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1. µ→ eγ: contact interaction parametrisation and bound at mµ

2. Effective Field Theory: a recipe to approximate evolution of L with scale
correctly include mass thresholds in Dim Reg

3. top-down: µ→ eγ in the 2HDM

• the simplest EFT analysis
• the “exact” result: did I get the right answer?

4. bottom-up: what does the µ→ eγ bound constrain at ΛNP ≫ mW?

• constraints at the New Physics scale

5. Summary useful, not so simple...lots to do!



Looking for flavour change with the muon

LFV ≡ FCNC of charged leptons @ a point (ν osc not count)

New Physics that exists! Just not know rate...
1 assume New Particles giving LFV are heavy: ΛNP ≫ mW

2 focus on µ↔ e (for simplicity, only impose µ → eγ)

To parametrise effect of this NP in µ→ eγ:

δLmeg = −4GF√
2
mµ

(

CD
RµRσ

αβeLFαβ + CD
L µLσ

αβeRFαβ

)

BR(µ→ eγ) = 384π2(|CD
R |2 + |CD

L |2) < 5.7× 10−13

⇒ |CD
X | <∼ 10−8

MEG expt, PSI

How big does one expect C to be? Suppose operator coefficient

n = 0 n = 1 n = 2

C
mµ

v2
∼ ev

(16π2)nΛ2
⇒ probes Λ <∼ 30 000 TeV 3000 TeV 300 TeV

C
mµ

v2
∼ emµ

(16π2)nΛ2
⇒ probes Λ <∼ 1000 TeV 100 TeV 10 TeV



What to do as a theorist?

Want to identify new particles + interactions responsable for LFV

⇒ build beautiful models (symmetries, particle content,parameter ranges)

+ calculate their predictions

? but what can a (stupid-about-”beauty”) phenomenologist do?
assume New Physics is heavy: ΛNP ≫ mW

⇒ parametrise at accessible scales with contact interactions

dream = reconstruct the fundamental Lagrangian at ΛNP ,
from low-E observations/the effective Lagrangian at mW?

“simple” first step: translate exptal bounds from low E to New Physics scale.
NB: this is a Standard Model problem



Between mµ and the NP scale using EFT
Georgi, EFT, ARNPP 43(93) 209

(one of my all-time favourite papers)

LSM + LNP

match ΛNP

LSM + L(SM invar. Contact Interactions)
↑
|

{Z,W, γ, g, h, t, f} | SU(3)× SU(2)× U(1) RGEs
|
|

match mW ,mh,mt

LQCD∗QED + L′(QCD,QED invar. Contact Interactions)
↑
|

{γ, g, f} | RGEs of QCD × QED
|

(above here τ, c, b) |
µ→ eγ



Matching
Georgi, EFT, ARNPP 43(93) 209

(one of my all-time favourite papers)

Wilsonian renormalisation: as “integrate out” short-distance modes, the couplings
constants (also of non-renorm ops) run.

But I want to use Dim Reg! How to remove heavy particles?
⇒ change theories at heavy particle scale, match Greens fns of the two theories!

Ex: 2HiggsDoubletModel in the decoupling limit MH ≫ mW

H

e

µ

t

t

ΛNP ≃MH

e

µ

t

t

At MH, match Greens fns of SM + Contact Interactions onto Greens fns of 2HDM
match to desired order in cplings, loops. If at loop order, NB, integrate

∫+∞
−∞ d4k/(2π)4 above and below matching scale



Match onto...what basis of contact interactions?

Simple approximation: assume that lowest order in Λ is sufficient.
For LFV, usually means dimension six operators ∝ 1/Λ2.
(is that a good approx? Depends on how precise an answer you want...)

Contact Interactions should respect relevant symmetries:

• above mW ∃ “Buchmuller-Wyler” basis of SU(3)× SU(2)× U(1) invariant,
dimension six operators Buchmuller-Wyler

Gradkowski etal

• below mW , use QCD×QED invariant dimension six (+7) operators
Kuno-Okada

= (tPRt)(ePRµ)
iλtλµe

p2−Λ2
NP

= −iλtλµe(tPRt)(ePRµ)
(

1
Λ2
NP

+ p2

Λ4
NP

+ ...
)

H

e

µ

t

t



Running

Recall running mass of MS:

x
m

⊃ i4m g2

16π2

(

1
ǫ + ...

