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Dark Matter: a 90 years old puzzle
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Many ideas, but which is the right one?
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[G. Bertone and T. Tait, Nature 562, 51 (2018)] 3



Why expect non-gravitational interactions?

thermal freeze-out (early Univ.)

indirect detection (now)
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Voyage into the Dark Sector

What if the dark matter experiences new ‘dark’ forces?

(Symmetry Magazine)



Portals to the Dark Sector

[Snowmass reports: 2207.06898, 2207.06905, 2209.04671]
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Portals to the Dark Sector

[Snowmass reports: 2207.06898, 2207.06905, 2209.04671]

dark quarks?
dark forces?

dark
higgs?

dark leptons?

Examples
Vector portal % FH FL’“, [Dutra, Lindner ef al. JCAP *18); Berryman er al. (JHEP "20)]
Neutrino portal yLHN [Smirnov *19; Kelly, Machado (PRD ’21); MicroBooNE (PRD °22)]

Higgs portal (uS+ S 2)H tH [Batell, Berger, Ismail (PRD *19); MicroBooNE (PRL "21)]
Axion portal J% aF" Fu, [Kelly, Kumar, Liu (PRD "21); ArgoNeuT (PRL "23)]



Why in accelerator neutrino experiments?
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Beam-focused neutrino experiments
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Beam-focused neutrino experiments

. Decay Pipe
Proton Focusing
Beam  Target

Y AN - - - - - a,¢ Tt a¢
A et a$ € — WY A
Y r.A mm .
TAAAAATA S AVAVAVAVAVAY N N .
y ot et ———— VW Y



Short-Baseline Neutrino Experimental Setup at Fermilab

Image credit: Zarko Pavlovic
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Short-Baseline Neutrino Experimental Setup at Fermilab
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Short-Baseline Neutrino Experimental Setup at Fermilab

Image credit: Zarko Pavlovic
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Current SBN Experiments
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Future: DUNE Near Detector
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Future: DUNE Near Detector
Primary Beam Enclosure
Apex of Embankment ~ 60’
MI-10 Point of Extraction
Near Detector Absorber Hall Target Hall Complex T F— —‘

ND-GAr

Temp. Muon Spectrometer ( PRISM ]
Magnetized Steel Stack, Polystyrene Scintillators Up To 30 m Detector Travel
100 Layers, 544 t Steel Off-Axis Beam Measurement

rSAND Beam Monitor]

Superconducting Magnet (0.6 T)
100 t Calorimeter

3DST, TPC or Straw Tubes

,‘J | ND-LAr Detector |

300 t High Purity Liquid Argon
Pixelated Readout Electronics
Optically Segmented Detector

[Image Credit: Georgia Karagiorgi]
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Dark Sector Production from Charged Meson Decays
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Why this is important?

1. Large BR enhancement for 3-body decays.

Ve Ve
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(assuming an O (1) dark-sector coupling for purposes of comparison)
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Dutta, Kim, Thompson, Thornton, Van de Water, 2110.11944 (PRL *22)



Why this is importa

2. Focusing of charged mesons.
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Why this is important?

2. Focusing of charged mesons.

Production via neutral meson Production via charged meson
]
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3. Dominant production channel for leptophilic dark-sector particles.
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Anomalous Tau Neutrino Appearance at Near Detector
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Why single out the taus?
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Why single out the taus?

2 . .
(Am§3 ) (%) @ A popular example: Sterile neutrinos.
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@ Therefore, appearance of tau events at ND [Plot credit: Alex Sousa
is anomalous and a ‘smoking gun’ @ Nice interplay of ND and FD effects.

signature of new physics.



A new mechanism for anomalous tau production
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A new mechanism for anomalous tau production
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Neutrinophilic Case

v—philic vector mediator
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[BD, Dutta, Han, Kim, 2304.02031]
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B — L Casel

B-L vector mediator [form factor parameter Choice ]
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B — L Case Il

B-L vector mediator [form factor parameter Choice Il]
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B — 3L, Case

B-3L , vector mediator [form factor parameter Choice I]
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DUNE vs ICARUS

DUNE ND-LAr | ICARUS-NuMI
Beam energy 120 GeV 120 GeV
Dist. to dump 204 m 715 m
Dist. to detector 575 m 800 m
Detector angle On axis ~ 5.7° off-axis
Active volume 2.96 x 3.2 x 18
(wxhxi)my | X5 (x 2 modules)
POT 2 x 10*? 10%*
Run-time ~ 20 years ~ 10 years

@ Beam-focusing does not benefit ICARUS much.

