PHYSICS WITH ATMOSPHERIC NEUTRINOS

Sandhya Choubey

KTH Royal Institute of Technology, Stockholm, Sweden & Harish-Chandra Research Institute, Allahabad, India

ATMOSPHERIC NEUTRINOS

ATMOSPHERIC NEUTRINO FLUXES

*****The flux ratio starts at 2, but then quickly rises

***** The rate of this rise is more for vertical bins

 $At E \sim 7$ GeV, the flux ratio for center-crossing bin is close to 5

Physics with atmospheric neutrinos

Sandhya Choubey

Monday, 10 November 14

Sandhya Choubey

03.11.14

ATMOSPHERIC NEUTRINO EXPERIMENTS

Detection of atmospheric *neutrino at Kolar Gold Field in 1965*

The announcement of the discovery of neutrino oscillation at Neutrino 98 by T. Kajita

Slide courtesy N.K. Mondal

03.11.14

Physics with atmospheric neutrinos

Sandhya Choubey

***No dependence on the sign of ∆m² ***No dependence on the octant of theta23 *The third generation! **No possibility of any CP violation

Physics with atmospheric neutrinos

Sandhya Choubey

Three Flavor Oscillations in Vacuum

Flavor Eigenstates ≠ Mass Eigenstates

 $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$P_{\beta\gamma}(L) = \delta_{\beta\gamma} - 4\sum_{j>1} Re\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right) \frac{\sin^2 \Delta m_{ij}^2 L}{4E}$$
$$\pm 2\sum_{j>1} Im\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right) \frac{\sin \Delta m_{ij}^2 L}{2E}.$$

Physics with atmospheric neutrinos

Sandhya Choubey

Three Flavor Oscillations in Vacuum

Flavor Eigenstates ≠ Mass Eigenstates

 $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$P_{\beta\gamma}(L) = \delta_{\beta\gamma} -4\sum_{j>1} Re\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right) \frac{\sin^{2}\Delta m_{ij}^{2}L}{4E} CP dependent$$
$$\pm 2\sum_{j>1} Im\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right) \frac{\sin\Delta m_{ij}^{2}L}{2E} sign of \Delta m^{2} dependent$$

Physics with atmospheric neutrinos

Sandhya Choubey

Three Flavor Oscillations in Vacuum

Flavor Eigenstates ≠ Mass Eigenstates

 $|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i} |\nu_{i}\rangle$

$$U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

$$P_{\beta\gamma}(L) = \delta_{\beta\gamma} -4\sum_{j>1} Re\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right) \frac{\sin^{2}\Delta m_{ij}^{2}L}{4E}$$
CP dependent

$$+2\sum_{j>1} Im\left(U_{\beta i}U_{\gamma i}^{\star}U_{\beta j}^{\star}U_{\gamma j}\right) \frac{\sin\Delta m_{ij}^{2}L}{2E}$$
Sign of Δm^{2}
dependent

Physics with atmospheric neutrinos

Sandhya Choubey

Three Flavor Oscillations in Matter

Flavor Eigenstates ≠ Mass Eigenstates
 $|ν_α⟩ = \sum_i U^m_{\alpha i} |ν^m_i⟩$

$$U^{m} = \begin{pmatrix} c_{12}^{m} c_{13}^{m} & s_{12}^{m} c_{13}^{m} & s_{13}^{m} e^{-i\delta^{m}} \\ -s_{12}^{m} c_{23}^{m} - c_{12}^{m} s_{23}^{m} s_{13}^{m} e^{i\delta^{m}} & c_{12}^{m} c_{23}^{m} - s_{12}^{m} s_{23}^{m} s_{13}^{m} e^{i\delta^{m}} & s_{23}^{m} c_{13}^{m} \\ s_{12}^{m} s_{23}^{m} - c_{12}^{m} c_{23}^{m} s_{13}^{m} e^{i\delta^{m}} & -c_{12}^{m} s_{23}^{m} - s_{12}^{m} c_{23}^{m} s_{13}^{m} e^{i\delta^{m}} & c_{23}^{m} c_{13}^{m} \end{pmatrix}$$

