Max Planck Institute for Nuclear Physics, Heidelberg June 14 2021

Effective field theory approach to neutrino-less double beta decay

Vincenzo Cirigliano Los Alamos National Laboratory

LA-UR-21-25541

Outline

- Introduction:
 - $0\nu\beta\beta$ and LNV
 - `End-to-end' EFT framework
- $0\nu\beta\beta$ from light Majorana ν exchange (high scale seesaw) in EFT
- Conclusion and outlook

Outline

- Introduction:
 - $0\nu\beta\beta$ and LNV
 - `End-to-end' EFT framework
- $0\nu\beta\beta$ from light Majorana ν exchange (high scale seesaw) in EFT
- Conclusion and outlook

Special thanks to collaborators: W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, M. Piarulli, U. van Kolck, A. Walker-Loud, R. Wiringa

> DBD Nuclear Theory Topical Collaboration (PI Jon Engel): http://c51.lbl.gov/~0nubb/webhome/

Introduction

for which single beta decay is energetically forbidden

Neutrinoless double beta decay ($0\nu\beta\beta$) $(N,Z) \to (N-2,Z+2) + e^- + e^ 2\nu\beta\beta$ 0.8 $0v\beta\beta$ 0.6 dN/dE $T_{1/2} > 10^{25} yr$ $\Delta L=2$ 0.2 0.2 0.4 0.6 0.8 1.0 $E/Q_{\beta\beta}$

- Observable in certain even-even nuclei (⁴⁸Ca, ⁷⁶Ge, ¹³⁶Xe, ...), for which single beta decay is energetically forbidden
- B-L conserved in the SM \rightarrow new physics, with far-reaching implications
 - Demonstrate that neutrinos are Majorana fermions
 - Establish key ingredient of leptogenesis

$$m_M \ \psi_L^T \ C \psi_L + \text{h.c.}$$

Majorana mass term: $\Delta L=2$

Fukugita-Yanagida 1987

$0\nu\beta\beta$ physics reach

• $0\nu\beta\beta$ searches at the level of $T_{1/2} > 10^{27-28}$ yr (ton scale and beyond) probe $\Delta L=2$ physics at unprecedented levels from a variety of mechanisms

I/Coupling

$0\nu\beta\beta$ physics reach

• $0\nu\beta\beta$ searches at the level of $T_{1/2} > 10^{27-28}$ yr (ton scale and beyond) probe $\Delta L=2$ physics at unprecedented levels from a variety of mechanisms

5

I/Coupling

Some reviews: Rodejohann 1106.1334, Vergados-Eijiri-Simkovic 1205.0649 Deppisch-Hirsch-Pas 1208.0727 deGouvea-Vogel 1303.4097

Vast literature, with varying degree of enthusiasm for EFT tools

Some papers:

VC-Dekens-deVries-Graesser-Mereghetti, 1806.02780 Neacsu-Horoi 1801.04496. Graf-Deppisch-Iachello-Kotila, 1806.06058

Prezeau, Ramsey-Musolf, Vogel, hep-ph/0303205 Pas, Hirsch, Klapdor-Kleingrothaus, Kovalenko, hep-ph/0008182

$0\nu\beta\beta$ physics reach

• $0\nu\beta\beta$ searches at the level of $T_{1/2} > 10^{27-28}$ yr (ton scale and beyond) probe $\Delta L=2$ physics at unprecedented levels from a variety of mechanisms

 $0\nu\beta\beta$'s impact and relation to other probes of LNV is best analyzed via EFT, that connects LNV scale Λ to nuclear scales

`End-to-end' EFT framework for $0\nu\beta\beta$

`End-to-end' EFT framework for $0\nu\beta\beta$

End-to-end' EFT framework for $0\nu\beta\beta$

`End-to-end' EFT framework for $0\nu\beta\beta$

0vββ from light Majorana v (dim-5 operator)

The 'standard mechanism'

LNV originates at very high scale

 (∧ >> v) → dominant low-energy
 remnant is Weinberg's dim-5 operator:

$$\mathcal{L}_5 = \frac{w_{\alpha\alpha'}}{\Lambda} L^T_{\alpha} C \epsilon H H^T \epsilon L_{\alpha'}$$

 Below the weak scale this is just the neutrino Majorana mass (m_{ββ} ~ w_{ee} v²/Λ) Ex: Type I see-saw with heavy ν_{R}

The 'standard mechanism'

LNV originates at very high scale

 (∧ >> v) → dominant low-energy
 remnant is Weinberg's dim-5 operator:

$$\mathcal{L}_5 = \frac{w_{\alpha\alpha'}}{\Lambda} L^T_{\alpha} C \epsilon H H^T \epsilon L_{\alpha'}$$

 Below the weak scale this is just the neutrino Majorana mass (m_{ββ} ~ w_{ee} v²/Λ)

