion (Inflation) which produces the initial, tiny, density perturbations, needed for structure formation.
- a clustering matter component to facilitate structure formation (Dark Matter),
- an energy component to explain the current stage of accelerated expansion (Dark Energy).

Unknown quantities:

- an early stage of accelerated expansion (Inflation) which produces the initial, tiny, density perturbations, needed for structure formation.
- a clustering matter component to facilitate structure formation (Dark Matter),
- an energy component to explain the current stage of accelerated expansion (Dark Energy).

In addition, the ACDM model is based on the choice of three, very specific, solutions for these unknown quantities, mostly motivated by computational simplicity, i.e. the theoretical predictions under ΛCDM for several observables are, in general, easier to compute and include fewer free parameters than most other solutions.

Unknown quantities:

 an early stage of accelerated expansion (Inflation) which produces the initial, tiny, density perturbations, needed for structure formation.

Specific solutions for ACDM:

 Inflation is given by a single, minimally coupled, slow-rolling scalar field;

- a clustering matter component to facilitate structure formation (Dark Matter),
- an energy component to explain the current stage of accelerated expansion (Dark Energy).
- Dark Matter is a pressureless fluid made of cold, i.e., with low momentum, and collisionless particles;
- Dark Energy is a cosmological constant term.

Warning!

Therefore, the 6 parameter ACDM model can be rightly considered, at best, as an approximation to a more realistic scenario that still needs to be fully understood. With the increase in experimental sensitivity, observational evidence for deviations from ACDM is, therefore, expected.

And, actually, anomalies and tensions between observations at early cosmological time and measurements at late cosmological time are present with different statistical significance.

While some proportion of these discrepancies may have a systematic origin, their magnitude and persistence across probes strongly hint at cracks in the standard cosmological scenario and the necessity of new physics. In other words, if not due to systematics, the current anomalies could represent a crisis for the standard cosmological model and their experimental confirmation can bring a revolution in our current ideas of the structure and evolution of the Universe.

These tensions can indicate a failure in Λ CDM model.

CMB constraints

Most of the anomalies and tensions are involving the CMB data.

- Frequency range of 30GHz to 857GHz;
- Orbit around L2;
- Composed by 2 instruments:
 - → LFI → 1.5 meters telescope; array of 22 differential receivers that measure the signal from the sky comparing with a black body at 4.5K.
 - → HFI → array of 52 bolometers cooled to 0.1K.

Planck 2018, Astron.Astrophys. 641 (2020) A6

2018 Planck results are a wonderful confirmation of the flat standard ACDM cosmological model, but are **model dependent**!

 $\left| \frac{\Delta T}{T} \left(\vec{\gamma}_1 \right) \frac{\Delta T}{T} \left(\vec{\gamma}_2 \right) \right\rangle = \frac{1}{2\pi} \sum_{\ell} (2\ell + 1) C_{\ell} P_{\ell} \left(\vec{\gamma}_1 \cdot \vec{\gamma}_2 \right)$

From the map of the CMB anisotropies we can extract the temperature angular power spectrum.

Cosmological parameters: (Ω_bh^2 , Ω_mh^2 , H0, n_s, τ , As)

We choose a set of cosmological parameters that describes our theoretical model and compute the angular power spectra.

Because of the correlations present between the parameters, variation of different quantities can produce similar effects on the CMB.

100 (a) Curvature (b) Dark Energy 80 $\Delta_T (\mu K)$ 4020 Ω_{tot} Ω (d) Matter (c) Baryons 100 80 $\Delta_T (\mu \mathbf{K})$ 60 40 20 $\Omega_{\rm b}h^2$ $\Omega_m h^2$ 0.04 10 100 1000 10 100 1000

Wayne Hu's tutorial

Cosmological parameters: $(\Omega_b h^2, \Omega_m h^2, H0, n_s, \tau, As)$

Theoretical model

We compare the angular power spectra we computed with the data and, using a bayesian analysis, we get a combination of cosmological parameter values in agreement with these.

Planck 2018, Astron.Astrophys. 641 (2020) A6

Parameter constraints

We can extract 4 independent angular spectra from the CMB:

- Temperature
- Cross Temperature Polarization E
- Polarization type E (density fluctuations)
- Polarization type B (gravitational waves)

Borstnik et al., hep-ph/0401043

Planck satellite experiment

Planck 2018, Astron.Astrophys. 641 (2020) A6

Planck satellite experiment

Planck 2018, Astron.Astrophys. 641 (2020) A6

Polarization spectra

The theoretical spectra in light blues are computed from the best-fit base-LCDM theoretical spectrum fit to the Planck TT,TE,EE+lowE+lensing likelihood.

Residuals with respect to this theoretical model are shown in the lower panel in each plot.

CMB constraints

Planck 2018, Astron.Astrophys. 641 (2020) A6

Constraints on parameters of the LCDM model from the separate Planck EE, TE, and TT high-l spectra combined with low-l polarization (lowE), and, in the case of EE also with BAO, compared to the joint result using Planck TT,TE,EE+lowE.

CMB constraints

Parameter	TT+lowE 68% limits	TE+lowE 68% limits	EE+lowE 68% limits	TT,TE,EE+lowE 68% limits	TT,TE,EE+lowE+lensing 68% limits	TT,TE,EE+lowE+lensing+BAO 68% limits
$\Omega_{\rm b}h^2$	0.02212 ± 0.00022	0.02249 ± 0.00025	0.0240 ± 0.0012	0.02236 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00014
$\Omega_{\rm c}h^2$	0.1206 ± 0.0021	0.1177 ± 0.0020	0.1158 ± 0.0046	0.1202 ± 0.0014	0.1200 ± 0.0012	0.11933 ± 0.00091
$100\theta_{\rm MC}$	1.04077 ± 0.00047	1.04139 ± 0.00049	1.03999 ± 0.00089	1.04090 ± 0.00031	1.04092 ± 0.00031	1.04101 ± 0.00029
τ	0.0522 ± 0.0080	0.0496 ± 0.0085	0.0527 ± 0.0090	$0.0544^{+0.0070}_{-0.0081}$	0.0544 ± 0.0073	0.0561 ± 0.0071
$\ln(10^{10}A_{\rm s})\ldots\ldots$	3.040 ± 0.016	$3.018^{+0.020}_{-0.018}$	3.052 ± 0.022	3.045 ± 0.016	3.044 ± 0.014	3.047 ± 0.014
<i>n</i> _s	0.9626 ± 0.0057	0.967 ± 0.011	0.980 ± 0.015	0.9649 ± 0.0044	0.9649 ± 0.0042	0.9665 ± 0.0038
$H_0 [\mathrm{kms^{-1}Mpc^{-1}}]$	66.88 ± 0.92	68.44 ± 0.91	69.9 ± 2.7	67.27 ± 0.60	67.36 ± 0.54	67.66 ± 0.42
Ω_{Λ}	0.679 ± 0.013	0.699 ± 0.012	$0.711^{+0.033}_{-0.026}$	0.6834 ± 0.0084	0.6847 ± 0.0073	0.6889 ± 0.0056
$\Omega_{\rm m}$	0.321 ± 0.013	0.301 ± 0.012	$0.289^{+0.026}_{-0.033}$	0.3166 ± 0.0084	0.3153 ± 0.0073	0.3111 ± 0.0056
$\Omega_{\rm m}h^2$	0.1434 ± 0.0020	0.1408 ± 0.0019	$0.1404^{+0.0034}_{-0.0039}$	0.1432 ± 0.0013	0.1430 ± 0.0011	0.14240 ± 0.00087
$\Omega_{\rm m}h^3$	0.09589 ± 0.00046	0.09635 ± 0.00051	$0.0981^{+0.0016}_{-0.0018}$	0.09633 ± 0.00029	0.09633 ± 0.00030	0.09635 ± 0.00030
<i>σ</i> ₈	0.8118 ± 0.0089	0.793 ± 0.011	0.796 ± 0.018	0.8120 ± 0.0073	0.8111 ± 0.0060	0.8102 ± 0.0060
$S_8\equiv\sigma_8(\Omega_{\rm m}/0.3)^{0.5}~.$	0.840 ± 0.024	0.794 ± 0.024	$0.781^{+0.052}_{-0.060}$	0.834 ± 0.016	0.832 ± 0.013	0.825 ± 0.011

Planck 2018, Astron.Astrophys. 641 (2020) A6

2018 Planck results are a wonderful confirmation of the flat standard ΛCDM cosmological model, but are **model dependent**!

- The cosmological constraints are obtained assuming a cosmological model.
- The results are affected by the degeneracy between the parameters that induce similar effects on the observables.

The most statistically significant and persisting anomalies and tensions of the CMB are:

- H0 with local measurements
- A_L internal anomaly
- S8 with cosmic shear data
- Ωκ different from zero

See Di Valentino et al. arXiv:2008.11283 [astro-ph.CO], arXiv:2008.11284 [astro-ph.CO], arXiv:2008.11285 [astro-ph.CO], arXiv:2008.11286 [astro-ph.CO] for an overview.

The most statistically significant and persisting anomalies and tensions of the CMB are:

• H0 with local measurements

- A_L internal anomaly
- S8 with cosmic shear data
- Ωκ different from zero

See Di Valentino et al. arXiv:2008.11283 [astro-ph.CO], arXiv:2008.11284 [astro-ph.CO], arXiv:2008.11285 [astro-ph.CO], arXiv:2008.11286 [astro-ph.CO] for an overview.

We are referring to "Hubble tension" as the disagreement between

The Planck constraints assuming ACDM:

H0 = 67.27 ± 0.60 km/s/Mpc in ΛCDM Planck 2018, Astron.Astrophys. 641 (2020) A6

• the local measurements obtained by the SH0ES collaboration.

The so called R19:

H0 = 74.03 ± 1.42 km/s/Mcc Riess et al. *Astrophys.J.* 876 (2019) 1, 85

or the updated one R20 using the parallax measurements of Gaia EDR3:

H0 = 73.2 ± 1.3 km/s/Mpc Riess et al., Astrophys.J.Lett. 908 (2021) 1, L6

CMB Polarization Measurements with SPTpol

On the same side of Planck, i.e. preferring smaller values of H0 we have:

Ground based CMB telescope

Nicholas Harrington UC Berkeley

 $\frac{\text{SPT-3G}}{\text{H0} = 68.8 \pm 1.5 \text{ km/s/Mpc} \text{ in } \Lambda \text{CDM}}$

SPT-3G, arXiv:2101.01684 [astro-ph.CO]

On the same side of Planck, i.e. preferring smaller values of H0 we have:

Ground based CMB telescope

 $\frac{\text{ACT-DR4}}{\text{H0} = 67.9 \pm 1.5 \text{ km/s/Mpc} \text{ in } \Lambda \text{CDM}}$

ACT-DR4 + WMAP: H0 = 67.6 \pm 1.1 km/s/Mpc in Λ CDM

ACT-DR4 2020, JCAP 12 (2020) 047

On the same side of Planck, i.e. preferring smaller values of H0 we have:

BAO+Pantheon+BBN+ $\theta_{MC, Planck}$: H0 = 67.9 ± 0.8 km/s/Mpc

Planck 2018, Aghanim et al., arXiv:1807.06209 [astro-ph.CO]

BAO+BBN from BOSS and eBOSS: $H_0 = 67.35 \pm 0.97$ km/s/Mpc

eBOSS, Alam et al., arXiv:2007.08991 [astro-ph.CO]

eBOSS, Alam et al., arXiv:2007.08991 [astro-ph.CO]

H0LiCOW: H0 = 73.3 + 1.7 - 1.8 km/s/MpcWong et al. arXiv:1907.04869 [astro-ph.CO] STRIDES: H0 = 74.2 + 2.7 - 3.0 km/s/MpcShajib et al. arXiv:1910.06306 [astro-ph.CO] TDCOSMO+SLAC: H0 = 67.4 + 4.1 - 3.2 km/s/MpcBirrer et al. arXiv:2007.02941 [astro-ph.CO]

Strong Lensing: measurement of the time delays of multiple images of quasar systems
caused by the strong gravitational lensing from a foreground galaxy.

	H ₀ mean	H_0 error	excluded	excluded	measurements
	73.05838	1.059989	1	2	
	72.58911	0.9489663	1	3	
	72.49379	0.9704452	1	4	
	72.18593	0.9905548	1	5	
	72.74182	0.9935880	1	6	
Plan	72.51725	0.9391693	1	7	
Planck+ lensir BAO+Pantheon+BBN+ θ_{MC} plan	72.73386	1.086945	1	8	m/s/Mpc]
DES+BAO+BE	72.64958	0.9272990	1	9	
A(WMAP9+B4	72.74957	0.9341007	1	10	
SPT-SZ+B4	73.25271	0.8394086	2	3	
FS+BAO+BE	73.20239	0.8541644	2	4	Evoluding two groups of data
Cepheids – SN	72.98889	0.8677809	2	5	Excluding two groups of data
Riess et al. 202	73.41869	0.8698181	2	6	and taking the recult with the
Riess et al. 201	73.18552	0.8326054	2	7	
Burns et al. 201	73.51043	0.9304035	2	8	largest error har i e evoluding
Freedman et al. 20.	73.27682	0.8243009	2	9	
TRGB – SN	73.36285	0.8290675	2	10	the most precise
Soltis et al. 202 Freedman et al. 201	72.85492	0.7927890	3	4	
Yuan et al. 20	72.66224	0.8036401	3	5	measurements based on
Jang and Lee 201 Roid Posco Rioss 201	73.02929	0.8052573	3	6	
Reid, Fesce, Riess 20.	72.85530	0.7754612	3	7	Cepheids-SN Ia and Time-
Miras – SNI	73.05918	0.8526064	3	8	
Huang et al. 20.	72.94041	0.7687386	3	9	delay Lensing, we obtain our
Mase	73.01174	0.7726005	3	10	, , , , , , , , , , , , , , , , , , ,
Pesce et al. 20.	72.59712	0.8165602	4	5	Liltre concernative estimate
Tully Fishe	72.97585	0.8182568	4	6	Ultra-conservative estimate
Kourkchi et al. 202 Schombert et al. 201	72.80062	0.7870499	4	7	(O a topoiop with Diopoly)
	73.00013	0.7800242	4	9	(30 tension with Planck)
Surface Brightness Fluctuation	72.96215	0.7840596	4 🗉	10	
Khetan et al. 202	72.77377	0.8302036	5	6	$H_0 = 72.7 \pm 1.1 km/s/M_{D_0}$
SN	72.60931	0.7976639	5	7	$110 - 72.7 \pm 1.1 \text{ km/s/wpc}$
de laeger et al. 202	72.77266	0.8823864	5	8	
Time delay Longin	72.70377	0.7903527	5	9	
Wong et al. 20	72.77669	0.7945514	5	10	
Shajib et al. 202	72.97070	0.7992452	6	7	
Birrer et al. 202	73.21607	0.8845285	6	8	
	73.05890	0.7918909	6	9	80
	73.13590	0.7961143	6	10	
	72.99312	0.8454798	7	8	
	72.88815	0.7635028	7	9 10	
	12.95/98	0.7072859	/	10	
	73.09115	0.836/882	ð	9	
	73.17762	0.841//61	ð	10	Di Valentino, MNRAS 2021, arXiv:2011.00246 [astro-ph.CO]
	/3.03960	0.7607720	9	10	

- Camarena, Marra (2019): 75.4 ± 1.7 Burns et al. (2018): 73.2 ± 2.3
- Dhawan, Jha, Leibundgut (2017), NIR: 72.8 ± 3.1
- Follin. Knox (2017): 73.3 \pm 1.7
- Feeney, Mortlock, Dalmasso (2017): 73.2 ± 1.8
- Riess et al. (2016), R16: 73.2 ± 1.7
- Cardona, Kunz, Pettorino (2016), HPs: 73.8 ± 2.1 Freedman et al. (2012): 74.3 ± 2.1

TRGB – SNJa

- Soltis, Casertano, Riess (2020): 72.1 ± 2.0
- Freedman et al. (2020): 69.6 ± 1.9
- Reid, Pesce, Riess (2019), SH0ES: 71 1 ± 1 9 Freedman et al. (2019): 69.8 ± 1.9

 - Yuan et al. (2019): 72.4 ± 2.0 Jang, Lee (2017): 71.2 ± 2.5
 - Miras SNIa
 - Huang et al. (2019): 73.3 ± 4.0
 - Pesce et al. (2020): 73.9 ± 3.0

Tully – Fisher Relation (TFR)

Kourkchi et al. (2020): 76.0 ± 2.6 Schombert, McGaugh, Lelli (2020): 75.1 ± 2.8

Surface Brightness Fluctuations

- Blakeslee et al. (2021) IR-SBF w/ HST: 73.3 ± 2.5 Khetan et al. (2020) w/ LMC DEB: 71.1 ± 4.1
 - de Jaeger et al. (2020): 75.8^{+5.2}/_{4.6}

HII galaxies

Fernández Arenas et al. (2018): 71.0 ± 3.5

Lensing related, mass model – dependent

- Denzel et al. (2021): 71.8+3
- Birrer et al. (2020), TDCOSMO+SLACS: 67.4^{+4,1}, TDCOSMO: 74.5^{+5,6} Millon et al. (2020), TDCOSMO: 74.2 ± 1.6
 - Baxter et al. (2020): 73.5 ± 5.3

 - Shajib et al. (2019), STRIDES: 74.2-2
 - Wong et al. (2019), H0LiCOW 2019: 73.3+
 - Birrer et al. (2018), H0LiCOW 2018: 72.5+2-3 Bonvin et al. (2016), H0LiCOW 2016: 71.9+2-3

Optimistic average

Di Valentino (2021): 72.94 ± 0.75 Ultra – conservative, no Cepheids, no lensing Di Valentino (2021): 72.7 ± 1.1

GW related

- Gayathri et al. (2020), GW190521+GW170817: 73.4⁺⁶
 - Mukherjee et al. (2020), GW170817+ZTF: 67.6[‡]
 - Mukherjee et al. (2019), GW170817+VLBI: 68.3⁺⁴
 - Abbott et al. (2017), GW170017 74281: 00.5_4

Di Valentino et al., arXiv:2103.01183 [astro-ph.CO]

Di Valentino et al., arXiv:2103.01183 [astro-ph.CO]

Since the Planck constraints are model dependent, we can try to expand the cosmological scenario and see which extensions work in solving the tensions between the cosmological probes.