$$P_{\beta\gamma}^{m}(L) = \delta_{\beta\gamma} -4\sum_{j>1} Re\left(U_{\beta i}^{m}U_{\gamma i}^{m\star}U_{\beta j}^{m\star}U_{\gamma j}^{m}\right) \frac{\sin^{2}\left(\Delta m_{ij}^{2}\right)^{m}L}{4E}$$
$$\pm 2\sum_{j>1} Im\left(U_{\beta i}^{m}U_{\gamma i}^{m\star}U_{\beta j}^{m\star}U_{\gamma j}^{m}\right) \frac{\sin\left(\Delta m_{ij}^{2}\right)^{m}L}{2E}.$$

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

Three Flavor Oscillations in Matter

- Mass squared difference in matter changes to: $(\Delta m_{31}^2)^m = \sqrt{(\Delta m_{31}^2 \cos 2\theta_{13} - A)^2 + (\Delta m_{31}^2 \sin 2\theta_{13})^2}$
- Mixing angle in matter changes to: $\sin 2\theta_{13}^m = \sin 2\theta_{13} \frac{\Delta m_{31}^2}{(\Delta m_{31}^2)^m}$
- Both of these depend on the sign of Δm_{31}^2
- Effect is opposite for neutrinos and antineutrinos
 - When $A = \Delta m_{31}^2 \cos 2\theta_{13}$

 $\sin 2\theta_{13}^m = 1$

Matter Enhanced (MSW) Resonance

Wolfenstein 1978, Mikheyev and Smirnov 1985-6

03.11.14

Physics with atmospheric neutrinos

Sandhya Choubey

ATMOSPHERIC NEUTRINO OSCILLATIONS

* Atm neutrinos cover a wide energy band (100 MeV to 100 TeV)

* Atmospheric neutrinos cover long distances in matter

For $\Delta m_{31}^2 = 2.5 \times 10^{-3} eV^2$ and $\rho = 4 \text{ gm/cc}, E_{res} = 7.5 \text{ GeV}$ * L=7000 km 0.8 **MUONS** 0.6 $\lim_{\Delta m_{21}^2 \to 0} P_{\mu\mu}(L,E) = 1 - P_{\mu\mu}^1(L,E) - P_{\mu\mu}^2(L,E) - P_{\mu\mu}^3(L,E) - P_{\mu\mu}^3(L,E) = 0.6$ 0.2 0 0.8 $P_{\mu\mu}^{1}(L,E) = \sin^{2}\theta_{13}^{m}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})-(\Delta m_{31}^{2})^{m}}{8E}L$ 0.6 a[≝] 0.4 $P_{\mu\mu}^{2}(L,E) = \cos^{2}\theta_{13}^{m}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})+(\Delta m_{31}^{2})^{m}}{{}_{8E}}L$ L=9000 km 0.2 0 $P^{3}_{\mu\mu}(L,E) = \sin^{2} 2\theta^{m}_{13} \sin^{4} \theta_{23} \sin^{2} \frac{(\Delta m^{2}_{31})^{m}}{{}^{4}E} L$ 0.8 0.6 പ[≝] 0.4 L=11000 km Effect of matter is large at the osc max and min 0 5 9 11 E (GeV) S.C., Roy, 2005 Physics with atmospheric neutrinos Sandhya Choubey

* Matter effects fluctuate rapidly with É and cosθ_{zenith}
* Good E and cosθ_{zenith} resolution helps
* Effect opposite for nu and anti-nu ---- charge discrimination helps
* Larger detector and hence larger statistics helps