@ Loses the advantage of using charged mesons.

o ICARUS can only benefit from proton-brem-induced (or neutral meson-induced) BSM

production.



Unknown form factors

@ For a massive V' coupling to quarks, unknown form factors in the hadronic current:

T = 1" + ca(pe + pu)" DY + c3(pe + o)’ P4
+  calpe +pu)"(pe + pv)’ + 5P Py
+ Fvé”p/\g(pz + Pu)Abvie -
@ For a massless case, can use Ward identities to write [Khodjamirian, Wyler, hep-ph/0111249]

et c2(pe+py)-pv = fum,
ca(pe +pv) - pv S

+

o Fy can be inferred from 7+ — e™ Vey data [Bryman, Depommier, Leroy (Phy. Rep. *82); Donoghue, Golowich,

Holstein (OUP *14)].

@ Should not blindly use the photon form factors, as often done in the literature; see e.g.

[Chiang, Tseng, 1612.06985 (PLB *17)].



Background is always an issue

o In real life, tau identification efficiency is
not 100%.

o Neutrino energy threshold of 3.5 GeV.

@ Will be limited by statistics, because
event-by-event reconstruction is not
possible.

@ Any mis-ID would cause backgrounds
(especially for hadronic tau decays).

e Can isolate a v,-rich event sample where
30% of hadronically-decaying taus are
successfully identified while only 0.5%
of NC background contamination. [Conrad,
de Gouvea, Shalgar, Spitz (PRD *10); de Gouvea, Kelly,

Stenico, Pasquini (PRD *19)]



Background is always an issue

‘ Standard LBNF v beam ‘ 7 optimized beam

[roe |
v (T =€) 224402 151.6 £ 1.2
. . . . . . Ve OSC. 87.04+0.5 143.6 £0.5
o In real life, tau identification efficiency is ve beam 63615 823:+20
v, total 150.6 £ 1.5 225.9+2.1
not 100%. Significance 1.8£0.0 9.2+0.1
[7o0 |
: v (T = p) 18.8+0.2 116.2+0.9
o Neutrino energy threshold of 3.5 GeV. NOE 1rting) 100412 122533
. .. .. Significance 2.84+0.0 9.3+0.1
@ Will be limited by statistics, because [ 7 > In (QELlike) \
. . ve (T — 1mr) 2.8+0.1 16.4 £ 0.6
event-by-event reconstruction is not NC(> 1r%) 123407 269413
. Significance 0.8+0.0 2.9+0.1
possible. |3 channels combined ‘
. vy 44.0+£0.3 284.2+1.6
@ Any mis-ID would cause backgrounds Backgrounds 202.9+2.1 3754 +4.1
Significance 3.0£0.0 13.2+0.1

(especially for hadronic tau decays).
[Thomas Kosc, PhD Thesis, 2021 (Lyon)]
e Can isolate a v,-rich event sample where
@ Naively, 200 mistagged tau events at FD,

30% of hadronically-decaying taus are
which scales to ~ 10° at ND.

successfully identified while only 0.5%

of NC background contamination. [conrad, ~ ® However, the leptonic tau decays are less
de Gouvea, Shalgar, Spitz (PRD *10); de Gouvea, Kelly, affected by bkg contamination.
Stenico, Pasquini (PRD "19)] @ DUNE collaboration is actively working

on improving the v--efficiency, using
machine learning.



Conclusion

Accelerator neutrino experiments can be made versatile.

@ Beam-based neutrino experiments are sensitive to a diverse set of dark sector models.

Can provide competitive/best limits on (or discover) light dark sector physics.

@ The future of dark (sector physics) is bright.




	 Why in accelerator neutrino experiments?  [10pt] [width=0.95]SBNMap
	 Dark Sector Production from Charged Meson Decays  [10pt] [width=0.9]charged-meson1
	 Anomalous Tau Neutrino Appearance at Near Detector [10pt] [width=0.9]tau11