The most discussed extensions for solving the H0 tension are:

the neutrino effective number the dark energy equation of state

The Neutrino effective number

The expected value is Neff = 3.046, if we assume standard electroweak interactions and three active massless neutrinos. If we measure a Neff > 3.046, we are in presence of extra radiation.

If we compare the Planck 2015 constraint on Neff at 68% cl

$N_{\rm eff}$	=	3.13 ± 0.32	Planck TT+lowP,
$N_{\rm eff}$	=	3.15 ± 0.23	Planck TT+lowP+BAO,

with the new Planck 2018 bound,

$$N_{\rm eff} = 2.92^{+0.36}_{-0.37}$$
 (95%, *Planck* TT, TE, EE+lowE),

we see that the neutrino effective number is now very well constrained.

H0 passes from 68.0 \pm 2.8 km/s/Mpc (2015) to 66.4 \pm 1.4 km/s/Mpc (2018), and the tension with R20 increases from 1.7 σ to 3.6 σ also varying Neff.

Planck collaboration, 2015

The Neutrino effective number

The expected value is Neff = 3.046, if we assume standard electroweak interactions and three active massless neutrinos. If we measure a Neff > 3.046, we are in presence of extra radiation.

If we compare the Planck 2015 constraint on Neff at 68% cl

$N_{\rm eff}$ =	$= 3.13 \pm 0.32$	Planck TT+lowP,
$N_{\rm eff}$ =	$= 3.15 \pm 0.23$	Planck TT+lowP+BAO,

with the new Planck 2018 bound,

$$N_{\rm eff} = 2.92^{+0.36}_{-0.37}$$
 (95%, *Planck* TT, TE, EE+lowE),

we see that the neutrino effective number is now very well constrained.

H0 passes from 68.0 \pm 2.8 km/s/Mpc (2015) to 66.4 \pm 1.4 km/s/Mpc (2018), and the tension with R20 increases from 1.7 σ to 3.6 σ also varying Neff.

Planck collaboration, 2015

The Neutrino effective number

The expected value is Neff = 3.046, if we assume standard electroweak interactions and three active massless neutrinos. If we measure a Neff > 3.046, we are in presence of extra radiation.

If we compare the Planck 2015 constraint on Neff at 68% cl

$N_{\rm eff}$ =	$= 3.13 \pm 0.32$	Planck TT+lowP,
$N_{\rm eff}$ =	$= 3.15 \pm 0.23$	Planck TT+lowP+BAO

with the new Planck 2018 bound,

$$N_{\rm eff} = 2.92^{+0.36}_{-0.37}$$
 (95%, *Planck* TT, TE, EE+lowE),

we see that the neutrino effective number is now very well constrained.

H0 passes from 68.0 ± 2.8 km/s/Mpc (2015) to 66.4 ± 1.4 km/s/Mpc (2018), and the tension with R20 increases from 1.7σ to 3.6σ also varying Neff.

Planck collaboration, 2015

The Neutrino effective number

The expected value is Neff = 3.046, if we assume standard electroweak interactions and three active massless neutrinos. If we measure a Neff > 3.046, we are in presence of extra radiation.

If we compare the Planck 2015 constraint on Neff at 68% cl

$N_{\rm eff}$ =	$= 3.13 \pm 0.32$	Planck TT+lowP,
$N_{\rm eff}$ =	$= 3.15 \pm 0.23$	Planck TT+lowP+BAO

with the new Planck 2018 bound,

$$N_{\rm eff} = 2.92^{+0.36}_{-0.37}$$
 (95%, *Planck* TT, TE, EE+lowE),

we see that the neutrino effective number is now very well constrained.

H0 passes from 68.0 ± 2.8 km/s/Mpc (2015) to 66.4 ± 1.4 km/s/Mpc (2018), and the tension with R20 increases from 1.7σ to 3.6σ also varying Neff.

Planck collaboration, 2015

The Dark energy equation of state

Changing the dark energy equation of state w, we are changing the expansion rate of the Universe:

$$H^{2} = H_{0}^{2} \left[\Omega_{m} (1+z)^{3} + \Omega_{r} (1+z)^{4} + \Omega_{de} (1+z)^{3(1+w)} + \Omega_{k} (1+z)^{2} \right]$$

w introduces a geometrical degeneracy with the Hubble constant that will be unconstrained using the CMB data only, resulting in agreement with R20.

We have in 2018 w = $-1.58^{+0.52}_{-0.41}$ with H0 > 69.9 km/s/Mpc at 95% c.l.

Planck data prefer a phantom dark energy, with an energy component with w < -1, for which the density increases with time in an expanding universe that will end in a Big Rip. A phantom dark energy violates the energy condition $\rho \ge |p|$, that means that the matter could move faster than light and a comoving observer measure a negative energy density, and the Hamiltonian could have vacuum instabilities due to a negative kinetic energy.

Anyway, there exist models that expect an effective energy density with a phantom equation of state without showing the problems before.

More specific extensions for solving the H0 tension are:

- Early dark Energy (Poulin et al. arXiv:1811.04083, Karwal & Kamionkowski arXiv:1608.01309, Sakstein & Trodden arXiv:1911.11760, Niedermann & Sloth arXiv:1910.10739, Akarsu et al. arXiv:1912.08751, etc...)
- Phenomenologically Emergent Dark Energy (Li & Shafieloo arXiv:1906.08275, Pan et al. arXiv: 1907.12551, Li & Shafieloo arXiv:2001.05103, Rezaei et al. arXiv:2004.08168, Liu & Miao arXiv:2002.05563, etc.)
- Modified recombination and reionization histories through heating processes, variation of fundamental constants, or a non-standard CMB temperature-redshift relation (Hart & Chluba arXiv:1705.03925, Yan et al. arXiv: 1909.06388, Frusciante et al. arXiv:1912.07586, Braglia et al. arXiv:2004.11161, Ballardini et al. arXiv:2004.14349, Rossi et al. arXiv:1906.10218, etc.)
- Modified Gravity models (Raveri arXiv:1902.01366, Jacques et al. arXiv:1301.3119, Weinberg arXiv:1305.1971, Carneiro et al. arXiv:1812.06064, Paul et al. arXiv:1808.09706, Di Valentino et al. arXiv:1511.00975, Green et al. arXiv:1903.04763, etc...)
- Decaying dark matter (Di Bari et al. arXiv:1303.6267, Choi et al. arXiv:1910.00459, Berezhiani et al. arXiv:1505.03644, Anchordoqui et al. arXiv:1506.08788, Vattis et al. arXiv:1903.06220, etc..)
- Interacting dark sector (Di Valentino et al. arXiv:1704.08342, Kumar and Nunes arXiv:1702.02143, Yang et al. arXiv:1805.08252, Yang et al. arXiv:1809.06883, Yang et al. arXiv:1906.11697, Martinelli et al. arXiv:1902.10694, Di Valentino et al. arXiv:1908.04281, Di Valentino et al. arXiv:1910.09853, etc...)
- Parker Vacuum Metamorphosis (Di Valentino et al., PRD97 (2018) no.4, 043528)
- Vacuum Dynamics (Sola Peracaula et al. arXiv:1705.06723)
- Uber-gravity (Khosravi et al. arXiv:1710.09366)
- Bulk viscosity (Yang et al. arXiv:1906.04162)
- Metastable Dark Energy (Li et al. arXiv:1904.03790)

See our review Di Valentino et al., arXiv:2103.01183 [astro-ph.CO] for a summary of other possible candidates.

Successful models in solving H0

tongion < 1 a "Emcallent models"	tongion < 2 a "Cood models"	tonsion < 2 a "Promising models"
tension ≤ 10 Excertent models	$\frac{1}{20} \frac{1}{3000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	tension ≤ 50 Fromissing models
Dark energy in extended parameter spaces $[256]$	Early Dark Energy [207]	Early Dark Energy [201]
Dynamical Dark Energy [276]	Phantom Dark Energy [11]	Decaying Warm DM [441]
Metastable Dark Energy [281]	Dynamical Dark Energy [11,248,276]	Neutrino-DM Interaction [473]
PEDE [359, 361]	GEDE [364]	Interacting dark radiation [484]
Elaborated Vacuum Metamorphosis [367–369]	Vacuum Metamorphosis [369]	Self-Interacting Neutrinos [667,668]
IDE $[281, 603, 604, 606, 619, 624, 628-630]$	IDE $[281, 620, 623, 628, 630, 637]$	IDE [623]
Self-interacting sterile neutrinos [678]	Critically Emergent Dark Energy [953]	Unified Cosmologies [714]
Generalized Chaplygin gas model [711]	$f(\mathcal{T})$ gravity [781]	Scalar-tensor gravity [822]
Galileon gravity [835,841]	Über-gravity [58]	Modified recombination [942]
Power Law Inflation [922]	Reconstructed PPS [934]	Super ΛCDM [959]
		Coupled Dark Energy [617]

Table B1. Models solving the H_0 tension with R20 within the 1σ , 2σ and 3σ confidence levels considering the *Planck* dataset only.

Di Valentino et al., arXiv:2103.01183 [astro-ph.CO]

What about BAO?

BAO measurements constrain the product of H0 and the sound horizon rs. In order to have a larger H0 value in agreement with R19, we need r_s near 137 Mpc. However, Planck by assuming Λ CDM, prefers r_s near 147 Mpc. Therefore, a cosmological solution that can increase H0 and at the same time can lower the sound horizon inferred from CMB data it is promising to put in agreement all the measurements.

Knox and Millea, Phys. Rev. D 101 (2020) 4, 043533

Early vs late time solutions

Here we can see the comparison of the 2o credibility regions of the CMB constraints and the measurements from late-time observations (SN + BAO + H0LiCOW + SH0ES). We see that the late time solutions, as wCDM, increase H0 but leave r_s unaltered. However, the early time solutions, as Neff or Early Dark Energy, move in the right direction both the parameters, but can't solve completely the H0 tension with R19.

Arendse et al., Astron.Astrophys. 639 (2020) A57

Successful models in solving H0

tension $\leq 1\sigma$ "Excellent models"	tension $\leq 2\sigma$ "Good models"	tension $\leq 3\sigma$ "Promising models"
Early Dark Energy [200, 207, 212, 218]	Early Dark Energy [184, 201, 208, 231]	DE in extended parameter spaces [256]
Exponential Acoustic Dark Energy [227]	Rock 'n' Roll [214]	Dynamical Dark Energy [248, 276]
Phantom Crossing [282]	New Early Dark Energy [216]	Holographic Dark Energy [317]
Late Dark Energy Transition [284]	Acoustic Dark Energy [225]	Swampland Conjectures [337]
Metastable Dark Energy [281]	Dynamical Dark Energy [276]	MEDE [366]
PEDE [361]	Running vacuum model [299]	Coupled DM - Dark radiation [501]
Vacuum Metamorphosis [369]	Bulk viscous models [307, 308]	Decaying Ultralight Scalar [505]
Elaborated Vacuum Metamorphosis [368, 369]	Holographic Dark Energy [317]	BD-ΛCDM [818]
Sterile Neutrinos [400]	Phantom Braneworld DE $[345]$	Metastable Dark Energy [281]
Decaying Dark Matter [448]	PEDE [358,359]	Self-Interacting Neutrinos [667]
Neutrino-Majoron Interactions [476]	Elaborated Vacuum Metamorphosis [368]	Dark Neutrino Interactions [683]
IDE [604,606,624,628]	IDE [626,637]	IDE [601–603, 620, 623, 630, 636]
DM - Photon Coupling [652]	Interacting Dark Radiation [484]	Scalar-tensor gravity [821,822]
$f(\mathcal{T})$ gravity theory [779]	Decaying Dark Matter [438, 441]	Galileon gravity [836,840]
$BD-\Lambda CDM$ [817]	DM - Photon Coupling [653]	Nonlocal gravity [842]
Über-Gravity [58]	Self-interacting sterile neutrinos [678]	Modified recombination [942]
Galileon Gravity [834]	$f(\mathcal{T})$ gravity theory [784]	Effective Electron Rest Mass [945]
Unimodular Gravity [846]	Über-Gravity [833]	Super ΛCDM [959]
Time Varying Electron Mass [946]	VCDM [849]	Axi-Higgs [947]
MCDM [951]	Primordial magnetic fields [948]	Self-Interacting Dark Matter [446]
Ginzburg-Landau theory [952]	Early modified gravity [825]	Primordial Black Holes [512]
Lorentzian Quintessential Inflation [935]		
Holographic Dark Energy [318]		

Combination of datasets **Table B2.** Models solving the H_0 tension with R20 within 1σ , 2σ and *Planck* in combination with additional cosmological probes datasets are discussed in the main text.

Di Valentino et al., arXiv:2103.01183 [astro-ph.CO]

Density of the proposed cosmological models:

Di Valentino et al., arXiv:2103.01183 [astro-ph.CO]

At the moment no specific proposal makes a strong case for being highly likely or far better than all others.

In the standard cosmological framework, the dark matter is assumed to be collisionless. In practice this means that one arbitrarily sets the dark matter interactions to zero when predicting the angular power spectrum of the CMB.

In particular, dark matter and dark energy are described as separate fluids not sharing interactions beyond gravitational ones. However, from a microphysical perspective it is hard to imagine how non-gravitational DM-DE interactions can be avoided, unless forbidden by a fundamental symmetry. This has motivated a large number of studies based on models where DM and DE share interactions other than gravitational.

At the background level, the conservation equations for the pressureless DM and DE components can be decoupled into two separate equations with an inclusion of an arbitrary function, Q, known as the coupling or interacting function:

$$\dot{\rho}_c + 3\mathcal{H}\rho_c = Q,$$

$$\dot{\rho}_x + 3\mathcal{H}(1+w)\rho_x = -Q,$$

and we assume the phenomenological form for the interaction rate:

$$Q = \xi \mathcal{H} \rho_x$$

proportional to the dark energy density ρ_x and the conformal Hubble rate \mathcal{H} , via a negative dimensionless parameter ξ quantifying the strength of the coupling, to avoid early-time instabilities.