Physics with atmospheric neutrinos

ATMOSPHERIC MUON NEUTRINO OSCILLATIONS

 $\lim_{\Delta m_{21}^2 \to 0} P_{\mu\mu}(L, E) = 1 - P_{\mu\mu}^1(L, E) - P_{\mu\mu}^2(L, E) - P_{\mu\mu}^3(L, E)$

$$P_{\mu\mu}^{1}(L,E) = \sin^{2}\theta_{13}^{m}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})-(\Delta m_{31}^{2})^{m}}{8E}L$$

$$P_{\mu\mu}^{2}(L,E) = \cos^{2}\theta_{13}^{m}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})+(\Delta m_{31}^{2})^{m}}{8E}L$$

$$P_{\mu\mu}^{3}(L,E) = \sin^{2}2\theta_{13}^{m}\sin^{4}\theta_{23}\sin^{2}\frac{(\Delta m_{31}^{2})^{m}}{4E}L$$

 $\lim_{\Delta m_{21}^2 \to 0} P_{\mu e}(L, E) = \sin^2 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 \frac{(\Delta m_{31}^2)^m L}{4E}$

Contribution from the muon nu flux

Contribution from the e nu flux

 $\Phi_{\mu}(detector) = \Phi_{\mu}^{0}(P_{\mu\mu} + (\Phi_{e}^{0}/\Phi_{\mu}^{0})P_{e\mu}) = \Phi_{\mu}^{0}(1 - P_{\mu\mu}^{1} - P_{\mu\mu}^{2} - (\sin^{2}\theta_{23} - \Phi_{e}^{0}/\Phi_{\mu}^{0})P_{e\mu})$

Earth matter effects in the two terms partially cancel each other

Physics with atmospheric neutrinos

Sandhya Choubey

ATMOSPHERIC ELECTRON NEUTRINO OSCILLATIONS

$$P_{ee} = 1 - \sin^2 2\theta_{13}^m \sin^2 \left[1.27 (\Delta m_{31}^2)^m L/E \right]$$

Contribution from the e nu flux

$$\lim_{\Delta m_{21}^2 \to 0} P_{\mu e}(L, E) = \sin^2 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 \frac{(\Delta m_{31}^2)^m L}{4E}$$

Contribution from the muon nu flux

 $\Phi_e(detector) = \Phi_e^0(P_{ee} + (\Phi_{\mu}^0/\Phi_e^0)P_{\mu e}) = \Phi_e^0(1 - (\frac{1}{\sin^2\theta_{23}} - \Phi_{\mu}^0/\Phi_e^0)P_{e\mu})$

* Earth matter effects in the two terms partially cancel each other

Physics with atmospheric neutrinos

Sandhya Choubey

CURRENT STATUS

9

Super-Kamiokande Data

Monday, 10 November 14

WHAT WE HAVE LEARNED

* Experiments are mutually consistent

R. Wendell, Talk at Neutrino 2014

03.11.14

17

Physics with atmospheric neutrinos

Sandhya Choubey

WHAT WE HAVE LEARNED

Physics with atmospheric neutrinos

Sandhya Choubey

WHAT WE STILL HAVE TO LEARN

The neutrino mass ordering (MH)...

CP violation in the lepton sector...

• Octant of the mixing angle θ_{23} ...

Beyond 3-flavor oscillation physics..

Physics with atmospheric neutrinos

Sandhya Choubey

WHAT WE STILL HAVE TO LEARN

The neutrino mass ordering (MH)...

CP violation in the lepton sector...

• Octant of the mixing angle θ_{23} ...

Beyond 3-flavor oscillation physics..

Physics with atmospheric neutrinos

Sandhya Choubey

WHAT WE STILL HAVE TO LEARN

The neutrino mass ordering (MH)...

CP violation in the lepton sector ...

Octant of the mixing angle θ_{23} ...

Beyond 3-flavor oscillation physics..