)

⇒ L ⊃ ZmZ2mψψ

Then, 2pt fn should be µ indep ⇒ − µ

m

∂m

∂µ
=

µ

Zm

∂Zm

∂µ
≡ γm(α)

Neglecting running α (!), solve as m(µH) = m(µL){1− γm ln µH
µL

+ ...
⇒1 loop RGEs give logs

Loop corrections to Contact Interactions/Operators cause running and mixing of
coefficients:

e

µ

t

t

Write a row vector ~C of operator coefficients

obtain µ∂ ~C/∂µ = ~C[γ]

solve as ~C(µH) = ~C(µL){1− [γ] ln µH
µL

+ [γγ] ln2+...

⇒ RGEs cause operators to mix into other operators, one-loop diagrams give mixing
∝ (α log)n



...to what order in loops and couplings?

common first-attempt in EFT:

match @tree, run at one-loop

its easy and independent of the renorm-scheme for contact interactions! :)

...but not come close to the correct results in µ→ eγ :(



The Two Higgs Doublet Model(2HDM) with LFV

Add a second doublet to the SM (suppose CP-conserving potential)

8 real fields - 3 goldstones = 5 Higgses = {h,H,A,H±}

1. a more complicated Higgs potential

V = M2
11H

†
1H1 + M2H

†
2H2 − [M2

12H
†
1H2 + h.c.]

+
1

2
λ1(H

†
1H1)

2
+

1

2
λ2(H

†
2H2)

2
+ λ3(H

†
1H1)(H

†
2H2) + λ4(H

†
1H2)(H

†
2H1)

+

{
1

2
λ5(H

†
1H2)

2
+
[
λ6(H

†
1H1) + λ7(H

†
2H2)

]
H

†
1H2 + h.c.

}
,

2. independent Yukawa matrices [Y F ], [ρF ] for each Higgs (⇔ FCNC = LFV)

−LY =

(
QjH̃1K

∗
ijY

U
i Ui + QiH1Y

D
i Di + LiH1Y

E
i Ei

)

+QiH̃2[K
†
ρ
U
]ijUj + QiH2[ρ

D
]ijDj + LiH2[ρ

E
]ijEj + h.c. ,

(Q,L SU(2) doublets, E,U,D singlets, K = CKM, H̃ = iσ2H
∗).

LFV ⇒ no discrete symmetry ⇒ no tanβ.
(I suppose discrete sym, except for µ-e).



The Two Higgs Doublet Model(2HDM) with LFV

Take decoupling limit ⇔ {H,A,H±} of mass ΛNP > 10mW

⇒ lowest order in the EFT expansion (= dim 6 operators) should work check later

⇒ h almost in the doublet containing vev and goldstones, misaligned by cβ−α.

NB, for counting powers of 1/Λ2: cβ−α ≃ λ6v
2/Λ2

Gunion-Haber

cβ−α suppresses h couplings to ēµ and to tanβ-enhanced Yukawas, and HWW .

LFV couplings of the neutral Higgses:

[ρE†]eµ√
2

cβ−α h(ePLµ) −[ρE†]eµ√
2

H(ePLµ) −i[ρ
E†]eµ√
2

A(ePLµ)



µ→ eγ in the Two Higgs Doublet Model(2HDM) with LFV

µ e

γ

φ

µ
x

µ e

γ

t, b, τ

γ, Z φ

µ e

γ

W

γ,Z φ

Bjorken-Weinberg

φ ∈ {h,H,A} 1 loop ∝
m2

µρeµ

16π2
≪ 2 loop ∝ m2

tρeµ
(16π2)2

ChangHouKeung
HisanoEtal

...
Amplitudes in literature... use neutral Higgs and QED diagrams of CHK

compare to EFT of dim6 operators, matching at tree and running with QED at
one-loop



Is it ok to neglect dimension eight operators?