In this scenario of IDE the tension on H0 between the Planck satellite and R19 is completely solved. The coupling could affect the value of the present matter energy density $\Omega_{\rm m}$. Therefore, if within an interacting model Ω_m is smaller (because for negative ξ the dark matter density will decay into the dark energy one), a larger value of H0 would be required in order to satisfy the peaks structure of CMB observations, which accurately determine the value of $\Omega_m h^2$.

Parameter		Planck	Planck+R19	
	$\Omega_{ m b}h^2$	0.02239 ± 0.00015	0.02239 ± 0.00015	
	$\Omega_{ m c} h^2$	< 0.105	< 0.0615	
	n_s	0.9655 ± 0.0043	0.9656 ± 0.0044	
	$100\theta_{s}$	$1.0458\substack{+0.0033\\-0.0021}$	1.0470 ± 0.0015	
	au	0.0541 ± 0.0076	0.0534 ± 0.0080	
	ξ	$-0.54^{+0.12}_{-0.28}$	$-0.66\substack{+0.09\\-0.13}$	
H_0	$[{\rm kms^{-1}Mpc^{-1}}]$	$72.8^{+3.0}_{-1.5}$	$74.0^{+1.2}_{-1.0}$	

TABLE I. Mean values with their 68% C.L. errors on selected cosmological parameters within the $\xi\Lambda$ CDM model, considering either the *Planck* 2018 legacy dataset alone, or the same dataset in combination with the *R19* Gaussian prior on H_0 based on the latest local distance measurement from *HST*. The quantity quoted in the case of $\Omega_c h^2$ is the 95% C.L. upper limit.

Di Valentino et al., Phys.Dark Univ. 30 (2020) 100666

IDE is in agreement with the near universe

Within interacting cosmologies the growth of dark matter perturbations will be larger than in uncoupled models.

This feature will be general for models with negative coupling and in which the energy exchange among the dark sectors is proportional to ρ_X , due to a suppression of the friction term and an enhancement of the source term in the differential growth equation.

FIG. 2: Linear growth function $D_+ = \delta_c/\delta_{c0}$, normalized to today's value, relative to its value in a pure-matter model $(D_+ = a)$. The interacting models (dashed-dotted lines), with $\Gamma_c = \pm 0.3H_0$, are shown in comparison to non-interacting models (solid lines).

Therefore we can safely combine the two datasets together, and we obtain a nonzero dark matter-dark energy coupling ξ at more than FIVE standard deviations.

Di Valentino et al., Phys.Dark Univ. 30 (2020) 100666

Bayes factor

Anyway it is clearly interesting to quantify the better accordance of a model with the data respect to another by using the marginal likelihood also known as the Bayesian evidence.

Given a vector of parameters θ of a model M and a set of data x, the parameters posterior distribution is given by

 $p(\boldsymbol{\theta}|\boldsymbol{x}, M) = \frac{p(\boldsymbol{x}|\boldsymbol{\theta}, M) \pi(\boldsymbol{\theta}|M)}{p(\boldsymbol{x}|M)}$

The marginal likelihood (or evidence) given by

Likelihood

Prior

Ie

Given two competing models
$$M_0$$
 and M_1 it is useful to consider the ratio of the kelihood probability (the Bayes factor):

 $E \equiv p(\boldsymbol{x}|M) = \int d\boldsymbol{\theta} \, p(\boldsymbol{x}|\boldsymbol{\theta}, M) \, \pi(\boldsymbol{\theta}|M)$

$$ln\mathcal{B} = p(\boldsymbol{x}|M_0)/p(\boldsymbol{x}|M_1)$$

According to the revised Jeffrey's scale by Kass and Raftery 1995, the evidence for M_0 (against M_1) is considered as "positive" if | InB | > 1.0, "strong" if | InB | > 3.0, and "very strong" if | InB | > 5.0.

Computing the Bayes factor for the IDE model with respect to LCDM for the Planck dataset we find InB = 1.2, i.e. a positive evidence for the IDE model. If we consider Planck + R19 we find the extremely high value InB=10.0, indicating a very strong evidence for the IDE model.

Parameter	Planck	Planck+R19
$\Omega_{ m b}h^2$	0.02239 ± 0.00015	0.02239 ± 0.00015
$\Omega_{ m c}h^2$	< 0.105	< 0.0615
n_s	0.9655 ± 0.0043	0.9656 ± 0.0044
$100\theta_{s}$	$1.0458\substack{+0.0033\\-0.0021}$	1.0470 ± 0.0015
au	0.0541 ± 0.0076	0.0534 ± 0.0080
ξ	$-0.54^{+0.12}_{-0.28}$	$-0.66^{+0.09}_{-0.13}$
$H_0[{\rm kms^{-1}Mpc^{-1}}]$	$72.8^{+3.0}_{-1.5}$	$74.0^{+1.2}_{-1.0}$

TABLE I. Mean values with their 68% C.L. errors on selected cosmological parameters within the $\xi \Lambda \text{CDM}$ model, considering either the *Planck* 2018 legacy dataset alone, or the same dataset in combination with the *R19* Gaussian prior on H_0 based on the latest local distance measurement from *HST*. The quantity quoted in the case of $\Omega_c h^2$ is the 95% C.L. upper limit.

fake IDE detection

ParametersFiducial modelPlanckPlanck+BAOPICO	PRISM
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} 0000029 & 0.022361 \pm 0.000019 \\ 0.103 \substack{+0.016\\-0.007} \\ 0005 & 1.04191 \substack{+0.00042\\-0.0094} \\ 0016 & 0.0542 \substack{+0.0017\\-0.0019} \\ 0014 & 0.9657 \pm 0.0012 \\ 0030 & 3.0435 \pm 0.0032 \\ 0 & > -0.195 \end{array}$

Di Valentino & Mena, Mon.Not.Roy.Astron.Soc. 500 (2020) 1, L22-L26, arXiv:2009.12620

For a simulated Planck-like experiment, due to the strong correlation present between the standard and the exotic physics parameters, there is a dangerous detection at more than 3σ for a coupling between dark matter and dark energy different from zero, even if the fiducial model has $\xi = 0$:

 $-0.85 < \xi < -0.02$ at 99% CL

simulated experiments

fake IDE detection

Parameters	Fiducial model	Planck	Planck+BAO	PICO	PRISM
$\Omega_b h^2$ $\Omega_b h^2$	0.02236	0.02238 ± 0.00015 $0.056^{+0.025}$	0.02230 ± 0.00014 0.101 ^{+0.019}	0.022364 ± 0.000029 0.100 ^{+0.019}	0.022361 ± 0.000019 0.103 ^{+0.016}
$100 \theta_{MC}$	1.04090	$1.0451^{+0.0021}_{-0.0032}$	$1.0419\substack{+0.0005\\-0.0011}$	$1.04206^{+0.0005}_{-0.0011}$	$1.04191^{+0.00042}_{-0.00094}$
au n_s	0.0544 0.9649	$0.0528^{+0.010}_{-0.009}$ 0.9652 ± 0.0041	$\begin{array}{c} 0.0517 \pm 0.0098 \\ 0.9624 \pm 0.0036 \end{array}$	$\begin{array}{r} 0.0543\substack{+0.0016\\-0.0019}\\ 0.9571 \pm 0.0014\end{array}$	$\begin{array}{c} 0.0542\substack{+0.0017\\-0.0019}\\ 0.9657 \pm 0.0012\end{array}$
$\ln(10^{10}A_s)$	3.045	$3.041^{+0.020}_{-0.018}$	3.042 ± 0.019	$3.0436^{+0.0030}_{-0.0034}$	3.0435 ± 0.0032
ξ	0	$-0.43^{+0.10}_{-0.30}$	> -0.223	> -0.220	> -0.195

Di Valentino & Mena, Mon.Not.Roy.Astron.Soc. 500 (2020) 1, L22-L26, arXiv:2009.12620

The inclusion of simulated BAO data, a mock dataset built using the same fiducial cosmological model than that of the CMB, helps in breaking the degeneracy, providing a lower limit for the coupling ξ in perfect agreement with zero.

simulated experiments

Constraints at 68% cl DE can solve the H0 tension

Parameters	Planck	Planck	Planck	Planck	Planck
		+R19	+lensing	+BAO	+ Pantheon
$\Omega_b h^2$	0.02239 ± 0.00015	0.02239 ± 0.00015	0.02241 ± 0.00014	0.02236 ± 0.00014	0.02235 ± 0.00015
$\Omega_c h^2$	< 0.0634	$0.031\substack{+0.013\\-0.023}$	< 0.0675	$0.095\substack{+0.022\\-0.008}$	$0.103\substack{+0.013 \\ -0.007}$
$100 heta_{ m MC}$	$1.0458\substack{+0.0033\\-0.0021}$	1.0470 ± 0.0015	$1.0456\substack{+0.0031\\-0.0024}$	$1.0424^{+0.0006}_{-0.0013}$	$1.04185\substack{+0.00049\\-0.00078}$
au	0.0541 ± 0.0076	0.0534 ± 0.0080	0.0526 ± 0.0074	0.0540 ± 0.0076	0.0540 ± 0.0076
n_s	0.9655 ± 0.0043	0.9656 ± 0.0044	0.9663 ± 0.0040	0.9647 ± 0.0040	0.9643 ± 0.0042
$ln(10^{10}A_s)$	3.044 ± 0.016	3.042 ± 0.017	$3.039\substack{+0.013\\-0.015}$	3.044 ± 0.016	3.044 ± 0.016
ξ	$-0.54^{+0.12}_{-0.28}$	$-0.66\substack{+0.09\\-0.13}$	$-0.51^{+0.12}_{-0.29}$	$-0.22^{+0.21}_{-0.05}$	$-0.15\substack{+0.12\\-0.06}$
$H_0[{ m km/s/Mpc}]$	$72.8^{+3.0}_{+1.5}$	$74.0^{+1.2}_{-1.0}$	$72.8^{+3.0}_{+1.6}$	$69.4^{+0.9}_{-1.5}$	$68.6^{+0.8}_{-1.0}$
σ_8	$2.3^{+0.4}_{-1.4}$	$2.71_{-1.3}^{+0.05}$	$2.2^{+0.4}_{-1.4}$	$1.05\substack{+0.03\\-0.24}$	$0.95\substack{+0.04 \\ -0.12}$
S_8	$1.30\substack{+0.17\\-0.44}$	$1.44_{-0.34}^{+0.17}$	$1.30_{-0.42}^{+0.15}$	$0.93\substack{+0.03 \\ -0.10}$	$0.892\substack{+0.028\\-0.054}$

The addition of low-redshift measurements, as BAO data, still hints to the presence of a coupling, albeit at a lower statistical significance. Also for this data sets the Hubble constant values is larger than that obtained in the case of a pure LCDM scenario, enough to bring the H0 tension at 2.4σ.

Di Valentino et al., *Phys.Rev.D* 101 (2020) 6, 063502

Baryon Acoustic Oscillations

BAO is formed in the early universe, when baryons are strongly coupled to photons, and the gravitational collapse due to the CDM is counterbalanced by the radiation pressure. Sound waves that propagate in the early universe imprint a characteristic scale on the CMB. Since the scale of these oscillations can be measured at recombination, BAO is considered a "standard ruler". These fluctuations have evolved and we can observe BAO at low redshifts in the distribution of galaxies. Since the data reduction process leading to these measurements requires assumptions about the fiducial cosmology, BAO is model dependent.

In other words, the tension between Planck+BAO and R19 could be due to a statistical fluctuation in this case.

Moreover, BAO data is extracted under the assumption of LCDM, and the modified scenario of interacting dark energy could affect the result. In fact, the full procedure which leads to the BAO constraints carried out by the different collaborations might be not necessarily valid in extended DE models.

For instance, the BOSS collaboration advises caution when using their BAO measurements (both the pre- and post- reconstruction measurements) in more exotic dark energy cosmologies.

BAO constraints themselves might need to be revised in a non-trivial manner when applied to constrain extended dark energy cosmologies.

IDE+w

We can allow for more freedom in the DE sector, varying at the same time the coupling ξ and the DE equation of state w.

Model DE EoS		DM-DE coupling	Energy flow
$\xi \Lambda \text{CDM}$	w = -0.999	$\xi < 0$	DM→DE
$\xi p \text{CDM}$	w < -1	$\xi > 0 , \xi < -3w$	DE→DM
$\xi q \text{CDM}$	w > -1	$\xi < 0$	DM→DE

These are the values allowed for the DE EoS w and the DM-DE coupling ξ ensuring that gravitational instabilities, early-time instabilities, and unphysical values for the DM energy density are avoided. The last column is the direction of energy flow.

Quintessence

Parameters	Planck	Planck	Planck	Planck	Planck
		+R19	+lensing	+BAO	+ Pantheon
$\Omega_b h^2$	0.02237 ± 0.00015	0.02241 ± 0.00015	0.02239 ± 0.00014	0.02239 ± 0.00014	0.02236 ± 0.00015
$\Omega_c h^2$	< 0.0433	< 0.0230	< 0.0483	< 0.0543	< 0.0574
$100\theta_{\rm MC}$	$1.0468\substack{+0.0031\\-0.0013}$	$1.0482\substack{+0.0017\\-0.0008}$	$1.0466\substack{+0.0031\\-0.0016}$	$1.0463\substack{+0.0033\\-0.0018}$	$1.0461\substack{+0.0032\\-0.0019}$
au	0.0537 ± 0.0077	0.0540 ± 0.0080	0.0530 ± 0.0075	0.0545 ± 0.0078	0.0537 ± 0.0078
n_s	0.9650 ± 0.0042	0.9660 ± 0.0043	0.9658 ± 0.0042	0.9659 ± 0.0041	0.9648 ± 0.0043
$ln(10^{10}A_s)$	3.043 ± 0.016	3.043 ± 0.016	3.040 ± 0.015	3.044 ± 0.016	3.044 ± 0.016
Ę	$-0.63\substack{+0.06\\-0.22}$	$-0.73\substack{+0.05\\-0.10}$	$-0.61\substack{+0.08\\-0.22}$	$-0.59\substack{+0.09\-0.25}$	$-0.58\substack{+0.10\\-0.26}$
w	< -0.839	$-0.949^{+0.013}_{-0.049}$	< -0.839	$-0.842^{+0.086}_{-0.072}$	$-0.842\substack{+0.090\\-0.054}$
$H_0[{\rm km/s/Mpc}]$	$69.8^{+4.0}_{+2.5}$	$73.3^{+1.2}_{-1.0}$	$69.9^{+3.7}_{-2.5}$	68.6 ± 1.4	68.3 ± 1.0
σ_8	$2.6^{+0.7}_{-1.7}$	$3.4^{+0.9}_{-1.3}$	$2.5^{+0.6}_{-1.6}$	$2.3^{+0.6}_{-1.4}$	$2.2^{+0.5}_{-1.3}$
S_8	$1.43\substack{+0.29\\-0.46}$	$1.63^{+0.31}_{-0.26}$	$1.39\substack{+0.23\\-0.44}$	$1.35\substack{+0.24 \\ -0.45}$	$1.33\substack{+0.20\\-0.44}$

These are the constraints on the quintessence coupled model (w>-1), where the energy flows from the DM to the DE sector. The amount of the DM mass-energy density today is considerably reduced as the values of the coupling are increased. This explains why we have a non-zero value of the coupling at a rather high significance level (up to 5 standard deviations). Moreover, w>-1 up to more than 3σ.

Di Valentino et al. Phys. Rev. D 101, 063502

Constraints at 68% cl.