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

FUTURE ATMOSPHERIC NEUTRINO EXPERIMENTS

Megaton-class Water Cerenkov Detectors

Good zenith angle resoln
e vs mu discrimination
low E threshold
statistical separation of nue vs anti-nue

*** large statistics*

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

 3σ sensitivity in less than 5 yrs

Physics with atmospheric neutrinos

Sandhya Choubey

FUTURE ATMOSPHERIC NEUTRINO EXPERIMENTS

Multi-megaton Ice/Water Detectors

* e vs mu discrimination

03.11.14

<u> * very large statistics</u>

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

FUTURE ATMOSPHERIC NEUTRINO EXPERIMENTS

Large Magnetized Iron Detectors

***** good statistics

Physics with atmospheric neutrinos

Sandhya Choubey

Physics with atmospheric neutrinos

Sandhya Choubey

Physics with atmospheric neutrinos

Sandhya Choubey

For favorable δ_{CP} values, early hints expected from NOvA

For unfavorable δ_{CP} values, early hints expected from atmospheric expts

Physics with atmospheric neutrinos

Sandhya Choubey

MH: SYNERGY WITH OTHER EXPTS

Synergy between PINGU and JUNO

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

MH: SYNERGY WITH OTHER EXPTS

Combined sensitivity of No and NOvA

Devi, Thakore, Agarwalla, Dighe, in preparation

03.11.14

Physics with atmospheric neutrinos

 3σ

Sandhya Choubey

Monday, 10 November 14

FUTURE ATMOSPHERIC NEUTRINO EXPERIMENTS

Large Liquid Argon Detectors

* Very good E and θ resoln
* e vs mu discrimination
* low E threshold

ble 4. Detector parameters us	sed for the analysis of atmospheric neutrin
Rapidity (y)	0.45 for ν
	0.30 for $\bar{\nu}$
Energy Resolution (ΔE)	$\sqrt{(0.01)^2 + (0.15)^2/(yE_{\nu}) + (0.03)^2}$
Angular Resolution $(\Delta \theta)$	3.2° for ν_{μ}
	2.8° for ν_e
Detector efficiency (\mathcal{E})	85%

Physics with atmospheric neutrinos

Sandhya Choubey

Co. Print

MH: SYNERGY WITH OTHER EXPTS

Barger et al, 1405.1054

Figure 1. Sensitivity to the mass hierarchy as a function of true $\delta_{\rm CP}$ for a true normal hierarchy (NH) and a true inverted hierarchy (IH) with an 350 kt-yr exposure at the unmagnetized far detector configured with and without a near detector (ND). A run-time of 5 years each $(3 \times 10^{21} \text{ protons}$ on target) with a ν and $\bar{\nu}$ beam is assumed. The combined sensitivity with NO ν A (15 kt TASD, 3 yrs. $\nu + 3$ yrs. $\bar{\nu}$) and T2K (22.5 kt water cerenkov, 5 yrs. ν) data is also shown.

Physics with atmospheric neutrinos

Sandhya Choubey

ATMOSPHERIC NEUTRINO OSCILLATIONS

 $\lim_{\Delta m_{21}^2 \to 0} P_{\mu\mu}(L, E) = 1 - P_{\mu\mu}^1(L, E) - P_{\mu\mu}^2(L, E) - P_{\mu\mu}^3(L, E)$

S.C., Roy, 2005

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

ATMOSPHERIC MUON NEUTRINO OSCILLATIONS

 $\lim_{\Delta m_{21}^2 \to 0} P_{\mu\mu}(L, E) = 1 - P_{\mu\mu}^1(L, E) - P_{\mu\mu}^2(L, E) - P_{\mu\mu}^3(L, E)$

$$P_{\mu\mu}^{1}(L,E) = \sin^{2}\theta_{13}^{m}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})-(\Delta m_{31}^{2})^{m}}{8E}L$$

$$P_{\mu\mu}^{2}(L,E) = \cos^{2}\theta_{13}^{m}\sin^{2}2\theta_{23}\sin^{2}\frac{(A+\Delta m_{31}^{2})+(\Delta m_{31}^{2})^{m}}{8E}L$$

$$P_{\mu\mu}^{3}(L,E) = \sin^{2}2\theta_{13}^{m}\sin^{4}\theta_{23}\sin^{2}\frac{(\Delta m_{31}^{2})^{m}}{4E}L$$