Consider 2HDM in decoupling limit, ΛNP
>∼ 10v.

compare 1/Λ2
NP (= dim6) and 1/Λ4

NP (= dim8) parts of µ → eγ amplitude of
CHK:

dim8

dim6
∼ λi tanβ

v2

Λ2
NP

,
m2

W

Λ2
NP

ln2
m2

W

Λ2
NP

⇒ For reasonable Higgs potential parameters {λi}, and cot β, tanβ <∼ 50, the
1/Λ2

NP parts are larger than the 1/Λ4
NP terms.

But: would need dimension 8 to get numerically reliable result? (z ln2 z ∼ 0.2 for
z ∼ 0.01!)

* At dim6, one should find: Barr-Zee for H,A and t-loop,
Barr-Zee for h and W, t, b, τ -loop, and one-loop with h



matching at ΛNP ≃MA,H

match tree- level Greens fns mediated by heavy doublet:

H2

eL

µR

tL

tR

H2

e

µ

H1

H1

H1

ΛNP ≃MH

eL

µR

tL

tR

eL

µR

H1

H1

H1

−[ρE]eµ[ρ
U†]tt

Λ2
NP

(L
A

e Eµ)ǫAB(Q
B

t Ut) , − [ρE]eµλ6
Λ2
NP

H†
1H1LeH1Eµ



Run with QED (!) down to mW

µ
∂

∂µ
~C =

αem

4π
~CΓ

Γ = anomalous dimension matrix
ΓAB ∼ coefficient of e2

16π2ǫ
div, when dress operator A with a photon to obtain

Greens-fn of op B



Run with QED (!) down to mW

µ e

γ
t

γ

S

e

µ

t

t

+... ⇒ T

e

µ

t

t

(tσt)(eσµ)

→ CS

Λ2
NP

α

4π
(2Qt) ln

Λ

mW

T

e

µ

t

t

⇒ D

e

µ

→ CT

Λ2
NP

α

4π
(
8NcQtmt

e
) ln

Λ

mW

=
eα

32π3Λ2
3Q2

tmt[ρ
E]eµ[ρ

U†]tt log
2m

2
t

Λ2

!get O([α ln]2/Λ2) part of Barr-Zee diagram (for t, heavy Higgs) via 1-loop RGES!



Matching at mW ≈ mh ≈ mt

eL

µR

b

b

h

X

X
e

µ

µ

µ

h

X

X

mW

S

e

µ

b

b

S

e

µ

µ

µ

[Y D]bb[ρ
E]eµλ6v

2/2

m2
hΛ

2
NP

(µPRe)(bPRb) ,
[Y E]µµ[ρ

E]eµλ6v
2/2

m2
hΛ

2
NP

(ePRµ)(µPRµ)



Run with QED from mW to mµ

µ e

µ correctly reproduce the O(α ln /Λ2) part of one-loop diagram:

µ e

γ

h,H,A

only light Higgs h contributes at O(1/Λ2); heavy Higgses are O(1/Λ4).

Comment: important to change basis to QCD*QED invar ops below mW :
no SU(2)-invar (ePRµ)(µPRµ) — hypercharge only allows (LePREµ)(EPLL) .
⇔ EFT can reproduce the one-loop diagram only if use the QCD*QED basis below
mW .



2nd order QED running from mW to µµ
µ e

γ
b

γ

S

e

µ

b

b

+... ⇒ T

e

µ

b

b

T

e

µ

b

b

⇒ D

e

µ

= − eα

64π3Λ2
NP

3Q2
bmb[ρ

E]eµ[Y
D]bb log

2m
2
µ

m2
h

get O([α ln]2/Λ2) part of Barr-Zee diagram (for b, τ , light Higgs) via 1-loop RGES
(again, only if use the QCD*QED basis below mW )



What did I learn computing µ→ eγ in the 2HDM with EFT?

dimension six operators are probably an ok approximation
(but worry about logs and coupling hierachies)

its important to change operator basis at mW , from SU(2)-invariant operators
above, to QCD*QED invariant operators below.

EFT works! Obtained all [α ln]n/Λ2 terms, via trivial calculations. In particular,
obtained dominant part of Barr-Zee (2-loop!) diagrams of t-loop with heavy
Higgses, and b or τ -loop with light Higgs h.

my simplest-EFT, with tree-matching and one-loop running, missed the numerically
most important diagrams = Barr-Zee of h with t and W loop!... they arise in
2-loop matching (finite) at mW .