Quintessence

Parameters	Planck	Planck	Planck	Planck	Planck
		+ R19	+lensing	+BAO	+ Pantheon
$\Omega_b h^2$	0.02237 ± 0.00015	0.02241 ± 0.00015	0.02239 ± 0.00014	0.02239 ± 0.00014	0.02236 ± 0.00015
$\Omega_c h^2$	< 0.0433	< 0.0230	< 0.0483	< 0.0543	< 0.0574
$100 \theta_{ m MC}$	$1.0468\substack{+0.0031\\-0.0013}$	$1.0482\substack{+0.0017\\-0.0008}$	$1.0466\substack{+0.0031\\-0.0016}$	$1.0463\substack{+0.0033\\-0.0018}$	$1.0461\substack{+0.0032\\-0.0019}$
au	0.0537 ± 0.0077	0.0540 ± 0.0080	0.0530 ± 0.0075	0.0545 ± 0.0078	0.0537 ± 0.0078
n_s	0.9650 ± 0.0042	0.9660 ± 0.0043	0.9658 ± 0.0042	0.9659 ± 0.0041	0.9648 ± 0.0043
$ln(10^{10}A_s)$	3.043 ± 0.016	3.043 ± 0.016	3.040 ± 0.015	3.044 ± 0.016	3.044 ± 0.016
ξ	$-0.63\substack{+0.06\\-0.22}$	$-0.73\substack{+0.05 \\ -0.10}$	$-0.61\substack{+0.08\\-0.22}$	$-0.59\substack{+0.09\\-0.25}$	$-0.58\substack{+0.10\\-0.26}$
w	< -0.839	$-0.949^{+0.013}_{-0.049}$	< -0.839	$-0.842^{+0.086}_{-0.072}$	$-0.842^{+0.090}_{-0.054}$
$H_0[{ m km/s/Mpc}]$	$69.8^{+4.0}_{+2.5}$	$73.3^{+1.2}_{-1.0}$	$69.9^{+3.7}_{-2.5}$	68.6 ± 1.4	68.3 ± 1.0
σ_8	$2.6^{+0.7}_{-1.7}$	$3.4^{+0.9}_{-1.3}$	$2.5^{+0.6}_{-1.6}$	$2.3^{+0.6}_{-1.4}$	$2.2^{+0.5}_{-1.3}$
S_8	$1.43\substack{+0.29\\-0.46}$	$1.63\substack{+0.31 \\ -0.26}$	$1.39\substack{+0.23\\-0.44}$	$1.35\substack{+0.24 \\ -0.45}$	$1.33\substack{+0.20\\-0.44}$

H0 shifts towards lower values for the strong anti correlation present with w, that is dominating the impact of ξ , which would instead push H0 to even larger values as before.

However, in the case of interacting dark energy, quintessence models agree with observations and also reduce the significance of the Hubble tension.

Di Valentino et al. Phys. Rev. D 101, 063502

Phantom

Parameters	Planck	Planck	Planck	Planck	Planck
		+R19	+lensing	+BAO	+ Pantheon
$\Omega_b h^2$	0.02239 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00015	0.02238 ± 0.00014	0.02235 ± 0.00015
$\Omega_c h^2$	$0.132\substack{+0.005\\-0.012}$	$0.133\substack{+0.006\\-0.012}$	$0.133\substack{+0.006\\-0.012}$	$0.134\substack{+0.007\\-0.012}$	$0.134\substack{+0.006\\-0.012}$
$100 heta_{ m MC}$	$1.04027\substack{+0.00064\\-0.00048}$	$1.04024\substack{+0.00063\\-0.00048}$	$1.04029\substack{+0.00062\\-0.00051}$	$1.04019\substack{+0.00060\\-0.00051}$	$1.04017\substack{+0.00060\\-0.00051}$
au	0.0537 ± 0.0080	0.0542 ± 0.0078	0.0524 ± 0.0072	0.0545 ± 0.0080	0.0542 ± 0.0081
n_s	0.9655 ± 0.0043	0.9650 ± 0.0042	0.9663 ± 0.0041	0.9654 ± 0.0040	0.9643 ± 0.0044
$ln(10^{10}A_s)$	3.042 ± 0.016	3.044 ± 0.017	3.039 ± 0.014	3.045 ± 0.016	3.045 ± 0.016
ξ	< 0.130	< 0.157	< 0.140	< 0.187	< 0.178
w	$-1.59\substack{+0.18 \\ -0.33}$	-1.264 ± 0.057	$-1.57\substack{+0.19 \\ -0.32}$	$-1.095\substack{+0.072\\-0.040}$	$-1.084\substack{+0.051\\-0.038}$
$H_0[{\rm km/s/Mpc}]$	> 81.3	74.1 ± 1.4	85^{+10}_{-5}	$68.8^{+1.1}_{-1.5}$	68.33 ± 0.99
σ_8	0.883 ± 0.082	$0.802\substack{+0.059\\-0.043}$	0.871 ± 0.083	0.753 ± 0.046	$0.755\substack{+0.051 \\ -0.042}$
S_8	0.742 ± 0.040	$0.778\substack{+0.032\\-0.026}$	0.735 ± 0.038	0.790 ± 0.026	0.797 ± 0.027

These are the constraints on the phantom model (w<-1), where the energy flows from the DE to the DM sector. Here we have that the value of the matter density is larger than the Λ CDM model. Therefore, we obtain an upper bound on ξ rather than a preferred region, as the presence of a non-zero coupling increases the value of the matter density.

Di Valentino et al. Phys. Rev. D 101, 063502

Phantom

Parameters	Planck	Planck	Planck	Planck	Planck
		+R19	+lensing	+BAO	+ Pantheon
$\Omega_b h^2$	0.02239 ± 0.00015	0.02237 ± 0.00015	0.02242 ± 0.00015	0.02238 ± 0.00014	0.02235 ± 0.00015
$\Omega_c h^2$	$0.132\substack{+0.005\\-0.012}$	$0.133\substack{+0.006\\-0.012}$	$0.133\substack{+0.006\\-0.012}$	$0.134\substack{+0.007\\-0.012}$	$0.134\substack{+0.006\\-0.012}$
$100 heta_{ m MC}$	$1.04027\substack{+0.00064\\-0.00048}$	$1.04024\substack{+0.00063\\-0.00048}$	$1.04029\substack{+0.00062\\-0.00051}$	$1.04019\substack{+0.00060\\-0.00051}$	$1.04017\substack{+0.00060\\-0.00051}$
au	0.0537 ± 0.0080	0.0542 ± 0.0078	0.0524 ± 0.0072	0.0545 ± 0.0080	0.0542 ± 0.0081
n_s	0.9655 ± 0.0043	0.9650 ± 0.0042	0.9663 ± 0.0041	0.9654 ± 0.0040	0.9643 ± 0.0044
$ln(10^{10}A_s)$	3.042 ± 0.016	3.044 ± 0.017	3.039 ± 0.014	3.045 ± 0.016	3.045 ± 0.016
ξ	< 0.130	< 0.157	< 0.140	< 0.187	< 0.178
w	$-1.59\substack{+0.18 \\ -0.33}$	-1.264 ± 0.057	$-1.57\substack{+0.19 \\ -0.32}$	$-1.095\substack{+0.072\\-0.040}$	$-1.084\substack{+0.051\\-0.038}$
$H_0[{ m km/s/Mpc}]$	> 81.3	74.1 ± 1.4	85^{+10}_{-5}	$68.8^{+1.1}_{-1.5}$	68.33 ± 0.99
σ_8	0.883 ± 0.082	$0.802\substack{+0.059\\-0.043}$	0.871 ± 0.083	0.753 ± 0.046	$0.755\substack{+0.051 \\ -0.042}$
S_8	0.742 ± 0.040	$0.778\substack{+0.032\\-0.026}$	0.735 ± 0.038	0.790 ± 0.026	0.797 ± 0.027

The value of the Hubble constant is also always much larger than in the canonical ACDM, because when w is allowed to vary in the phantom region, the parameter H0 must be increased to not to affect the location of the CMB acoustic peaks. Therefore, the resolution of the H0 tension is coming from the phantom character of the DE component, rather than from the dark sector interaction itself. Di Valentino et al. Phys. Rev. D 101, 063502 The most statistically significant and persisting anomalies and tensions of the CMB are:

- H0 with local measurements
- A_L internal anomaly
- S8 with cosmic shear data
- Ωκ different from zero

See Di Valentino et al. arXiv:2008.11283 [astro-ph.CO], arXiv:2008.11284 [astro-ph.CO], arXiv:2008.11285 [astro-ph.CO], arXiv:2008.11286 [astro-ph.CO] for an overview.

A_L internal anomaly

CMB photons emitted at recombination are deflected by the gravitational lensing effect of massive cosmic structures. The lensing amplitude AL parameterizes the rescaling of the lensing potential $\phi(n)$, then the power spectrum of the lensing field:

 $C_{\ell}^{\phi\phi} \to A_{\rm L} C_{\ell}^{\phi\phi}$

The gravitational lensing deflects the photon path by a quantity defined by the gradient of the lensing potential $\phi(n)$, integrated along the line of sight *n*, remapping the temperature field.

The CMB lensing

A simulated patch of CMB sky – before dark matter lensing

The CMB lensing

A simulated patch of CMB sky – after dark matter lensing

A_L internal anomaly

Its effect on the power spectrum is the smoothing of the acoustic peaks, increasing AL.

Interesting consistency checks is if the amplitude of the smoothing effect in the CMB power spectra matches the theoretical expectation AL = 1 and whether the amplitude of the smoothing is consistent with that measured by the lensing reconstruction.

If AL =1 then the theory is correct, otherwise we have a new physics or systematics.

Calabrese et al., Phys. Rev. D, 77, 123531

A_L : a failed consistency check

The Planck lensing-reconstruction power spectrum is consistent with the amplitude expected for LCDM models that fit the CMB spectra, so the Planck lensing measurement is compatible with AL = 1.

However, the distributions of AL inferred from the CMB power spectra alone indicate a preference for AL > 1.

The joint combined likelihood shifts the value preferred by the TT data downwards towards AL = 1, but the error also shrinks, increasing the significance of AL > 1 to 2.8σ .

The preference for high AL is not just a volume effect in the full parameter space, with the best fit improved by $\Delta\chi^2 \sim 9$ when adding AL for TT+lowE and 10 for TTTEEE+lowE.

 $A_{\rm L} = 1.243 \pm 0.096$ (68 %, *Planck* TT+lowE), $A_{\rm L} = 1.180 \pm 0.065$ (68 %, *Planck* TT,TE,EE+lowE),

A_L can explain internal tension

A_L can explain internal tension

Marginalized 68.3% confidence Λ CDM parameter constraints from fits to the I < 1000 and I ≥ 1000 Planck TT 2015 spectra. Tension at more than 2 σ level appears in Ω_c h² and derived parameters, including H0, Ω m, and σ 8.

Addison et al., Astrophys.J. 818 (2016) no.2, 132

A_L can explain internal tension

Marginalized 68.3% confidence Λ CDM parameter constraints from fits to the I < 1000 and I ≥ 1000 Planck TT 2015 spectra. Tension at more than 2 σ level appears in $\Omega_c h^2$ and derived parameters, including H0, Ω m, and σ 8.

Addison et al., Astrophys.J. 818 (2016) no.2, 132

Increasing AL smooths out the high order acoustic peaks, improving the agreement between the two multipole ranges.

Addison et al., Astrophys.J. 818 (2016) no.2, 132

Increasing AL smooths out the high order acoustic peaks, improving the agreement between the two multipole ranges.

Addison et al., Astrophys.J. 818 (2016) no.2, 132

Increasing AL smooths out the high order acoustic peaks, improving the agreement between the two multipole ranges.

Addison et al., Astrophys.J. 818 (2016) no.2, 132

Planck 2018, Aghanim et al., arXiv:1807.06209 [astro-ph.CO]

LCDM 68% marginalized parameter constraints for I=[2-801] (points marked with a cross), I>802 (points marked with a circle), and I>802 + lensing (points marked with a star). Correcting for the lensing, all the results from high multipoles are in better consistency with the results from lower multipoles.

Dotted error bars are the results from I=[30-801], without the large-scaleTT likelihood, showing that I< 30 pulls the low-multipole parameters further from the joint result.

The most statistically significant and persisting anomalies and tensions of the CMB are:

- H0 with local measurements
- A_L internal anomaly
- S8 with cosmic shear data
- Ωκ different from zero

See Di Valentino et al. arXiv:2008.11283 [astro-ph.CO], arXiv:2008.11284 [astro-ph.CO], arXiv:2008.11285 [astro-ph.CO], arXiv:2008.11286 [astro-ph.CO] for an overview.

$$S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3}$$

A tension on S8 is present between the Planck data in the ΛCDM scenario and the cosmic shear data.

Joudaki et al, arXiv:1601.05786

KiDS-450, Hildebrandt et al., arXiv:1606.05338.

The S8 tension is at about 2.6σ level between Planck assuming ΛCDM and CFHTLenS survey and KiDS-450. $S_8 = 0.834 \pm 0.016$ Planck 2018, Aghanim et al., arXiv:1807.06209 [astro-ph.CO]

 $S_8 = 0.745 \pm 0.035$ KiDS-450, Hildebrandt et al., arXiv:1606.05338 [astro-ph.CO]

Palanque-Delabrouille et al., arXiv:1911.09073 [astro-ph.CO]

A tension on S8 at more than 2.5σ is present between Planck assuming ACDM and DES-Y1 results including galaxy clustering, and Planck and Ly- α (sharing a similar range of scales).

Asgari et al., arXiv:1910.05336 [astro-ph.CO]

A tension on S8 at 3.2σ is present between Planck assuming ΛCDM and KiDS+VIKING-450 and DES-Y1 combined together.

KiDS-1000, Heymans et al., arXiv:2007.15632 [astro-ph.CO]

The S8 tension is present at 3.4σ between Planck assuming ΛCDM and KiDS+VIKING-450 and BOSS combined together, or 3.1σ with KiDS-1000.

 $S_8 = 0.834 \pm 0.016$ Planck 2018, Aghanim et al., arXiv:1807.06209 [astro-ph.CO]

> $S_8 = 0.728 \pm 0.045$ Troster et al., arXiv:1909.11006 [astro-ph.CO]

> > $S_8 = 0.766^{+0.020}_{-0.014}$

KiDS-1000, Heymans et al., arXiv:2007.15632 [astro-ph.CO]

KiDS-1000, Heymans et al., arXiv:2007.15632 [astro-ph.CO]

Proposals for solving the S8 tension are:

- Axion monodromy inflation (Meerburg arXiv:1406.3243, etc...)
- Extended parameter spaces involving Alens>1 (Di Valentino et al. arXiv:1507.06646, Di Valentino et al. arXiv:1606.00634, Di Valentino et al. arXiv:1704.00762, Di Valentino et al. arXiv:1908.01391, etc...)
- Active and Sterile Neutrinos (Battye & Moss arXiv:1308.5870, Bohringer & Chon arXiv:1610.02855, etc...)
- Interacting Dark Energy models (Di Valentino et al. arXiv:1908.04281, Di Valentino et al. arXiv: 1910.09853, etc.)
- Decaying dark matter (Chudaykin et al. arXiv:1711.06738, Abellan et al. arXiv:2008.09615, Berezhiani et al. arXiv:1505.03644, Anchordoqui et al. arXiv:1506.08788, Abellan et al. arXiv:2102.12498 [astro-ph.CO], etc..)
- Cannibal dark matter (Heimersheim et al. arXiv:2008.08486, etc...)
- Minimally and non-minimally coupled scalar field models (Davari et al. arXiv:1911.00209, etc...)
- Modified Gravity models (Di Valentino et al. arXiv:1509.07501, Sola Peracaula et al. arXiv:1909.02554, Sola et al. arXiv: 2006.04273, etc...)
- Running Vacuum models (Gomez-Valent & Sola arXiv:1711.00692, Lambiase et al. arXiv:1804.07154, Sola et al. arXiv:1506.05793, Sola et al. arXiv:1709.07451, Sola et al. arXiv:1602.02103, etc...)
- Quartessence (Camera et al. arXiv:1704.06277, etc...)

See Di Valentino et al. arXiv:2008.11285 [astro-ph.CO] for a summary of other possible candidates.