• $0\nu\beta\beta$ mediated by *active* ν_M with amplitude proportional to $m_{\beta\beta}$

Ex: Type I see-saw with heavy ν_{R}

 $\propto m_{\beta\beta}$

Discovery potential / target

• In this case $0\nu\beta\beta$ is a direct probe of ν Majorana mass: $\Gamma \propto |M_{0\nu}|^2 (m_{\beta\beta})^2$

Discovery potential / target

• In this case $0\nu\beta\beta$ is a direct probe of ν Majorana mass: $\Gamma \propto |M_{0\nu}|^2 (m_{\beta\beta})^2$

Assuming current range for matrix elements, discovery @ ton-scale possible for inverted spectrum or m_{lightest} > 50 meV

Diagnosing power

• High scale seesaw implies falsifiable correlation with other v mass probes.

Diagnosing power

• High scale seesaw implies falsifiable correlation with other V mass probes. Future data can unravel new LNV sources or physics beyond " Λ CDM + m_v"

Theory status / developments

 Snapshot as of a few years ago [recall Γ∝ |M_{0ν}|² (m_{ββ})²]

- Steps towards controlled uncertainties in matrix elements:
 - Use chiral EFT as guiding principle
 - Compute *hadronic* matrix elements with QCD-based methods
 - Ab initio nuclear structure calculations: light nuclei, ⁴⁸Ca , ⁷⁶Ge, ...

Pastore et al., 1710.05026; Yao et al., 1908.05424; Belley et al.; 2008.06588; Novario et al., 2008.09696

Theory status / developments

 Snapshot as of a few years ago [recall Γ∝ |M_{0ν}|² (m_{ββ})²]

- Steps towards controlled uncertainties in matrix elements:
 - Use chiral EFT as guiding principle
 - Compute hadronic matrix elements with QCD-based methods
 - Ab initio nuclear structure calculations: light nuclei, ⁴⁸Ca , ⁷⁶Ge, ...

Pastore et al., 1710.05026; Yao et al., 1908.05424; Belley et al.; 2008.06588; Novario et al., 2008.09696

LNV hadronic amplitudes such as nn → ppee receive contributions from neutrino of all virtualities (k)

Chiral EFT captures contributions from all relevant momentum regions

- At $E \sim \Lambda_X \sim m_N \sim GeV$ integrate out hard V's and gluons (E, $|\mathbf{k}| > \Lambda_X$)
- Map $\Delta L=2$ Lagrangian onto π , N operators, organized according to power-counting in Q/Λ_X (Q ~ k_F ~ m_π)

- At $E \sim \Lambda_X \sim m_N \sim GeV$ integrate out hard V's and gluons (E, $|\mathbf{k}| > \Lambda_X$)
- Map $\Delta L=2$ Lagrangian onto π , N operators, organized according to power-counting in Q/Λ_X ($Q \sim k_F \sim m_\pi$)
- Integrate out soft and potential V's and π's with (E,|k|)~Q and (E,|k|)~(Q²/m_N, Q) → obtain 2-body transition operator ('potential')

- At $E \sim \Lambda_X \sim m_N \sim GeV$ integrate out hard V's and gluons (E, $|\mathbf{k}| > \Lambda_X$)
- Map $\Delta L=2$ Lagrangian onto π , N operators, organized according to power-counting in Q/Λ_X ($Q \sim k_F \sim m_\pi$)
- Integrate out soft and potential V's and π's with (E,|k|)~Q and (E,|k|)~(Q²/m_N, Q) → obtain 2-body transition operator ('potential')

• Final step: take matrix element of $V_{I=2}$ in nuclear states

Next discuss LO terms in the expansion in $Q/\Lambda_{\!X}$

Details & beyond LO: 1710.01729, 1802.10097, 1907.11254

New insights from EFT

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 1802.10097, Phys.Rev.Lett. 120 (2018) no.20, 202001

- Transition operator to leading order (LO) in Q/Λ_{χ} (Q~k_F~m_T, Λ_{χ} ~GeV)
 - 'Usual' V_M exchange ~ I/Q^2

 $V_{\nu}^{(a,b)} = \frac{J^{(a)}(\mathbf{q})J^{(b)}(-\mathbf{q})}{\mathbf{q}^2} \tau^{(a)+}\tau^{(b)+}$

New insights from EFT

V. Cirigliano, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, S. Pastore, U. van Kolck 1802.10097, Phys.Rev.Lett. 120 (2018) no.20, 202001

- Transition operator to leading order (LO) in Q/Λ_{χ} (Q~k_F~m_T, Λ_{χ} ~GeV)
 - 'Usual' V_M exchange ~ I/Q^2

$$V_{\nu}^{(a,b)} = \frac{J^{(a)}(\mathbf{q})J^{(b)}(-\mathbf{q})}{\mathbf{q}^2} \tau^{(a)+}\tau^{(b)+}$$

 'New': short-range coupling g_V ~ I/F_π² ~ I/k_F², required by renormalization of nn→ppee amplitude

٧м

 $g_{\rm V}$ encodes the physics of high- and intermediate-momentum $V_{\rm M}$

Why is the contact term LO?