⇒ solution = go cherry-picking!
include n-loop matching if its finite and numerically relevant



Why are there finite and relevant loop matching contributions at mW ?

1. operator dimensions change at mW (Higgs field becomes vev)

rule of thumb: if run with 1-loop RGEs, match at tree — reasonable if same
diagram gives matching and running. But... Dim 6 LFV Higgs vertices:
H†HLµHEe contribute in loops to dim 8 dipole H†H(LeHσ · FEµ), so not
mix in RG running above mW to the dim6 dipole, but do contribute in matching
at mW .

µ e

γ

t

γ
h

2. abovemW , perturb in gi, loops and yukawas (many expansion parameters!)...two-
loop×y2t , g2 ≫ one-loop×y2µ



Finally, back to translating the µ→ eγ bound to Λ

LSM + LNP

match ΛNP

LSM + L(SM invar. Contact Interactions)
↑
|

{Z,W, γ, g, h, t, f} | SU(3)× SU(2)× U(1) RGEs
|
|

match mW ,mh,mt

LQCD∗QED + L′(QCD,QED invar. Contact Interactions)
↑
|

{γ, g, f} | RGEs of QCD × QED
|

(above here τ, c, b) |
µ→ eγ



Finally, back to translating the µ→ eγ bound to Λ

1. make a list of QCD×QED-invar operators, representing all 3,4 point interactions
of µ with e and γ, g, u, d, s, and τ, c, b.

Kuno+Okada... (see backup)



Finally, back to translating the µ→ eγ bound to Λ

1. make a list of QCD×QED-invar operators, representing all 3,4 point interactions
of µ with e and γ, g, u, d, s, and τ, c, b.

2. translate bound on Γ(µ→ eγ) to bounds on operator coefficients at tree
( Γ(µ−e conv.) and Γ(µ → eēe) in progress with Crivellin,Pruna,Signer...quark FC laaater...)

3. run up to mW with one-loop RGEs of QED



3: Run from mW to mµ with one-loop RGEs of QED
µ e

f1

f2 f2

µ e

f1

f2 f2

µ e

f2 f2

µ e

f2 f2

µ e

f2 f2

µ e

f2 f2

µ e

f2 f2

µ e

f2 f2

µ
∂

∂µ
~C =

αem

4π
~CΓ

QED: mixes ops, αem ≪ ⇒ solve in pert theory:

CA(mW )

(
δAB −

αem

4π
[Γ]AB log

mW

mτ

+
α2

em

32π2
[ΓΓ]AB log

2 mW

mτ

+ ..

)
= CB(mτ)

NB: at one loop: Γ =

[

ΓV 0
0 ΓSTD

]

... V →dipole mixing arises at 2-loop

(include vectors later...)

DegrassiGiudice



Bounds at mW

Translated to mW , the µ → eγ bound constrains two linear combinations of
operators:

Ceµ
D,L(mτ) ≃ Ceµ

D,L(mW ) − 1.0Ceµcc
T,LL(mW ) + 1.0Ceµττ

T,LL(mW ) + 1.8Ceµbb
T,LL(mW )

+10
−3
{
7.6C

eµµµ
S,LL(mW ) + 4.6C

eµττ
S,LL(mW ) + 1.4C

eµbb
S,LL(mW ) + 1.5C

eµcc
S,LL(mW )

}

Suppose charm tensor and the dipole:

   
D,L

10^8 C
-3 -2 -1 0 1 2 3

  
 

T,
L

L
1

0
^8

 C

-3

-2

-1

0

1

2

 

black (blue) lines is bound at mµ (mW )



Finally, back to translating the µ→ eγ bound to Λ

1. make a list of QCD×QED-invar operators, representing all 3,4 point interactions
of µ with e and γ, g, u, d, s, and τ, c, b.

2. translate bound on Γ(µ→ eγ) to bounds on operator coefficients at tree
( Γ(µ−e conv.) and Γ(µ → eēe) in progress with Crivellin,Pruna,Signer...quark FC laaater...)