If we include the additional scaling parameter on the CMB lensing amplitude A_L, we find that this can put in agreement Planck 2015 with the cosmic shear data.

Di Valentino and Bridle, Symmetry 10 (2018) no.11, 585

If we include the additional scaling parameter on the CMB lensing amplitude A_L, we find that this can put in agreement Planck 2015 with the cosmic shear data.

Di Valentino and Bridle, Symmetry 10 (2018) no.11, 585

Di Valentino and Bridle, Symmetry 10 (2018) no.11, 585

If we include the additional scaling parameter on the CMB lensing amplitude A_L, we find that this can put in agreement Planck 2015 with the cosmic shear data.

parameter on the CMB lensing amplitude A_L, we find that this can put in agreement Planck 2015 with the cosmic shear data.

If we include the additional scaling

Di Valentino and Bridle, Symmetry 10 (2018) no.11, 585

What happens if we vary all the parameters together?

In practice we do not try to solve any single tension with a specific theoretical mechanism, but we allow for a significant number of motivated extensions of ACDM, looking for a possible combination of parameters that could solve or at least ameliorate, the current discordances.

While this "minimal" 6 parameter approach is justified by the good fit to the data, some of the assumptions or simplifications made are indeed not anymore fully justified and risk an oversimplification of the physics that drives the evolution of the Universe.

- The total neutrino mass is fixed arbitrary to 0.06eV. However, we know that neutrinos are massive and that current cosmological datasets are sensitive to variations in the absolute neutrino mass scale of order ~ 100 meV.
- The cosmological constant offers difficulties in any theoretical interpretation: fixing the dark energy equation of state to -1 is not favoured by any theoretical argument. Moreover, while both matter and radiation evolve rapidly, Λ is assumed not to change with time, so its recent appearance in the standard cosmological model implies an extreme fine-tuning of initial conditions. This fine-tuning is known as the coincidence problem. Therefore it seems reasonable to incorporate in the analysis a possible dynamical dark energy component, constant with redshift w, or redshift dependent w(z)=w0+(1-a)wa (CPL).
- Any inflationary model, because it is a dynamical process, predicts a running of the scalar spectral index, expected for slow rolling inflation at the level of (1-ns)²~10⁻³.
- The effective number of relativistic degrees of freedom Neff could be easily different from the standard expected value of 3.046, for example for the presence of sterile neutrinos or thermal axions.
- We need to take into account the anomalous value for the lensing amplitude AL. While this parameter is purely phenomenological, one should clearly consider it and check if the cosmology obtained is consistent with other datasets.

Cosmological constraints are usually derived under the assumption of a 6 parameters ACDM theoretical framework or simple one-parameter extensions.

In Di Valentino, Melchiorri and Silk, JCAP 2001 (2020) no.01, 013 We show, using Planck 2018, the cosmological constraints in a significantly extended scenario, varying 11 cosmological parameters simultaneously, updating the results reported in

Di Valentino, Melchiorri and Silk, Phys.Rev. D92 (2015) no.12, 121302 for the first time:

- the sum of neutrino masses,
- the dark energy equation of state w,
- the running of the spectral index of primordial perturbations,
- the neutrino effective number,
- the angular power spectrum lensing amplitude, Alens.

Parameters	Planck	Planck	Planck	Planck	Planck
		+R19	+lensing	+BAO	+ Pantheon
$\Omega_b h^2$	0.02246 ± 0.00028	$0.02248^{+0.00028}_{-0.00032}$	0.02228 ± 0.00026	0.02264 ± 0.00026	0.02250 ± 0.00028
$\Omega_c h^2$	0.1172 ± 0.0033	0.1174 ± 0.0035	0.1164 ± 0.0033	0.1175 ± 0.0033	$0.1174^{+0.0031}_{-0.0035}$
$100 heta_{ m MC}$	1.04112 ± 0.00051	1.04111 ± 0.00052	1.04119 ± 0.00050	1.04120 ± 0.00049	1.04111 ± 0.00050
au	0.0496 ± 0.0086	0.0508 ± 0.0091	$0.0494\substack{+0.0086\\-0.0076}$	0.0502 ± 0.0087	$0.0499\substack{+0.0086\\-0.0078}$
$\Sigma m_{\nu} [\mathrm{eV}]$	< 0.863	< 0.821	< 0.714	< 0.352	< 0.822
w	-1.27 ± 0.53	$-1.33^{+0.17}_{-0.11}$	-1.33 ± 0.52	$-1.009\substack{+0.092\\-0.070}$	$-1.071\substack{+0.073\\-0.050}$
$N_{ m eff}$	2.95 ± 0.24	2.97 ± 0.26	2.85 ± 0.23	3.04 ± 0.23	$2.98\substack{+0.23 \\ -0.25}$
A_L	$1.25^{+0.09}_{-0.14}$	$1.21\substack{+0.09 \\ -0.10}$	$1.116\substack{+0.061\\-0.096}$	$1.213^{+0.076}_{-0.088}$	1.232 ± 0.090
$\ln(10^{10}A_s)$	3.027 ± 0.020	3.030 ± 0.022	3.024 ± 0.020	3.030 ± 0.020	$3.028\substack{+0.020\\-0.018}$
n_s	0.964 ± 0.012	0.965 ± 0.013	0.958 ± 0.012	0.971 ± 0.012	0.965 ± 0.012
$lpha_S$	-0.0053 ± 0.0085	-0.0047 ± 0.0082	-0.0066 ± 0.0082	-0.0041 ± 0.0081	-0.0049 ± 0.0086
$H_0[{\rm km/s/Mpc}]$	73^{+10}_{-20}	74.0 ± 1.4	74^{+10}_{-20}	67.9 ± 1.7	66.9 ± 2.0
σ_8	$0.79^{+0.15}_{-0.13}$	$0.811\substack{+0.051\\-0.035}$	$0.80\substack{+0.15\\-0.13}$	0.782 ± 0.025	$0.750\substack{+0.055\\-0.034}$
S_8	$0.754_{-0.041}^{+0.053}$	$0.758^{+0.039}_{-0.027}$	$0.757^{+0.047}_{-0.038}$	$0.791\substack{+0.025 \\ -0.019}$	$0.775^{+0.036}_{-0.026}$

In this Table we show the constraints obtained assuming our extended 11 parameters space, assuming a constant dark energy equation of state w.

	Parameters	Planck	Planck	Planck	Planck	Planck
1			+R19	$\pm lensing$	+BAO	+ Pantheon
	$\Omega_b h^2$	0.02246 ± 0.00028	$0.02248^{+0.00028}_{-0.00032}$	0.02228 ± 0.00026	0.02264 ± 0.00026	0.02250 ± 0.00028
	$\Omega_c h^2$	0.1172 ± 0.0033	0.1174 ± 0.0035	0.1164 ± 0.0033	0.1175 ± 0.0033	$0.1174^{+0.0031}_{-0.0035}$
	$100 heta_{ m MC}$	1.04112 ± 0.00051	1.04111 ± 0.00052	1.04119 ± 0.00050	1.04120 ± 0.00049	1.04111 ± 0.00050
	au	0.0496 ± 0.0086	0.0508 ± 0.0091	$0.0494\substack{+0.0086\\-0.0076}$	0.0502 ± 0.0087	$0.0499\substack{+0.0086\\-0.0078}$
	$\Sigma m_{ u}$ [eV]	< 0.863	< 0.821	< 0.714	< 0.352	< 0.822
	w	-1.27 ± 0.53	$-1.33\substack{+0.17\\-0.11}$	-1.33 ± 0.52	$-1.009\substack{+0.092\\-0.070}$	$-1.071\substack{+0.073\\-0.050}$
	$N_{ m eff}$	2.95 ± 0.24	2.97 ± 0.26	2.85 ± 0.23	3.04 ± 0.23	$2.98\substack{+0.23 \\ -0.25}$
	A_L	$1.25^{+0.09}_{-0.14}$	$1.21\substack{+0.09 \\ -0.10}$	$1.116\substack{+0.061\\-0.096}$	$1.213^{+0.076}_{-0.088}$	1.232 ± 0.090
	$\ln(10^{10}A_s)$	3.027 ± 0.020	3.030 ± 0.022	3.024 ± 0.020	3.030 ± 0.020	$3.028^{+0.020}_{-0.018}$
	n_s	0.964 ± 0.012	0.965 ± 0.013	0.958 ± 0.012	0.971 ± 0.012	0.965 ± 0.012
	$lpha_S$	-0.0053 ± 0.0085	-0.0047 ± 0.0082	-0.0066 ± 0.0082	-0.0041 ± 0.0081	-0.0049 ± 0.0086
Η	$I_0[{ m km/s/Mpc}]$	73^{+10}_{-20}	74.0 ± 1.4	74^{+10}_{-20}	67.9 ± 1.7	66.9 ± 2.0
	σ_8	$0.79^{+0.15}_{-0.13}$	$0.811\substack{+0.051\\-0.035}$	$0.80^{+0.15}_{-0.13}$	0.782 ± 0.025	$0.750\substack{+0.055\\-0.034}$
	S_8	$0.754_{-0.041}^{+0.053}$	$0.758^{+0.039}_{-0.027}$	$0.757^{+0.047}_{-0.038}$	$0.791^{+0.025}_{-0.019}$	$0.775^{+0.036}_{-0.026}$

The significant increase in the number of parameters produces, as expected, a relaxation in the constraints on the 6 ACDM parameters. It is impressive that despite the increase in the number of the parameters, some of the constraints on key parameters are relaxed but not significantly altered. The cold dark matter ansatz remains robust and the baryon density is compatible with BBN predictions.

	Parameters	Planck	Planck	Planck	Planck	Planck
			+R19	+lensing	+BAO	+ Pantheon
	$\Omega_b h^2$	0.02246 ± 0.00028	$0.02248^{+0.00028}_{-0.00032}$	0.02228 ± 0.00026	0.02264 ± 0.00026	0.02250 ± 0.00028
	$\Omega_c h^2$	0.1172 ± 0.0033	0.1174 ± 0.0035	0.1164 ± 0.0033	0.1175 ± 0.0033	$0.1174^{+0.0031}_{-0.0035}$
	$100 heta_{ m MC}$	1.04112 ± 0.00051	1.04111 ± 0.00052	1.04119 ± 0.00050	1.04120 ± 0.00049	1.04111 ± 0.00050
	au	0.0496 ± 0.0086	0.0508 ± 0.0091	$0.0494^{+0.0086}_{-0.0076}$	0.0502 ± 0.0087	$0.0499^{+0.0086}_{-0.0078}$
	Σm_{ν} [eV]	< 0.863	< 0.821	< 0.714	< 0.352	< 0.822
	w	-1.27 ± 0.53	$-1.33^{+0.17}_{-0.11}$	-1.33 ± 0.52	$-1.009^{+0.092}_{-0.070}$	$-1.071^{+0.073}_{-0.050}$
	$N_{ m eff}$	2.95 ± 0.24	2.97 ± 0.26	2.85 ± 0.23	3.04 ± 0.23	$2.98^{+0.23}_{-0.25}$
	A_L	$1.25^{+0.09}_{-0.14}$	$1.21^{+0.09}_{-0.10}$	$1.116^{+0.061}_{-0.096}$	$1.213^{+0.076}_{-0.088}$	1.232 ± 0.090
ſ	$\ln(10^{10}A_s)$	3.027 ± 0.020	3.030 ± 0.022	3.024 ± 0.020	3.030 ± 0.020	$3.028^{+0.020}_{-0.018}$
	n_s	0.964 ± 0.012	0.965 ± 0.013	0.958 ± 0.012	0.971 ± 0.012	0.965 ± 0.012
	$lpha_S$	-0.0053 ± 0.0085	-0.0047 ± 0.0082	-0.0066 ± 0.0082	-0.0041 ± 0.0081	-0.0049 ± 0.0086
Ē	$I_0[{ m km/s/Mpc}]$	73^{+10}_{-20}	74.0 ± 1.4	74^{+10}_{-20}	67.9 ± 1.7	66.9 ± 2.0
	σ_8	$0.79\substack{+0.15 \\ -0.13}$	$0.811\substack{+0.051\\-0.035}$	$0.80\substack{+0.15 \\ -0.13}$	0.782 ± 0.025	$0.750\substack{+0.055\\-0.034}$
	S_8	$0.754_{-0.041}^{+0.053}$	$0.758^{+0.039}_{-0.027}$	$0.757^{+0.047}_{-0.038}$	$0.791\substack{+0.025 \\ -0.019}$	$0.775^{+0.036}_{-0.026}$

We see no evidence for "new physics": we just have (weaker) upper limits on the neutrino mass, the running of the spectral index is compatible with zero, the dark energy equation of state is compatible with w = -1, and the neutrino effective number is remarkably close to the standard value Neff = 3.046.

Parameters	Planck	Planck	Planck	Planck	Planck
		+R19	+lensing	+BAO	+ Pantheon
$\Omega_b h^2$	0.02246 ± 0.00028	$0.02248^{+0.00028}_{-0.00032}$	0.02228 ± 0.00026	0.02264 ± 0.00026	0.02250 ± 0.00028
$\Omega_c h^2$	0.1172 ± 0.0033	0.1174 ± 0.0035	0.1164 ± 0.0033	0.1175 ± 0.0033	$0.1174^{+0.0031}_{-0.0035}$
$100 heta_{ m MC}$	1.04112 ± 0.00051	1.04111 ± 0.00052	1.04119 ± 0.00050	1.04120 ± 0.00049	1.04111 ± 0.00050
au	0.0496 ± 0.0086	0.0508 ± 0.0091	$0.0494\substack{+0.0086\\-0.0076}$	0.0502 ± 0.0087	$0.0499\substack{+0.0086\\-0.0078}$
Σm_{ν} [eV]	< 0.863	< 0.821	< 0.714	< 0.352	< 0.822
w	-1.27 ± 0.53	$-1.33^{+0.17}_{-0.11}$	-1.33 ± 0.52	$-1.009\substack{+0.092\\-0.070}$	$-1.071\substack{+0.073\\-0.050}$
$N_{ m eff}$	2.95 ± 0.24	2.97 ± 0.26	2.85 ± 0.23	3.04 ± 0.23	$2.98_{-0.25}^{+0.25}$
A_L	$1.25\substack{+0.09 \\ -0.14}$	$1.21\substack{+0.09 \\ -0.10}$	$1.116\substack{+0.061\\-0.096}$	$1.213\substack{+0.076 \\ -0.088}$	1.232 ± 0.090
$\ln(10^{10}A_s)$	3.027 ± 0.020	3.030 ± 0.022	3.024 ± 0.020	3.030 ± 0.020	$3.028\substack{+0.020\\-0.018}$
n_s	0.964 ± 0.012	0.965 ± 0.013	0.958 ± 0.012	0.971 ± 0.012	0.965 ± 0.012
α_S	-0.0053 ± 0.0085	-0.0047 ± 0.0082	-0.0066 ± 0.0082	-0.0041 ± 0.0081	-0.0049 ± 0.0086
$H_0[{ m km/s/Mpc}]$	73^{+10}_{-20}	74.0 ± 1.4	74^{+10}_{-20}	67.9 ± 1.7	66.9 ± 2.0
σ_8	$0.79^{+0.13}_{-0.13}$	$0.811^{+0.031}_{-0.035}$	$0.80^{+0.13}_{-0.13}$	0.782 ± 0.025	$0.750^{+0.033}_{-0.034}$
S	$0.754^{+0.053}_{-0.041}$	$0.758^{+0.039}_{-0.027}$	$0.757^{+0.047}_{-0.038}$	$0.791^{+0.025}_{-0.019}$	$0.775\substack{+0.036\\-0.026}$

We find a relaxed value for the Hubble constant, with respect to the one derived under the assumption of ACDM. The main reason for this relaxation is the inclusion in the analysis of the dark energy equation of state w, that introduces a geometrical degeneracy with the matter density and the Hubble constant. In this way, we can solve the existing tensions with the direct measurements.

Since now datasets are fully compatible, we combine Planck 2018 with R19 (H0=74.03 +/- 1.42 km/s/Mpc), in order to see which parameter is preferred by the data to solve the tension. We find a phantom-like dark energy component with an equation of state w<-1 at more than three standard deviations, while the neutrino effective number is fully compatible with standard expectations.