 $\lim_{\Delta m_{21}^2 \to 0} P_{\mu e}(L, E) = \sin^2 \theta_{23} \sin^2 2\theta_{13}^m \sin^2 \frac{(\Delta m_{31}^2)^m L}{4E}$

Contribution from the muon nu flux

Contribution from the e nu flux

 $\Phi_{\mu}(detector) = \Phi_{\mu}^{0}(P_{\mu\mu} + (\Phi_{e}^{0}/\Phi_{\mu}^{0})P_{e\mu}) = \Phi_{\mu}^{0}(1 - P_{\mu\mu}^{1} - P_{\mu\mu}^{2} - (\sin^{2}\theta_{23} - \Phi_{e}^{0}/\Phi_{\mu}^{0})P_{e\mu})$

Earth matter effects in the two terms partially cancel each other

Physics with atmospheric neutrinos

Sandhya Choubey

Monday, 10 November 14

Sandhya Choubey

03.11.14

OCTANT OF THETA23

Mild sensitivity expected from INO over T2K and NOvA Synergy Pingu+T2K+NOvA can find the octant at 5sig for sin²th₂₃=0.4 Synergy

Physics with atmospheric neutrinos

Sandhya Choubey

ROLE IN CPV DISCOVERY

Physics with atmospheric neutrinos

Sandhya Choubey

ROLE IN CP DISCOVERY

 $S_{ij}(f) = \frac{N_{ij}^{\delta} - N_{ij}^{o}}{\sigma_{ij}},$

 $\sigma_{ij}^2 = N_{ij}^0 + (fN_{ij}^0)^2,$

03.11.14

Razzaque, Smirnov, 1406.1407

If there exist effective operators of the form

 $\mathcal{L}_{\rm NSI} = -2\sqrt{2}G_F \varepsilon_{\alpha\beta}^{ff'C} \left(\overline{\nu_{\alpha}}\gamma^{\mu}P_L\nu_{\beta}\right) \left(\overline{f}\gamma_{\mu}P_C f'\right)$

then they will modify neutrino evolution inside matter

$$\hat{H} = \frac{1}{2E} \left[U \operatorname{diag}(m_1^2, m_2^2, m_3^2) U^{\dagger} + \operatorname{diag}(A, 0, 0) + A\varepsilon^m \right]$$

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

Sandhya Choubey

Esmaili, Smirnov, 1304.1042

03.11.14

Physics with atmospheric neutrinos

Sandhya Choubey

S.C., Ohlsson, 1410.0410

***** Qualitative as well as quantitative changes when hierarchy is flipped

***** When the sign of the NSI parameters are flipped as well, we almost *get back the same feature Mocioiu, Wright, 1410.6193*

Chatterjee, Mehta, Choudhury, Gandhi, 1410.6193

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

Physics with atmospheric neutrinos

Sandhya Choubey

Physics with atmospheric neutrinos

Sandhya Choubey

03.11.14

CONCLUSIONS

- * The first unambiguous signal of neutrino mass and mixing came from observation of atmospheric neutrinos at Super-Kamiokande
- * The atmospheric neutrino oscillation parameters now well established.
- * First hints for MH, octant of theta23 and deltacp are emerging.
- With theta13 measured 'large' in the reactor experiments, atmospheric nu expts have a good chance at MH determination.
- * One could measure the octant of theta23 synergy with LBL expts
- High neutrino energies open the possibility of further probing NSI and other new physics at atmospheric neutrino experiments.

Physics with atmospheric neutrinos

03.11.14

CONCLUSIONS

- * The first unambiguous signal of neutrino mass and mixing came from observation of atmospheric neutrinos at Super-Kamiokande
- * The atmospheric neutrino oscillation parameters now well established.
- * First hints for MH, octant of theta23 and deltacp are emerging.
- With theta13 measured 'large' in the reactor experiments, atmospheric nu expts have a good chance at MH determination.
- * One could measure the octant of theta23 synergy with LBL expts
- High neutrino energies open the possibility of further probing NSI and other new physics at atmospheric neutrino experiments.
 Thank You!

Physics with atmospheric neutrinos