3. run up to mW with one-loop RGEs of QED

4. at mW , perform finite matching to SU(2)-invar “BWP” operators — exercise

SM art of finding include largest finite contributions, be they tree, one- or

two-loop

5. run up with SM RGEs at one loop



Results (1-loop RGEs, finite matching)

µ→ eγ constrains 2 linear combos of coefficients. Bounds “one-at-a-time”:

γ dipole C < 1.2× 10−8

Z dipole × ln Λ
mW

C < 3.0× 10−6

LFV h cpling C < 7.5× 10−7

LFV Z penguin C < 1.2× 10−5

t tensor× ln Λ
mW

C < 2.0× 10−10

c tensor× ln Λ
mW

C < 2.8× 10−8

t scalar × ln2 Λ
mW

C < 3.1× 10−7

c scalar × ln2 Λ
mW

C < 6.0× 10−6

Operator coefficients −2
√
2GFC, except dipole −2

√
2GFCyµ ⇒ C ∼ v2/Λ2

(neglected op renorm, only include bds C < 10−4...maybe means ok to neglect dim 8?)



Summary : LFV in EFT

Did two things:
1 in decoupling limit of 2HDM, reproduce in EFT the numerically largest parts of
the (diagrammatic) µ→ eγ amplitude
2 translate the µ→ eγ bound from mµ to a scale ΛNP , where it constrains a linear
combo of coefficients of contact interactions

This could be useful and interesting because
⋆ for constraining models, its much easier to calculate finite matching coefficients
at ΛNP , than rates for µ→ eγ, µ→ eēe, and µ−e conv..
⋆ EFT should simplfy caln (does! got 2-loop Barr-Zee from one-loop divs). Would
be easy to include leading QCD effects, etc.

But EFT expansion in 1/Λ2 does not absolve from dealing with the complexity of
the SM (SSB, hierarchies in couplings)...e.g. in matching@mW , needed 1- or 2-loop
diagrams, finite and not contributing in running...

...lots to do! (best bd of every observable on every op at 2-loop?)



Backup



The operator basis for µ→ e flavour change below mp

KunoOkada

mµ(eσ
αβ

PYµ)Fαβ dim 5

(eγ
α
PYµ)(eγαPY e) (eγ

α
PYµ)(eγαPXe)

(ePYµ)(ePY e) dim 6

(eγαPYµ)(uγαPY u) (eγαPYµ)(uγαPXu)

(eγ
α
PYµ)(dγαPY d) (eγ

α
PYµ)(dγαPXd)

(ePYµ)(uPY u) (ePYµ)(uPXu)

(ePYµ)(dPY d) (ePYµ)(dPXd)

(eσPYµ)(uσPYu) (eσPYµ)(dσPY d)

1

mt

(ePYµ)GαβG
αβ

dim 7

1

mt
(ePY µ)FαβF

αβ ,
1

mt
(ePY µ)GαβG̃

αβ 1

mt
(ePY µ)FαβF̃

αβ ...zzz...

(plus operators with d↔ s). µ→ eγ, µ→ eēe, and µ−e conv. are sensitive to all
but a few of new 3 or 4-point µ-e interactions
(PX, PY = (1± γ5)/2)



Some more operators above mτ ,mc,mb

At a slightly higher scale, operators containing c, b µ and τ bilinears should be
included:

4 lepton Oeµll
Y Y = 1

2(eγ
αPY µ)(lγ

αPY l) , Oeµll
Y X = 1

2(eγ
αPY µ)(lγ

αPXl)

Oeµll
S,Y Y = (ePY µ)(lPY l) Oeµττ

S,Y X = (ePY µ)(τPXτ)

Oeµττ
T,Y Y = (eσPY µ)(τσPY τ)

2 lepton 2 quark Oeµqq
Y Y = 1

2(eγ
αPY µ)(qγ

αPY q) , Oeµqq
Y X = 1

2(eγ
αPY µ)(qγ

αPXq)
Oeµqq

S,Y Y = (ePY µ)(qPY q) , Oeµqq
S,Y X = (ePY µ)(qPXq)

Oeµqq
T,Y Y = (eσPY µ)(qσPY q)

where l ∈ {µ, τ}, q ∈ {c, b}, X,Y ∈ {L,R}, and X 6= Y .