Since now datasets are fully compatible, we combine Planck 2018 with R19 (H0=74.03 +/- 1.42 km/s/Mpc), in order to see which parameter is preferred by the data to solve the tension. We find a phantom-like dark energy component with an equation of state w<-1 at more than three standard deviations, while the neutrino effective number is fully compatible with standard expectations.

We find relaxed and lower values for the clustering parameter $\sigma 8$ and S8, with respect to those derived under the assumption of ΛCDM .

$$S_8 \equiv \sigma_8 \sqrt{\Omega_m/0.3}$$

In this way, we can solve the existing S8 tensions with the CFHTIenS and KiDS-450 cosmic shear surveys.

And in fact, the only notable exception is the angular power spectrum lensing amplitude, A_L that is larger than the expected value at about 3 standard deviations even when combining the Planck data with BAO and supernovae type la external datasets.

But... assuming General Relativity, is there a physical explanation for A_L ?

The most statistically significant and persisting anomalies and tensions of the CMB are:

- H0 with local measurements
- A_L internal anomaly
- S8 with cosmic shear data
- Ωκ different from zero

See Di Valentino et al. arXiv:2008.11283 [astro-ph.CO], arXiv:2008.11284 [astro-ph.CO], arXiv:2008.11285 [astro-ph.CO], arXiv:2008.11286 [astro-ph.CO] for an overview.

The ACDM model assumes that the universe is specially flat. The combination of the Planck temperature and polarization power spectra gives:

 $\Omega_K = -0.044^{+0.018}_{-0.015}$ (68 %, *Planck* TT, TE, EE+lowE),

Planck 2018, Astron. Astrophys. 641 (2020) A6 a detection of curvature at about 3.4 σ , with a 99% probability region of $-0.095 \le \Omega_{K} \le -0.007$.

Can Planck provide an unbiased and reliable estimate of the curvature of the Universe? This may not be the case since a "geometrical degeneracy" is present with Ωm . When precise CMB measurements at arc-minute angular scales are included, since gravitational lensing depends on the matter density, its detection breaks the geometrical degeneracy. The Planck experiment with its improved angular resolution offers the unique opportunity of a precise measurement of curvature from a single CMB experiment. We simulated Planck, finding that such experiment could constrain curvature with a 2% uncertainty, without any significant bias towards closed models.

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

Planck favours a closed Universe $(\Omega k < 0)$ with 99.985% probability. A closed Universe with $\Omega K = -0.0438$ provides a better fit to PL18 with respect to a flat model.

This is not entirely a volume effect, since the best-fit $\Delta \chi^2$ changes by -11 compared to base ACDM when adding the one additional curvature parameter. The improvement is due also to the fact that closed models could also lead to a large-scale cut-off in the primordial density fluctuations in agreement with the observed low

CMB anisotropy quadrupole.

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

A closed universe fits Planck better than AL

Planck 2018, Astron.Astrophys. 641 (2020) A6

A model with $\Omega \kappa < 0$ is slightly preferred with respect to a flat model with AL > 1, because closed models better fit not only the damping tail, but also the lowmultipole data, especially the quadrupole.

Astrophysics

[Submitted on 5 Mar 2003 (v1), last revised 30 Jul 2003 (this version, v2)]

Is the Low CMB Quadrupole a Signature of Spatial Curvature?

G. Efstathiou (University of Cambridge)

The temperature anisotropy power spectrum measured with the Wilkinson Microwave Anisotropy Probe (WMAP) at high multipoles is in spectacular agreement with an inflationary Lambda-dominated cold dark matter cosmology. However, the low order multipoles (especially the quadrupole) have lower amplitudes than expected from this cosmology, indicating a need for new physics. Here we speculate that the low quadrupole amplitude is associated with spatial curvature. We show that positively curved models are consistent with the WMAP data and that the quadrupole amplitude can be reproduced if the primordial spectrum truncates on scales comparable to the curvature scale.

Comments:	4 pages, Latex, 2 figs, revised version accepted by MNRAS
Subjects:	Astrophysics (astro-ph)
Journal reference:	Mon.Not.Roy.Astron.Soc. 343 (2003) L95
DOI:	10.1046/j.1365-8711.2003.06940.x
Cite as:	arXiv:astro-ph/0303127
	(or arXiv:astro-ph/0303127v2 for this version)

Submission history

From: George Efstathiou [view email] [v1] Wed, 5 Mar 2003 23:30:33 UTC (21 KB) [v2] Wed, 30 Jul 2003 10:16:45 UTC (22 KB)

A lower quadrupole than predicted by the ACDM was already present in WMAP, and a closed universe to explain this effect was already taken into account.

To better quantify the preference for a closed model, we adopt the deviance information criterion (DIC), which takes into account the Bayesian complexity, that is, the effective number of parameters, of the extended model and is defined as

$$\mathrm{DIC} = 2\overline{\chi^2_{\mathrm{eff}}} - \chi^2_{\mathrm{eff}}$$

where the bar denotes a mean over the posterior distribution. We find that the Planck data yield $\Delta DIC = -7.4$; that is, a closed Universe with $\Omega k = -0.0438$ is preferred, with a probability ratio of about 1/41, with respect to a flat model.
Curvature of the universe

We also compute the Bayesian evidence ratio by making use of the Savage–Dickey density ratio. In this case the Bayes factor can be written as

$$B_{01}=rac{p(\Omega_K|d,M_1)}{\pi(\Omega_K|M_1)}igg|_{\Omega_K=0}$$

where M1 denotes the model with curvature, $p(\Omega Kld, M1)$ is the posterior for ΩK in this theoretical framework, computed from a specific dataset d, and $\pi(\Omega KIM1)$ is the prior on ΩK that we assume to be flat in the range $-0.2 \le \Omega K \le 0$.

For Planck we obtain a Bayes ratio of I In B01 I = 3.3, i.e. a strong evidence for a closed universe with respect to a flat one.

What about Planck+BAO?

Planck 2018, Astron.Astrophys. 641 (2020) A6

Adding BAO data, a joint constraint is very consistent with a flat universe.

 $\Omega_K = 0.0007 \pm 0.0019$ (68 %, TT, TE, EE+lowE +lensing+BAO).

Given the significant change in the conclusions from Planck alone, it is reasonable to investigate whether they are actually consistent. In fact, a basic assumption for combining complementary datasets is that these ones must be consistent, i.e. they must plausibly arise from the same cosmological model.

Planck 2018, Astron. Astrophys. 641 (2020) A6

This is a plot of the acoustic-scale distance ratio, DV(z)/rdrag, as a function of redshift, taken from several recent BAO surveys, and divided by the mean acoustic-scale ratio obtained by Planck adopting a model. rdrag is the comoving size of the sound horizon at the baryon drag epoch, and DV, the dilation scale, is a combination of the Hubble parameter H(z) and the comoving angular diameter distance DM(z).

In a ACDM model the BAO data agree really well with the Planck measurements...

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

... but when we let curvature to vary

there is a striking disagreement between Planck spectra and BAO measurements!

Observable	Redshift	BAO (68% CL)	Planck (68% CL)	Tension
$D_{\rm M}(r_{\rm d,fid}/r_{\rm d})$ (Mpc)	0.38	1,518 <u>+</u> 22.8	1,843±100	2.9 <i>o</i>
$D_{\rm M}(r_{\rm d,fid}/r_{\rm d})$ (Mpc)	0.51	1,977 <u>+</u> 26.9	2,361 <u>+</u> 115	3.0 <i>o</i>
$D_{\rm M}(r_{\rm d,fid}/r_{\rm d})$ (Mpc)	0.61	2,283±32.3	2,726 ± 130	3.3 <i>o</i>
$H(r_{d,fid}/r_d)$ (km s ⁻¹ Mpc ⁻¹)	0.38	81.5 <u>+</u> 1.9	71.6 ± 3.3	2.6 <i>o</i>
$H(r_{d,fid}/r_d)$ (km s ⁻¹ Mpc ⁻¹)	0.51	90.5 <u>+</u> 1.97	78.9 <u>+</u> 3.1	3.1 <i>o</i>
$H(r_{d,fid}/r_d)$ (km s ⁻¹ Mpc ⁻¹)	0.61	97.3 <u>+</u> 2.1	85.0 <u>+</u> 3.0	3.3 <i>o</i>

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

In the Table we have the constraints on DM and H(z) from the recent analysis of BOSS DR12 data and the corresponding constraints obtained indirectly from Planck, assuming a ACDM model with curvature.

Planck is inconsistent with each of the BAO measurements at more than 3 σ ! The assumption of a flat universe could therefore mask a cosmological crisis where disparate observed properties of the Universe appear to be mutually inconsistent.

Additional dataset	$\Delta \chi^2_{ m eff}$	$\Delta N_{ m data}$	$\log_{10}\mathcal{I}$
flat ACDM			
+BAO	+6.15	8	0.2
+CMB lensing	+8.9	9	0.6
$\Lambda CDM + \Omega_{\kappa}$			
+BAO	+16.9	8	-1.8
+CMB lensing	+16.9	9	-0.84

Di Valentino, Melchiorri and Silk, *Nature Astron.* 4 (2019) 2, 196-203

As we can see from the Table, the Planck χ^2 best fit is worse by $\Delta\chi^2 \approx 16.9$ when the BAO data are included under the assumption of curvature. This is a significantly larger $\Delta\chi^2$ than obtained for the case of ΛCDM ($\Delta\chi^2 \approx 6.15$). The BAO dataset that we adopted consists of two independent measurements (6dFGS36 and SDSS-MGS37) with relatively large error bars, and six correlated measurements from BOSS DR12.

Additional dataset	$\Delta \chi^2_{ m eff}$	ΔN_{data}	$\log_{10}\mathcal{I}$
flat ACDM			
+BAO	+6.15	8	0.2
+CMB lensing	+8.9	9	0.6
$\Lambda CDM + \Omega_{\kappa}$			
+BAO	+16.9	8	-1.8
+CMB lensing	+16.9	9	-0.84

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

To quantify the discrepancy between two cosmological datasets, D1 and D2, we use

the following quantity based on the DIC approach:

$$\mathcal{I}(D_1, D_2) \equiv \exp\{-\mathcal{F}(D_1, D_2)/2\}$$

where

$$\mathcal{F}(D_1, D_2) = \mathrm{DIC}(D_1 \cup D_2) - \mathrm{DIC}(D_1) - \mathrm{DIC}(D_2)$$

Following the Jeffreys scale the agreement/disagreement is considered 'substantial' if I log10 I l>0.5, 'strong' if I log10 I l>1.0 and 'decisive' if I log10 I l>2.0. When is positive, then two datasets are in agreement, whereas they are in tension if this parameter is negative. We find a strong disagreement between Planck and BAO.

In agreement with Handley, Phys.Rev.D 103 (2021) 4, L041301

What about Planck+FS?

The strong disagreement between Planck and BAO it is evident in this triangular plot, as well as that with the full-shape (FS) galaxy power spectrum measurements from the BOSS DR12 CMASS sample, at an effective redshift $z_{eff} = 0.57$.

For Planck and FS we find $\log_{10}I \sim -2.5$, i.e. a decisive disagreement on the Jeffreys-like scale.

Vagnozzi, Di Valentino, et al., arXiv:2010.02230 [astro-ph.CO]

CMB lensing tension

Additional dataset	$\Delta \chi^2_{ m eff}$	$oldsymbol{\Delta} oldsymbol{\mathcal{N}}_{data}$	$\log_{10}\mathcal{I}$	
flat ACDM				
+BAO	+6.15	8	0.2	
+ CMB lensing	+8.9	9	0.6	
$\Lambda CDM + \Omega_{\kappa}$				
+BAO	+16.9	8	-1.8	
+CMB lensing	+16.9	9	-0.84	

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

Another tension is present between Planck power spectra and the constraints on the lensing potential derived from the four-point correlation function of Planck CMB maps. The inclusion of CMB lensing in Planck increases the best-fit $\Delta \chi 2 = 16.9$ in the case of $\Lambda CDM + \Omega K$ (while in the case of the ΛCDM model, we have $\Delta \chi 2 = 8.9$). The CMB lensing dataset consists of nine correlated data points. We identify substantial discordance between Planck and CMB lensing.

The combination of Planck with external datasets should be, therefore, considered with caution when working within a non-flat Universe.

Closed models predict substantially higher lensing amplitudes than in Λ CDM, because the dark matter content can be greater, leading to a larger lensing signal. The reasons for the pull towards negative values of Ω_K are essentially the same as those that lead to the preference for AL > 1.

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

A closed universe (Friedmann 1922) can explain AL!

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

A degeneracy between curvature and the AL parameter is clearly present. A closed universe can provide a robust physical explanation to the enhancement of the lensing amplitude. In fact, the curvature of the Universe is not new physics beyond the standard model, but it is predicted by the General Relativity, and depends on the energy content of the Universe.

A closed universe (Friedmann 1922) can explain AL!

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

A degeneracy between curvature and the AL parameter is clearly present. A closed universe can provide a robust physical explanation to the enhancement of the lensing amplitude. In fact, the curvature of the Universe is not new physics beyond the standard model, but it is predicted by the General Relativity, and depends on the energy content of the Universe.

A closed universe (Friedmann 1922) can explain AL!

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

A degeneracy between curvature and the AL parameter is clearly present. A closed universe can provide a robust physical explanation to the enhancement of the lensing amplitude. In fact, the curvature of the Universe is not new physics beyond the standard model, but it is predicted by the General Relativity, and depends on the energy content of the Universe.

The evolution over time of the geometry of the universe is described by Einstein's equations:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^2}T_{\mu\nu} + \Lambda g_{\mu\nu}$$

Adopting a 4-dimensional coordinate system for the space-time and the Cosmological Principle, i.e. a universe homogeneous and isotropic at large scales, the resulting metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW), that describes the distance between two events in space-time.

$$ds^{2} = c^{2}dt^{2} - a^{2}(t)\left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)\right]$$

The evolution over time of the geometry of the universe is described by Einstein's equations:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^2}T_{\mu\nu} + \Lambda g_{\mu\nu}$$

Adopting a 4-dimensional coordinate system for the space-time and the Cosmological Principle, i.e. a universe homogeneous and isotropic at large scales, the resulting metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW), that describes the distance between two events in space-time.

$$ds^{2} = c^{2}dt^{2} - a^{2}(t)\left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}\left(d\theta^{2} + \sin^{2}\theta d\varphi^{2}\right)\right]$$

The evolution over time of the geometry of the universe is described by Einstein's equations:

The curvature parameter k can be positive, null or negative, depending on the value of the curvature of the universe: positive, flat or negative.

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^2}T_{\mu\nu} + \Lambda g_{\mu\nu}$$

Adopting a 4-dimensional coordinate system for the space-time and the Cosmological Principle, i.e. a universe homogeneous and isotropic at large scales, the resulting metric is the Friedmann-Lemaitre-Robertson-Walker (FLRW), that describes the distance between two events in space-time.

$$ds^{2} = c^{2}dt^{2} - a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi^{2} \right) \right]$$

Combining together the FLRW metric and Einstein's equations we obtain the Friedmann equations that describe the expansion history of the universe:

1st
$$H^{2} = \left(\frac{\dot{a}}{a}\right)^{2} = \frac{8\pi G}{3}\rho - \frac{k}{a^{2}} + \frac{\Lambda}{3}$$
$$\frac{\ddot{a}}{a} = -\frac{4\pi G}{3}\left(\rho + 3P\right) + \frac{\Lambda}{3}$$

The evolution over time of the geometry of the universe is described by Einstein's equations:

$$R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = \frac{8\pi G}{c^2}T_{\mu\nu} + \Lambda g_{\mu\nu}$$

If we divide the 1st Friedmann equation, for the critical density (density of a flat universe), we obtain today:

$$\Omega = \sum_{i} \Omega_{i} = \Omega_{m} + \Omega_{\Lambda} + \Omega_{r} = 1 - \Omega_{k}$$

From this equation it is possible to estimate the curvature of the universe, independently measuring the various contributions to the total density parameter Ω .