Weinberg 1991, Kaplan-Savage-Wise 1996

 Study nn→ppee amplitude (in ¹S₀ channel) to LO, including strong potential

 $\tilde{C} \sim 4\pi/(m_N Q) \sim 1/F_{\pi^2}$ from fit to a_{NN}

Why is the contact term LO?

Weinberg 1991, Kaplan-Savage-Wise 1996

 Study nn→ppee amplitude (in ¹S₀ channel) to LO, including strong potential

 $\tilde{C} \sim 4\pi/(m_N Q) \sim 1/F_{\pi^2}$ from fit to a_{NN}

• Renormalization requires contact operator at LO

• Coupling flows to $g_v \sim 1/Q^2 \sim 1/F_{\pi^2}$, same order as V_M exchange!

Connection with data?

• Chiral+isospin symmetry relates g_v to I=2 e.m. couplings (hard γ 's & ν 's)

- NN data $(a_{nn}+a_{pp}-2a_{np})$ determine C_1+C_2 , confirming LO scaling!
- Assuming $g_{\nu} \sim (C_1 + C_2)/2$, what is the impact on $m_{\beta\beta}$ extraction?

Impact on nuclear matrix elements

VC, W. Dekens, J. de Vries, M. Graesser, E. Mereghetti, <u>S. Pastore,</u> <u>M. Piarulli</u>, U. van Kolck, <u>R. Wiringa</u>, 1907.11254

Transitions of experimental interest (⁷⁶Ge \rightarrow ⁷⁶Se, ...) have node ($\Delta I=2$) \Rightarrow expect significant effect!

Challenge: determination of g_{v}

- Large-N_C arguments point to $g_v \sim (C_1 + C_2)/2 [1 + O(1/N_C)]$
- Richardson, Shindler, Pastore Springer, 2102.02814
- Compute nn→ppee in full theory and match to EFT expression

Lattice QCD

• $\pi^- \rightarrow \pi^+ e^- e^-$ precisely known

Tuo et al. 1909.13525; Detmold, Murphy 2004.07404

• Formalism for NN developed

Davoudi, Kadam, 2012.02083

Analytic approach

Inspired by the Cottingham approach to electromagnetic nucleon mass splitting

VC, Dekens, deVries, Hoferichter, Mereghetti, 2012.11602 (PRL), 2102.03371 (JHEP)

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\alpha\beta}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp | T\{j_{\rm w}^{\alpha}(x)j_{\rm w}^{\beta}(0)\} | nn \rangle$$

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\alpha\beta}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp|T\{j_{\rm w}^{\alpha}(x)j_{\rm w}^{\beta}(0)\}|nn\rangle$$

- Introduce separation scale Λ ~ I-2 GeV, corresponding to onset of QCD asymptotic behavior
- Split `full theory' amplitude into "<" and ">" components, corresponding to |k| < Λ and |k| > Λ
- Use appropriate degrees of freedom in each region

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\alpha\beta}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp | T\{j_{\rm w}^{\alpha}(x)j_{\rm w}^{\beta}(0)\} | nn \rangle$$

- Low momentum: chiral EFT up to NLO
- Extend to intermediate momentum |k| ~ Λ: resonance contributions to nucleon weak form factors and ^IS₀ NN vertex

• Integral representation of the amplitude

$$\mathcal{A}_{\nu} \propto \int \frac{d^4k}{(2\pi)^4} \frac{g_{\alpha\beta}}{k^2 + i\epsilon} \int d^4x \, e^{ik \cdot x} \langle pp | T\{j_{\rm w}^{\alpha}(x)j_{\rm w}^{\beta}(0)\} | nn \rangle$$

• High momentum ($|\mathbf{k}| > \Lambda$): QCD operator product expansion

Results & validation

• LECs in dim. reg. with modified minimal subtraction

$$egin{aligned} ilde{\mathcal{C}}_1(\mu_\chi=M_\pi) &= 1.3(6) \ (ilde{\mathcal{C}}_1+ ilde{\mathcal{C}}_2)(\mu_\chi=M_\pi) &= 2.9(1.2) \ \end{bmatrix} \ egin{aligned} C_{1,2} &= \left(rac{m_N C_{1S_0}}{4\pi}
ight)^2 ilde{\mathcal{C}}_{1,2} \ g_
u &= C_1 \end{aligned}$$