Constraining the operator-zoo with 3 processes?

some processes current sensitivities future sensitivities?
BR(µ→ eγ) < 5.7× 10−13 ∼ 10−14 (2016, MEG)
BR(µ→ eēe) < 1.0× 10−12 ∼ 10−14 → 10−16 (2018, PSI)
σ(µ+Au→e+Au)

σ(µ capture) < 7× 10−13 ∼ few 10−17 (Mu2e,COMET)...



Trivia about Fiertz and tensors for chiral fermions

Tensor operators are always:

(eσαβPXµ)(ψσαβPXχ)

because σµν = i
2εµναβσ

αβγ5, which implies

(eσαβPLµ)(ψσαβPRχ) ≡ 0

So the only SU(2)-invariant, dimension-six tensors that one can construct, are

(L
A

e σ
µνEµ)ǫAB(Q

B

nσµνUm) (L
A

µσ
µνEe)ǫAB(Q

B

nσµνUm)

that is, tensors with d-type quarks or leptons only exist at dim 6 below mW .

(This is relevant for µ→ eγ, because tensors mix to the dipole in QED running.)

And,btw

(eσαβPY µ)(ψσαβPY χ) =
1

2
(eσαβµ)(ψσαβχ)



Why not just the best bound on each operator?
⇔ why want contribution of each operator to each observable?

1. A Z penguin gives τ̄ Z/ µ, which contributes at tree to τ → µl̄l, in combination
with (µ̄Γτ)(l̄Γl):

τ

µ µ

µ

+

µ

τ

µ

µ

Z

2. Can ask “is is interesting for the LHC to search for Z → τ±µ∓?”
For LHC8 to see, need penguin coefficient >∼ “naive” bound from τ → µl̄l

(“naive” = neglect possible cancellation with 4-f operator).

⇒ cancellations possible; but what about
the bound on the penguin from τ → µγ? τ

γ

µZ

τ → µγ bound negligeable, so interesting for LHC to look for τ → µγ.
Same argument suggests they should not see Z → µ±e∓.



The BWP basis: 2q2l and 4l

O(1)eµnm
LQ =

1

2
(Leγ

αLµ)(Qnγ
αQm) O(3)eµnm

LQ =
1

2
(Leγ

ατaLµ)(Qnγ
ατaQm)

Oeµnm
EQ =

1

2
(Eeγ

α
Eµ)(Qnγ

α
Qm)

Oeµnm
LU =

1

2
(Leγ

αLµ)(Unγ
αUm) Oeµnm

LD =
1

2
(Leγ

αLµ)(Dnγ
αDm)

Oeµnm
EU =

1

2
(Eeγ

α
Eµ)(Unγ

α
Um) Oeµnm

ED =
1

2
(Eeγ

α
Eµ)(Dnγ

α
Dm)

Oeµnm
LEQU = (L

A

e Eµ)ǫAB(Q
B

nUm) Oµenm
LEQU = (L

A

µEe)ǫAB(Q
B

nUm)

Oeµnm
LEDQ = (LeEµ)(DnQm) Oµenm

LEDQ = (LµEe)(DnQm)

Oeµnm
T,LEQU = (L

A

e σ
µν
Eµ)ǫAB(Q

B

nσµνUm) Oµenm
T,LEQU = (L

A

µσ
µν
Ee)ǫAB(Q

B

nσµνUm)

Oeµii
LL =

1

2
(Leγ

α
Lµ)(Liγ

α
Li)

Oeµii
LE =

1

2
(Leγ

α
Lµ)(Eiγ

α
Ei) Oiieµ

LE =
1

2
(Liγ

α
Li)(Eeγ

α
Eµ)

Oeµii
EE =

1

2
(Eeγ

αEµ)(Eiγ
αEi)

−
1

2
Oeττµ

LE = (LeEµ)(EτLτ) −
1

2
Oµττe

LE = (LµEe)(EτLτ)





The BWP basis: 2l

Oeµ
EH = H†HLeHEµ Oµe

EH = H†HLµHEe

Oeµ
eW = yµ(Le~τ

aHσαβEµ)W
a
αβ Oµe

eW = yµ(Lµ~τ
aHσαβEe)W

a
αβ

Oeµ
eB = yµ(LeHσ

αβEµ)Bαβ Oµe
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(The sign in the covariant derivative fixes the sign of the penguin operator and the
SM Z vertex.)