Figure: http://w3.phys.nthu.edu.tw

$$\begin{cases} \Omega > 1 \quad \Omega_k < 0 \\ \Omega = 1 \quad \Omega_k = 0 \\ \Omega < 1 \quad \Omega_k > 0 \end{cases} \xrightarrow{k > 0} \xrightarrow{k > 0} \xrightarrow{k > 0} \xrightarrow{k < 0} : \text{ closed Universe} \\ \xrightarrow{k < 0} : \text{ flat Universe} \\ \xrightarrow{k < 0} : \text{ open Universe} \end{cases}$$

Curvature can explain internal tension

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

In a closed Universe with $\Omega K = -0.045$, the cosmological parameters derived in the two different multipole ranges are now fully compatible.

Curvature can explain internal tension

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

In a closed Universe with $\Omega K = -0.045$, the cosmological parameters derived in the two different multipole ranges are now fully compatible.

Curvature can explain internal tension

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

In a closed Universe with $\Omega K = -0.045$, the cosmological parameters derived in the two different multipole ranges are now fully compatible.

What about non-CMB data?

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

It is now interesting to address the compatibility of Planck with combined datasets, like BAO + type-la supernovae + big bang nucleosynthesis data. In principle, each dataset prefers a closed universe, but BAO+SN-Ia+BBN gives H0 = 79.6 \pm 6.8 km/s/Mpc at 68%cl, perfectly consistent with R20, but at 3.4 σ tension with Planck.

What about non-CMB data?

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

It is now interesting to address the compatibility of Planck with combined datasets, like BAO + type-la supernovae + big bang nucleosynthesis data. In principle, each dataset prefers a closed universe, but BAO+SN-Ia+BBN gives H0 = 79.6 \pm 6.8 km/s/Mpc at 68%cl, perfectly consistent with R20, but at 3.4 σ tension with Planck.

BAO+SNIa+BBN+R18 gives sik = -0.091 ± 0.037 at 68%cl.

Curvature can't explain external tensions

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

Varying $\Omega \kappa$, both the well know tensions on H0 and S8 are exacerbates. In a $\Lambda CDM + \Omega K$ model, Planck gives H0 = 54.4^{+3.3}-4.0 km/s/Mpc at 68% cl., increasing the tension with R20 at 5.4 σ .

Curvature can't explain external tensions

Di Valentino, Melchiorri and Silk, Nature Astron. 4 (2019) 2, 196-203

Varying $\Omega \kappa$, both the well know tensions on H0 and S8 are exacerbates. In a $\Lambda CDM + \Omega K$ model, Planck gives S8 in disagreement at about 3.8 σ with KiDS-450, and more than 3.5 σ with DES.

Major objections

• Uniform prior on omegak instead of a prior peaked in zero, as predicted by inflation.

The inflation is a model that needs to be tested against the data, not the contrary.

The prior is flat and uniform on Omegak because we are Looking for a constraint independent from any underlying theoretical model.

We should use the CMB data to derive observational constraints Ω_{K} , therefore an inflationary prior that strongly prefers a flat Universe could bias our results.

Major objections

Use of the low multipoles (ell<30) data showing an amplitude suppression as predicted by a closed universe.

For a curved universe the primordial power spectrum used by the Boltzmann code to analyse the data is parametrised as:

$$\Delta(k) = \frac{(q^2 - 4K)^2}{q(q^2 - K)} k^{n_s - 1} \qquad q = \sqrt{k^2 + K}$$

where K is the curvature parameter (+1 = closed, 0 = flat, -1 = open).

This form ensures that potential fluctuations are constant per logarithmic interval in wavenumber k. This is a strong assumption about how primordial fluctuations behave to scales larger than the curvature scale, and wants to generalize the concept of scale-invariant fluctuations to scales close to it.

This has not a theoretical motivation, so the $\chi 2$ shouldn't be over-interpreted.

Major objections

Use of the low multipoles (ell<30) data showing an amplitude suppression as predicted by a closed universe.

For a curved universe the primordial power spectrum used by the Boltzmann code to analyse the data is parametrised as:

$$\Delta(k) = \frac{(q^2 - 4K)^2}{q(q^2 - K)} k^{n_s - 1} \qquad q =$$

 $q = \sqrt{k^2 + K}$

where K is the curvature parameter (+1 = closed, 0 = flat, -1 = open).

A more accurate predictions for the primordial power spectrum in a curved Universe can be found in Handley, Phys. Rev. D100 (2019) 123517, and this increases the evidence for a closed universe from Planck.

What about different CMB experiments?

To thicken the mystery we have the new ACT results:

ACT-DR4 + WMAP gives at 68% CL

 $\Omega_k = -0.001 \pm 0.012$

ACT-DR4 2020, Aiola et al., arXiv:2007.07288 [astro-ph.CO]

What about different CMB experiments?

CMB Polarization Measurements with SPTpol SPT-3G H₀ [km s⁻¹ Mpc⁻¹] 109 00 108 100 100Nicholas Harrington Planck UC Berkeley SPT-3G + PlanckSPT-3G + Planck + BAORiess et al. 2020 SPT-3G gives at 68% CL: $\Omega_K = 0.001^{+0.018}_{-0.019}$ -0.10-0.050.00 Ω_K

SPT-3G, arXiv:2103.13618 [astro-ph.CO]

ACT-DR4

Confirmation of our result!

When precise CMB measurements at arc-minute angular scales are included, since gravitational lensing depends on the matter density, its detection breaks the geometrical degeneracy.

ACT-DR4 vs SPT-3G

SPT-3G, arXiv:2103.13618 [astro-ph.CO]

ACT-DR4 vs SPT-3G

ACT-DR4 2020, Aiola et al., arXiv:2007.07288 [astro-ph.CO]

SPT-3G, arXiv:2103.13618 [astro-ph.CO]

ACT-DR4

Handley and Lemos, arXiv:2007.08496 [astro-ph.CO]

Global tensions between CMB datasets.

For each pairing of datasets this is the tension probability p that such datasets would be this discordant by (Bayesian) chance, as well as a conversion into a Gaussianequivalent tension.

Between Planck and ACT there is a 2.6σ tension.

ACT-DR4

Handley and Lemos, arXiv:2007.08496 [astro-ph.CO]

At this point, given the quality of all the analyses, it is more likely that these discrepancies are indicating a problem with the underlying cosmology and our understanding of the Universe, rather than the presence of systematic effects.

And this suspect is corroborated by the many other tensions we saw emerging between the other cosmological probes.
What about Planck + Pantheon?

Efstathiou and Gratton, Mon.Not.Roy.Astron.Soc. 496 (2020) 1, L91-L95

Adding Pantheon data, a joint constraint is very consistent with a flat universe.

What about Planck + Pantheon?

Efstathiou and Gratton, Mon.Not.Roy.Astron.Soc. 496 (2020) 1, L91-L95

Adding Pantheon data, a joint constraint is very consistent with a flat universe.

Again, what happens if we vary all the parameters together?

10 parameters: replacing Alens with curvature

Parameters	Planck	Planck	Planck	Planck	Planck
		+R19	+F20	+BAO	+ Pantheon
$\Omega_b h^2$	0.02253 ± 0.00019	$0.02253^{+0.00020}_{-0.00016}$	$0.02255^{+0.00019}_{-0.00017}$	0.02243 ± 0.00016	0.02255 ± 0.00018
$\Omega_c h^2$	0.1183 ± 0.0016	$0.1187\substack{+0.0015\\-0.0018}$	0.1184 ± 0.0015	0.1198 ± 0.0014	0.1186 ± 0.0015
$100 heta_{ m MC}$	1.04099 ± 0.00035	$1.04103\substack{+0.00034\\-0.00031}$	1.04105 ± 0.00034	1.04095 ± 0.00032	1.04107 ± 0.00034
au	0.0473 ± 0.0083	$0.052\substack{+0.009\\-0.011}$	0.0491 ± 0.0079	0.0563 ± 0.0081	0.0506 ± 0.0082
Σm_{ν} [eV]	$0.43^{+0.16}_{-0.27}$	< 0.513	$0.28^{+0.11}_{-0.22}$	< 0.194	< 0.420
w	$-1.6^{+1.0}_{-0.8}$	$-2.11^{+0.35}_{-0.77}$	-2.14 ± 0.46	$-1.038\substack{+0.098\\-0.088}$	$-1.27^{+0.14}_{-0.09}$
Ω_k	$-0.074^{+0.058}_{-0.025}$	$-0.0192^{+0.0036}_{-0.0099}$	$-0.0263^{+0.0060}_{-0.0077}$	$0.0003\substack{+0.0027\\-0.0037}$	$-0.029^{+0.011}_{-0.010}$
$\ln(10^{10}A_s)$	3.025 ± 0.018	$3.037^{+0.016}_{-0.026}$	3.030 ± 0.017	3.049 ± 0.017	3.034 ± 0.017
n_s	0.9689 ± 0.0054	$0.9686\substack{+0.0056\\-0.0050}$	0.9693 ± 0.0051	0.9648 ± 0.0048	0.9685 ± 0.0051
$lpha_S$	-0.0005 ± 0.0067	-0.0012 ± 0.0066	-0.0010 ± 0.0068	-0.0054 ± 0.0068	-0.0023 ± 0.0065
$H_0[{ m km/s/Mpc}]$	53^{+6}_{-16}	73.8 ± 1.4	69.3 ± 2.0	$68.6^{+1.5}_{-1.8}$	60.5 ± 2.5
σ_8	$0.74^{+0.08}_{-0.16}$	0.932 ± 0.040	0.900 ± 0.039	0.821 ± 0.027	$0.812\substack{+0.031\\-0.018}$
S_8	$0.989\substack{+0.095\\-0.063}$	0.874 ± 0.032	$0.900\substack{+0.034\\-0.031}$	0.826 ± 0.016	0.927 ± 0.037
$Age[\mathrm{Gyr}]$	$16.10\substack{+0.92\\-0.80}$	$14.90^{+0.72}_{-0.32}$	$15.22^{+0.054}_{-0.038}$	13.77 ± 0.10	14.98 ± 0.39
Ω_m	$0.61\substack{+0.21 \\ -0.34}$	$0.264\substack{+0.010\\-0.013}$	$0.300\substack{+0.017\\-0.020}$	0.305 ± 0.016	$0.393^{+0.030}_{-0.036}$
$\Delta\chi^2_{bestfit}$	0.0	0.62	0.88	14.77	1037.82

Therefore, now we want to check the robustness of these results further increasing the number of parameters, in addition to curvature.

The confidence levels from Planck are clearly below the Ωk = 0 line that describes a flat universe. On the other hand, the Planck data are now in perfect agreement with the Pantheon, R19, and F20 (Freedman et al. arXiv:2002.01550) measurements, while they are still in strong tension with the BAO measurements, so their combination should be considered with some caution. Di Valentino, Melchiorri and Silk, ApJ Letters, 908, L9 (2021), arXiv:2003.04935

Moreover, all the 95% confidence regions from the Planck+Pantheon, Planck+F20, and Planck+R19 datasets are well below the $\Omega_k = 0$ line. This clearly shows that the recent claims of a closed universe as being incompatible with luminosity distance measurements are simply due to the assumption of a cosmological constant. Di Valentino, Melchiorri and Silk, ApJ Letters, 908, L9 (2021), arXiv:2003.04935

10 parameters: replacing Alens with curvature

Indeed, all the three datasets, combined with Planck, exclude a cosmological constant, clearly preferring a value of w < -1.

Cosmic Discordance

In practice, Planck+Pantheon, Planck+R19, and Planck+F20 all exclude both a cosmological constant and a flat universe at more than 99% C.L.

Cosmic Discordance

Evidence for a phantom closed Universe at more than 99% CL!!

It is interesting to note that if a closed universe increases the fine-tuning of the theory, the removal of a cosmological constant reduces it. It is, therefore, difficult to decide whether a phantom closed model is less or more theoretically convoluted than ACDM.

IDE + Ωk

Assuming a closed Universe, can we improve the agreement with H0 introducing IDE instead?

Parameters	Planck	Planck +BAO	Planck + Pantheon	Planck + R19	Planck + all
$ \begin{array}{c} \Omega_{\rm b}h^2 \\ \Omega_{\rm c}h^2 \\ 100\theta_{\rm MC} \\ \tau \\ n_s \\ \ln(10^{10}A_s) \\ \xi \\ \Omega_k \end{array} $	$\begin{array}{c} 0.02261 \pm 0.00017 \\ 0.077 \substack{+0.035 \\ -0.019} \\ 1.0437 \substack{+0.0012 \\ -0.0023} \\ 0.0481 \substack{+0.0085 \\ -0.0076} \\ 0.9708 \pm 0.0047 \\ 3.027 \substack{+0.017 \\ -0.016} \\ < -0.385 \\ -0.036 \substack{+0.017 \\ -0.013} \end{array}$	$\begin{array}{c} 0.02241 \pm 0.00016 \\ 0.082 \substack{+0.033 \\ -0.015} \\ 1.04327 \substack{+0.00009 \\ -0.00022} \\ 0.0541 \pm 0.0081 \\ 0.9662 \pm 0.0047 \\ 3.043 \pm 0.016 \\ -0.32 \substack{+0.31 \\ -0.09} \\ -0.0016 \pm 0.0024 \end{array}$	$\begin{array}{c} 0.02258 \pm 0.00016 \\ 0.068 \substack{+0.013 \\ -0.018} \\ 1.0442 \substack{+0.0012 \\ -0.0010} \\ 0.0495 \pm 0.0080 \\ 0.9701 \pm 0.0046 \\ 3.031 \pm 0.017 \\ -0.62 \substack{+0.19 \\ -0.25} \\ -0.0261 \pm 0.0087 \end{array}$	$\begin{array}{c} 0.02247 \pm 0.00016 \\ < 0.0253 \\ 1.0480 \substack{+0.0020 \\ -0.0008} \\ 0.0534 \pm 0.0079 \\ 0.9679 \pm 0.0046 \\ 3.040 \pm 0.016 \\ -0.75 \substack{+0.06 \\ -0.16} \\ -0.0038 \pm 0.0034 \end{array}$	$\begin{array}{c} 0.02239 \pm 0.00015 \\ 0.093 \substack{+0.013 \\ -0.011} \\ 1.04249 \substack{+0.00074 \\ -0.00086} \\ 0.0542 \pm 0.0079 \\ 0.9653 \pm 0.0047 \\ 3.045 \pm 0.016 \\ -0.23 \pm 0.10 \\ 0.0006 \pm 0.0021 \end{array}$
$H_0[(km/s)/Mpc]$ σ_8 Ω_m S_8	$58.7^{+4.1}_{-5.2}$ $1.31^{+0.10}_{-0.54}$ 0.30 ± 0.11 $1.20^{+0.10}_{-0.22}$	$\begin{array}{r} 69.7^{+1.2}_{-1.6}\\ 1.27^{+0.04}_{-0.46}\\ 0.219^{+0.076}_{-0.040}\\ 1.01^{+0.04}_{-0.18}\end{array}$	$61.6^{+2.0}_{-2.4}$ $1.36^{+0.20}_{-0.31}$ 0.240 ± 0.038 $1.20^{+0.14}_{-0.16}$	72.9 ± 1.4 $3.4^{+1.2}_{-1.4}$ $0.084^{+0.010}_{-0.039}$ $1.64^{+0.41}_{-0.27}$	69.93 ± 0.75 $1.04^{+0.08}_{-0.15}$ 0.239 ± 0.028 $0.921^{+0.043}_{-0.069}$

From Planck alone there is still the indication for a closed universe, but without interaction.

IDE + Ωk

Assuming a closed Universe, can we improve the agreement with H0 introducing IDE instead?