Results & validation

• LECs in dim. reg. with modified minimal subtraction

$$egin{aligned} ilde{\mathcal{C}}_1(\mu_\chi=M_\pi) &= 1.3(6) \ (ilde{\mathcal{C}}_1+ ilde{\mathcal{C}}_2)(\mu_\chi=M_\pi) &= 2.9(1.2) \ \end{bmatrix} egin{aligned} & \mathcal{C}_{1,2} &= \left(rac{m_N C_{1S_0}}{4\pi}
ight)^2 ilde{\mathcal{C}}_{1,2} \ g_
u &= C_1 \end{aligned}$$

• Validation: use C_1+C_2 to predict CIB scattering lengths to LO in χEFT

$$a_{\text{CIB}} = \frac{a_{nn} + a_{pp}^C}{2} - a_{np} = 15.5^{+4.5}_{-4.0} \,\text{fm}$$
 vs $10.4(2) \,\text{fm}$, from data

Fairly good agreement.

Note: $(C_1+C_2)(M_{\pi})=0 \rightarrow a_{CIB} \sim 30$ fm: contact term pushes result in the right direction.

Uncertainty estimate is realistic

Connecting to nuclear structure

• Provided 'synthetic data' for the nn \rightarrow pp amplitude to be used to fit g_v with regulators suitable for many-body nuclear calculations

$$|\mathbf{p}| = 25 \,\text{MeV} \qquad |\mathbf{p}'| = 30 \,\text{MeV}$$
$$\mathcal{A}_{\nu}(|\mathbf{p}|, |\mathbf{p}'|)e^{-i(\delta_{1_{S_0}}(|\mathbf{p}|) + \delta_{1_{S_0}}(|\mathbf{p}'|))} = -0.0195(5) \,\text{MeV}^{-2}$$

Uncertainty dominated by topology C (fractional error of ~30-40%), but A and B give large contribution to the amplitude at this kinematic point

Connecting to nuclear structure

• Provided 'synthetic data' for the nn \rightarrow pp amplitude to be used to fit g_{v} with regulators suitable for many-body nuclear calculations

$$|\mathbf{p}| = 25 \,\mathrm{MeV} \qquad |\mathbf{p}'| = 30 \,\mathrm{MeV}$$
$$\mathcal{A}_{\nu}(|\mathbf{p}|, |\mathbf{p}'|)e^{-i(\delta_{1_{S_0}}(|\mathbf{p}|) + \delta_{1_{S_0}}(|\mathbf{p}'|))} = -0.0195(5) \,\mathrm{MeV}^{-2}$$

- Illustrated fitting procedure with various cutoffs
- Constructive or destructive? The sign of the interference is regulator dependent!

Many body calculation

Wirth, Yao, Hergert, 2105.05415

- First calculation of ${}^{48}Ca \rightarrow {}^{48}Ti$ with contact fitted to synthetic datum
- Use Entem-Machleidt class of chiral potentials

• Contact term enhances nuclear matrix element by (43±7)%

What about higher orders?

• New non-factorizable contributions to $V_{\nu,2} \sim V_{\nu,0} (k_F/4\pi F_{\pi})^2 [\pi$ -N loops and <u>new contact terms]</u>

VC, W. Dekens, E. Mereghetti, A. Walker-Loud, 1710.01729

• 2-body **x** 1-body current (and <u>another contact</u>...)

Wang-Engel-Yao 1805.10276

Calculations in light and heavy nuclei show O(10%) corrections

S. Pastore, J. Carlson, V.C., W. Dekens, E. Mereghetti, R. Wiringa 1710.05026 V.C., J. Engel, X. Menendez, E. Mereghetti, in preparation

What about higher orders?

• New non-factorizable contributions to $V_{v,2} \sim V_{v,0} (k_F/4\pi F_\pi)^2 [\pi-N \log s]$ and new contact terms]

Chiral EFT + estimate of contact term + many-body \rightarrow

Significant step towards reduction of matrix element uncertainty & robust interpretation of a positive or null result in terms of m_{ββ}

Wang-Engel-Yao 1805.10276

Calculations in light and heavy nuclei show O(10%) corrections

S. Pastore, J. Carlson, V.C., W. Dekens, E. Mereghetti, R. Wiringa 1710.05026 V.C., J. Engel, X. Menendez, E. Mereghetti, in preparation

Conclusions

- 'End-to-end' EFT framework for 0vββ: (1) connect to underlying sources of LNV; (2) organize contributions to nuclear matrix elements according to chiral power counting: controllable errors
- Identified new leading order NN contact couplings in light v exchange (discussed today) and TeV-scale mechanisms (dim-9 ops)
- Estimated the 'dim-5' contact with Cottingham-inspired techniques
- First many-body analysis fitted to our synthetic data shows $(43\pm7)\%$ increase in the nuclear matrix element for ${}^{48}Ca \rightarrow {}^{48}Ti$
- Good prospects to control theory uncertainties thanks to synergy of EFT, lattice QCD, and nuclear structure