Parameters	Planck	Planck +BAO	Planck + Pantheon	Planck + R19	Planck + all
$egin{aligned} \Omega_{\mathrm{b}}h^2 & & \ \Omega_{\mathrm{c}}h^2 & & \ \Omega_{\mathrm{c}}h^2 & & \ 100 heta_{\mathrm{MC}} & & \ & \ & \ & \ & \ & & \ & & \ & & \ $	$\begin{array}{c} 0.02261 \pm 0.00017 \\ 0.077 \substack{+0.035 \\ -0.019} \\ 1.0437 \substack{+0.0012 \\ -0.0023} \\ 0.0481 \substack{+0.0085 \\ -0.0076} \\ 0.9708 \pm 0.0047 \\ 3.027 \substack{+0.017 \\ -0.016} \\ < -0.385 \\ -0.036 \substack{+0.017 \\ -0.013} \end{array}$	$\begin{array}{c} 0.02241 \pm 0.00016 \\ 0.082 \substack{+0.033 \\ -0.015} \\ 1.04327 \substack{+0.00009 \\ -0.00022} \\ 0.0541 \pm 0.0081 \\ 0.9662 \pm 0.0047 \\ 3.043 \pm 0.016 \\ -0.32 \substack{+0.31 \\ -0.09} \\ -0.0016 \pm 0.0024 \end{array}$	$\begin{array}{c} 0.02258 \pm 0.00016 \\ 0.068 \substack{+0.013 \\ -0.018} \\ 1.0442 \substack{+0.0012 \\ -0.0010} \\ 0.0495 \pm 0.0080 \\ 0.9701 \pm 0.0046 \\ 3.031 \pm 0.017 \\ -0.62 \substack{+0.19 \\ -0.25} \\ -0.0261 \pm 0.0087 \end{array}$	$\begin{array}{c} 0.02247 \pm 0.00016 \\ < 0.0253 \\ 1.0480 \substack{+0.0020 \\ -0.0008} \\ 0.0534 \pm 0.0079 \\ 0.9679 \pm 0.0046 \\ 3.040 \pm 0.016 \\ -0.75 \substack{+0.06 \\ -0.16} \\ -0.0038 \pm 0.0034 \end{array}$	$\begin{array}{c} 0.02239 \pm 0.00015 \\ 0.093 \substack{+0.013 \\ -0.011} \\ 1.04249 \substack{+0.00074 \\ -0.00086} \\ 0.0542 \pm 0.0079 \\ 0.9653 \pm 0.0047 \\ 3.045 \pm 0.016 \\ -0.23 \pm 0.10 \\ 0.0006 \pm 0.0021 \end{array}$
$H_0[(km/s)/Mpc]$ σ_8 Ω_m S_8	$58.7^{+4.1}_{-5.2}$ $1.31^{+0.10}_{-0.54}$ 0.30 ± 0.11 $1.20^{+0.10}_{-0.22}$	$\begin{array}{r} 69.7^{+1.2}_{-1.6} \\ 1.27^{+0.04}_{-0.46} \\ 0.219^{+0.076}_{-0.040} \\ 1.01^{+0.04}_{-0.18} \end{array}$	$61.6^{+2.0}_{-2.4}$ $1.36^{+0.20}_{-0.31}$ 0.240 ± 0.038 $1.20^{+0.14}_{-0.16}$	$72.9 \pm 1.4 \\ 3.4^{+1.2}_{-1.4} \\ 0.084^{+0.010}_{-0.039} \\ 1.64^{+0.41}_{-0.27}$	$\begin{array}{c} 69.93 \pm 0.75 \\ 1.04 \substack{+0.08 \\ -0.15} \\ 0.239 \pm 0.028 \\ 0.921 \substack{+0.043 \\ -0.069} \end{array}$
$\ln B_{ij}$	0.2	-1.0	3.2	5.8	-0.4

IDE can't increase the H0 value enough to solve the tension with R20. In a closed universe for Planck alone they are still at 3.4σ tension.

IDE + Ωk

Assuming a closed Universe, can we improve the agreement with H0 introducing IDE instead?

	Tianex	+BAO	Planck + Pantheon	Planck + R19	Planck + all
$egin{aligned} \Omega_{ m b}h^2 & \ \Omega_{ m c}h^2 & \ \Omega_{ m c}h^2 & \ 100 heta_{ m MC} & \ au & \$	$\begin{array}{c} 0.02261 \pm 0.00017 \\ 0.077 \substack{+0.035 \\ -0.019} \\ 1.0437 \substack{+0.0012 \\ -0.0023} \\ 0.0481 \substack{+0.0085 \\ -0.0076} \\ 0.9708 \pm 0.0047 \\ 3.027 \substack{+0.017 \\ -0.016} \\ < -0.385 \\ -0.036 \substack{+0.017 \\ -0.013} \end{array}$	$\begin{array}{c} 0.02241 \pm 0.00016 \\ 0.082 \substack{+0.033 \\ -0.015} \\ 1.04327 \substack{+0.00009 \\ -0.00022} \\ 0.0541 \pm 0.0081 \\ 0.9662 \pm 0.0047 \\ 3.043 \pm 0.016 \\ -0.32 \substack{+0.31 \\ -0.09} \\ -0.0016 \pm 0.00. \end{array}$	$\begin{array}{c} 0.02258 \pm 0.00016 \\ 0.068 \substack{+0.013 \\ -0.018} \\ 1.0442 \substack{+0.0012 \\ -0.0010} \\ 0.0495 \pm 0.0080 \\ 0.9701 \pm 0.0046 \\ 3.031 \pm 0.017 \\ -0.62 \substack{+0.19 \\ -0.25} \\ -0.0261 \pm 0.0087 \end{array}$	$\begin{array}{c} 0.02247 \pm 0.00016 \\ < 0.0253 \\ 1.0480 \substack{+0.0020 \\ -0.0008} \\ 0.0534 \pm 0.0079 \\ 0.9679 \pm 0.0046 \\ 3.040 \pm 0.016 \\ -0.75 \substack{+0.06 \\ -0.16} \\ -0.0038 \pm 0.0034 \end{array}$	$\begin{array}{c} 0.02239 \pm 0.00015 \\ 0.093 \substack{+0.013 \\ -0.011} \\ 1.04249 \substack{+0.00074 \\ -0.00086} \\ 0.0542 \pm 0.0079 \\ 0.9653 \pm 0.0047 \\ 3.045 \pm 0.016 \\ -0.23 \pm 0.10 \\ 0.0006 \pm 0.0021 \end{array}$
$H_0[(\text{km/s})/\text{Mpc}]$ σ_8 Ω_m S_8	$58.7^{+4.1}_{-5.2}$ $1.31^{+0.10}_{-0.54}$ 0.30 ± 0.11 $1.20^{+0.10}_{-0.22}$	$\begin{array}{r} 69.7^{+1.2}_{-1.6} \\ 1.27^{+0.04}_{-0.46} \\ 0.219^{+0.076}_{-0.040} \\ 1.01^{+0.04}_{-0.18} \end{array}$	$61.6^{+2.0}_{-2.4}$ $1.36^{+0.20}_{-0.31}$ 0.240 ± 0.038 $1.20^{+0.14}_{-0.16}$	72.9 ± 1.4 $3.4^{+1.2}_{-1.4}$ $0.084^{+0.010}_{-0.039}$ $1.64^{+0.41}_{-0.27}$	69.93 ± 0.75 $1.04^{+0.08}_{-0.15}$ 0.239 ± 0.028 $0.921^{+0.043}_{-0.069}$

Planck+Pantheon prefers an interacting closed universe at more than 3σ ,

IDE + Ωk

Assuming a closed Universe, can we improve the agreement with H0 introducing IDE instead?

r ai ainetei s	Planck	Planck +BAO	Planck + Pantheon	Planck + R19	Planck + all
$egin{aligned} \Omega_{ m b}h^2 & \ \Omega_{ m c}h^2 & \ \Omega_{ m c}h^2 & \ 100 heta_{ m MC} & \ au & \$	$\begin{array}{c} 0.02261 \pm 0.00017 \\ 0.077 \substack{+0.035 \\ -0.019} \\ 1.0437 \substack{+0.0012 \\ -0.0023} \\ 0.0481 \substack{+0.0085 \\ -0.0076} \\ 0.9708 \pm 0.0047 \\ 3.027 \substack{+0.017 \\ -0.016} \\ < -0.385 \\ -0.036 \substack{+0.017 \\ -0.013} \end{array}$	$\begin{array}{c} 0.02241 \pm 0.00016 \\ 0.082 \substack{+0.033 \\ -0.015} \\ 1.04327 \substack{+0.00009 \\ -0.00022} \\ 0.0541 \pm 0.0081 \\ 0.9662 \pm 0.0047 \\ 3.043 \pm 0.016 \\ -0.32 \substack{+0.31 \\ -0.09} \\ -0.0016 \pm 0.0024 \end{array}$	$\begin{array}{c} 0.02258 \pm 0.00016 \\ 0.068 \substack{+0.013 \\ -0.018} \\ 1.0442 \substack{+0.0012 \\ -0.0010} \\ 0.0495 \pm 0.0080 \\ 0.9701 \pm 0.0046 \\ 3.031 \pm 0.017 \\ -0.62 \substack{+0.19 \\ -0.25} \\ -0.0261 \pm 0.0087 \end{array}$	$\begin{array}{c} 0.02247 \pm 0.00016 \\ < 0.0253 \\ 1.0480 \substack{+0.0020 \\ -0.0008} \\ 0.0534 \pm 0.0079 \\ 0.9679 \pm 0.0046 \\ 3.040 \pm 0.016 \\ -0.75 \substack{+0.06 \\ -0.16} \\ -0.0038 \pm 0.0034 \end{array}$	$\begin{array}{c} 0.02239 \pm 0.00015\\ 0.093 \substack{+0.013\\-0.011}\\ 1.04249 \substack{+0.00074\\-0.00086}\\ 0.0542 \pm 0.0079\\ 0.9653 \pm 0.0047\\ 3.045 \pm 0.016\\ -0.23 \pm 0.10\\ 0.0006 \pm 0.0021 \end{array}$
$H_0[(\text{km/s})/\text{Mpc}]$ σ_8 Ω_m S_8	$58.7^{+4.1}_{-5.2}$ $1.31^{+0.10}_{-0.54}$ 0.30 ± 0.11 $1.20^{+0.10}_{-0.22}$	$\begin{array}{r} 69.7^{+1.2}_{-1.6}\\ 1.27^{+0.04}_{-0.46}\\ 0.219^{+0.076}_{-0.040}\\ 1.01^{+0.04}_{-0.18}\end{array}$	$61.6^{+2.0}_{-2.4}$ $1.36^{+0.20}_{-0.31}$ 0.240 ± 0.038 $1.20^{+0.14}_{-0.16}$	72.9 ± 1.4 $3.4^{+1.2}_{-1.4}$ $0.084^{+0.010}_{-0.039}$ $1.64^{+0.41}_{-0.27}$	69.93 ± 0.75 $1.04^{+0.08}_{-0.15}$ 0.239 ± 0.028 $0.921^{+0.043}_{-0.069}$

Planck+Pantheon prefers an interacting closed universe at more than 3σ, but in disagreement with R20 at 4.8σ.

Concluding...

Most of the anomalies and tensions are involving the Planck data:

- H0 tension
- S8 tension
- $A_L > 1$ or $\Omega \kappa < 0$

presenting a serious limitation to the precision cosmology.

Are we sure that the 2018 Planck results are still a confirmation of the flat standard ACDM cosmological model?

Watch out for the elephant in the room!

These cosmic discordances

call for new observations and stimulate the investigation of alternative theoretical models and solutions.

Thank you!

eleonora.di-valentino@durham.ac.uk

References

- Planck 2018, Astron. Astrophys. 641 (2020) A6
- \bullet Borstnik et al., hep-ph/0401043
- Alam et al., arXiv:2007.08991 [astro-ph.CO]
- Arendse et al., arXiv:1909.07986 [astro-ph.CO]
- Bennett et al. [WMAP collaboration], arXiv:1212.5225 [astro-ph.CO];
- Burns et al., Astrophys.J. 869 (2018) no.1, 56
- Calabrese et al., Phys. Rev. D, 77, 123531;
- Dhawan et al. Astron. Astrophys. 609 (2018) A72
- Di Valentino and Bridle, Symmetry 10 (2018) no.11, 585
- Di Valentino et al., Phys.Dark Univ. 30 (2020) 100666
- Di Valentino, arXiv:2011.00246 [astro-ph.CO]
- Freedman et al. arXiv:2002.01550
- Riess et al., arXiv:2012.08534 [astro-ph.CO]
- Soltis et al., arXiv:2012.09196 [astro-ph.CO]
- Henning et al., arXiv:1707.09353 [astro-ph.CO]
- Heymans et al., arXiv:2007.15632 [astro-ph.CO]
- Hildebrandt et al., arXiv:1606.05338 [astro-ph.CO];
- Huang et al., arXiv:1908.10883 [astro-ph.CO]
- · Jang et al., arXiv:1702.01118 [astro-ph.CO]
- Joudaki et al, arXiv:1601.05786;
- Knox and Millea, arXiv:1908.03663 [astro-ph.CO]
- Mangano et al., Nucl. Phys. B 729, 221 (2005) [hep-ph/0506164];
- Reid et al., arXiv:1908.05625 [astro-ph.CO]
- Riess et al. 2018, ApJ, 861, 126
- Riess et al. arXiv:1903.07603 [astro-ph.CO];
- Ross et al., Mon. Not. Roy. Astron. Soc. 449, no. 1, 835 (2015);
- Shajib et al. arXiv:1910.06306
- Troster et al., arXiv:1909.11006 [astro-ph.CO]
- Yuan et al. arXiv:1908.00993.
- Vagnozzi, Di Valentino, et al., arXiv:2010.02230 [astroph.CO]
- Wong et al. arXiv:1907.04869v1

- Abbott et al. arXiv:1710.05835 [astro-ph.CO]
- Adam et al. [Planck Collaboration], arXiv:1502.01582 [astro-ph.CO];
- Aghanim et al. [Planck Collaboration], arXiv:1507.02704 [astro-ph.CO];
- Aiola et al., arXiv:2007.07288 [astro-ph.CO];
- Anderson et al. [BOSS Collaboration], Mon. Not. Roy. Astron. Soc. 441, no. 1, 24 (2014);
- Asgari et al., arXiv:1910.05336 [astro-ph.CO]
- Betoule et al. [SDSS Collaboration] Astron. Astrophys 568, A22 (2014);
- Beutler et al., Mon. Not. Roy. Astron. Soc. 416, 3017 (2011);
- Birrer et al. arXiv:2007.02941 [astro-ph.CO]
- Di Valentino et al., arXiv:1908.01391 [astro-ph.CO]
- Di Valentino et al. arXiv:2008.11283 [astro-ph.CO]
- Di Valentino et al. arXiv:2008.11284 [astro-ph.CO]
- Di Valentino et al. arXiv:2008.11285 [astro-ph.CO]
- Di Valentino et al. arXiv:2008.11286 [astro-ph.CO]
- Di Valentino & Mena, MNRAS Letters (2020)
- Di Valentino et al. Phys. Rev. D 101, 063502
- Di Valentino et al. Phys.Rev. D98 (2018) no.8, 083523
- Di Valentino et al., arXiv:2003.04935 [astro-ph.CO]
- Di Valentino et al. arXiv: 2005.12587 [astro-ph.CO]
- Di Valentino et al., accepted MNRASL, arXiv:2011.00283
- Efstathiou and Gratton, arXiv:2002.06892
- Erben et al., Mon. Not. Roy. Astron. Soc. 433, 2545 (2013);
- Gavela et al. J. Cosmol. Astropart. Phys. 07 (2009) 034;
- Handley, arXiv:1908.09139 [astro-ph.CO]
- Handley and Lemos, arXiv:2007.08496 [astro-ph.CO].
- Heymans et al., Mon. Not. Roy. Astron. Soc. 427, 146 (2012);
- Huang et al. arXiv:1908.10883
- Khetan et al. arXiv:2008.07754 [astro-ph.CO]
- Pesce et al. arXiv:2001.09213 [astro-ph.C0]
- Riess, Nature Reviews Physics (2019)
- Verde et al. Nat. Astr. 3, 891-895 (2019)
- Yang et al., PHYS. REV. D 99, 043543 (2019)