Fundamental Physics with High-Energy Cosmic Neutrinos

Mauricio Bustamante

Niels Bohr Institute, University of Copenhagen

Particle and Astroparticle Theory Seminar MPIK, June 24, 2019

Abundant, but hardly interacting **v**

Why study fundamental physics with HE cosmic ν 's?

- 1 They have the highest energies (~PeV)
 → Probe physics at new energy scales
- 2 They have the longest baselines (~Gpc) → Tiny effects can accumulate and become observable
- 3 Neutrinos are weakly interacting
 - → New effects may stand out more clearly

Why study fundamental physics with HE cosmic ν 's?

- 1 They have the highest energies (~PeV)
 → Probe physics at new energy scales
- 2 They have the longest baselines (~Gpc) → Tiny effects can accumulate and become observable
- 3 Neutrinos are weakly interacting
 - \mapsto New effects may stand out more clearly

$$p + \gamma_{\text{target}} \rightarrow \Delta^+ \rightarrow \begin{cases} p + \pi^0, & \text{Br} = 2/3 \\ n + \pi^+, & \text{Br} = 1/3 \end{cases}$$

Mauricio Bustamante (Niels Bohr Institute)

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

$$p + \gamma_{\text{target}} \rightarrow \Delta^{+} \rightarrow \begin{cases} p + \pi^{0}, \text{ Br} = 2/3 \\ n + \pi^{+}, \text{ Br} = 1/3 \end{cases}$$
$$\pi^{0} \rightarrow \gamma + \gamma$$
$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \rightarrow \bar{\nu}_{\mu} + e^{+} + \nu_{e} + \nu_{\mu}$$
$$n \text{ (escapes)} \rightarrow p + e^{-} + \bar{\nu}_{e}$$

1 PeV 20 PeV Neutrino energy = Proton energy / 20 Gamma-ray energy = Proton energy / 10

IceCube – What is it?

- ► Km³ in-ice Cherenkov detector in Antarctica
- ► >5000 PMTs at 1.5–2.5 km of depth
- ► Sensitive to neutrino energies > 10 GeV

How does IceCube see neutrinos?

Two types of fundamental interactions ...

103 contained events between 15 TeV – 2 PeV

I. Taboada, Neutrino 2018

Mauricio Bustamante (Niels Bohr Institute)

103 contained events between 15 TeV – 2 PeV

Astrophysical v flux detected at > 7 σ (Normalization ok, but steep spectrum)

I. Taboada, Neutrino 2018

Arrival directions compatible with isotropy

Mauricio Bustamante (Niels Bohr Institute)

Flavor composition compatible with equal proportion of each flavor

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV v physics?

In the face of astrophysical unknowns, can we extract fundamental TeV–PeV v physics?

Neutrino physicist-

Fundamental physics with HE cosmic neutrinos

► Numerous new-physics effects grow as ~ $\kappa_n \cdot E^n \cdot L$

► So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/PeV)^{-n} \, (L/Gpc)^{-1} \, PeV^{1-n}$

• Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from:

- Spectral shape
- Angular distribution
- Flavor information
- ► Timing

Mauricio Bustamante (Niels Bohr Institute)

Fundamental physics with HE cosmic neutrinos

 $\blacktriangleright \text{ Numerous new-physics effects grow as } \sim \kappa_n \cdot E^n \cdot L \left. \right\} \left. \begin{array}{l} n = -1: \text{ neutrino decay} \\ n = 0: \text{ CPT-odd Lorentz violation} \\ n = +1: \text{ CPT-even Lorentz violation} \end{array} \right.$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} \, (E/\text{PeV})^{-n} \, (L/\text{Gpc})^{-1} \, \text{PeV}^{1-n}$

► Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

► Fundamental physics can be extracted from:

- Spectral shape
- Angular distribution
- Flavor information
- ► Timing

Mauricio Bustamante (Niels Bohr Institute)

Fundamental physics with HE cosmic neutrinos

 $\blacktriangleright \text{ Numerous new-physics effects grow as } \sim \kappa_n \cdot E^n \cdot L \\ \begin{cases} n = -1: \text{ neutrino decay} \\ n = 0: \text{ CPT-odd Lorentz violation} \\ n = +1: \text{ CPT-even Lorentz violation} \end{cases}$

So we can probe $\kappa_n \sim 4 \cdot 10^{-47} (E/\text{PeV})^{-n} (L/\text{Gpc})^{-1} \text{PeV}^{1-n}$

• Improvement over current limits: $\kappa_0 < 10^{-29}$ PeV, $\kappa_1 < 10^{-33}$

Fundamental physics can be extracted from:

► Spectral shape

- Angular distribution
- ► Flavor information

► Timing

In spite of poor energy, angular, flavor reconstruction & astrophysical unknowns

Mauricio Bustamante (Niels Bohr Institute)

Measuring the high-energy cross section

Measuring the high-energy cross section

Measuring the high-energy cross section

Optical depth to vN int's = $\frac{\text{Distance from Earth's surface to IceCube}}{\text{Mean free path inside Earth}}$

 $\frac{\text{free from Earth's surface to freeCube}}{\text{Mean free path inside Earth}} \equiv \tau(E_{\nu}, \theta_z) \propto \sigma_{\nu N}$

Below ~ 10 TeV: Earth is transparent

Above ~ 10 TeV: Earth is opaque

MB & A. Connolly *PRL* 2019 See also: IceCube, *Nature* 2017

Bonus: Measuring the inelasticity (*y*)

► Inelasticity in CC v_{μ} interaction $v_{\mu} + N \rightarrow \mu + X$: $E_X = y E_v$ and $E_{\mu} = (1-y) E_v \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$

The value of *y* follows a distribution $d\sigma/dy$

► In a HESE starting track:

$$E_X = E_{\rm sh} \text{ (energy of shower)}$$

$$E_{\mu} = E_{\rm tr} \text{ (energy of track)}$$

$$y = (1 + E_{\rm tr}/E_{\rm sh})^{-1}$$

- New IceCube analysis:
 - ▶ 5 years of starting-track data (2650 tracks)
 - Machine learning separates shower from track
 - Different *y* distributions for v and \overline{v}

Bonus: Measuring the inelasticity (*y*)

► Inelasticity in CC v_{μ} interaction $v_{\mu} + N \rightarrow \mu + X$: $E_X = y E_v$ and $E_{\mu} = (1-y) E_v \Rightarrow y = (1 + E_{\mu}/E_X)^{-1}$

• The value of *y* follows a distribution $d\sigma/dy$

► In a HESE starting track:

$$E_X = E_{\rm sh} \text{ (energy of shower)}$$

$$E_{\mu} = E_{\rm tr} \text{ (energy of track)}$$

$$y = (1 + E_{\rm tr}/E_{\rm sh})^{-1}$$

- New IceCube analysis:
 - ▶ 5 years of starting-track data (2650 tracks)
 - Machine learning separates shower from track
 - Different *y* distributions for v and \overline{v}

IceCube, PRD 2019

New v physics

Acting during ★ Production ➡ Propagation Detection

ffects

Fifeers energy Note: Not an exhaustive list

NSI★→⊜ SUSY→ DM decay★ DM-v interaction \rightarrow Leptoquarks + © Extra dimensions+⊕ Lorentz+CPT violation→

Affects direction

el steile Ditra

Effective operators→ Superluminal $v \rightarrow \oplus$ DM-v coherent★→

Monopoles. Argüelles, **MB**, Conrad, Kheirandish, Palomares-Ruiz, Salvadó, Vincent, In prep. See also: Ahlers, Helbing, De los Heros, EPJC 2018

2.00

"Secret" neutrino interactions between astrophysical v (PeV) and relic v (0.1 meV):

Ø $\mathcal{L} \sim g \phi \nu \bar{\nu}$

Cross section:
$$\sigma = \frac{g^4}{4\pi} \frac{s}{\left(s - M^2\right)^2 + M^2 \Gamma^2}$$

Resonance energy:
$$E_{\rm res} = \frac{M^2}{2m_{\gamma}}$$

.....

Free streaming

Blum, Hook, Murase, 1408.3799

2.00"Secret" neutrino interactions between Free streaming \mathbf{ST} With attenuation 1.75 astrophysical v (PeV) and relic v (0.1 meV): -With attenuation + regeneration Ś 2 1.50 cm M = 10 MeVGeV g = 0.031.25 $m_v = 0.1 \text{ eV}$ $\mathcal{L} \sim g \phi \nu \bar{\nu}$ [10] 1.00 \bar{v} flux at Earth $E^2 I$ New coupling 0.75 Cross section: $M^2\Gamma^2$ 0.50 = 500 TeMediator mass 0.25 +Resonance energy: $E_{res} =$ 0.00 <u>-</u> 10³ 2 10^{5} 10^{4} 10^{6} Neutrino energy *E* [GeV]

MB, Rosenstroem, Tamborra, In prep. Ng & Beacom, PRD 2014 Cherry, Friedland, Shoemaker, 1411.1071 Blum, Hook, Murase, 1408.3799

Mauricio Bustamante (Niels Bohr Institute)

 10^{8}

 10^{7}

New physics in the angular distribution: v-DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile -

Expected: Fewer neutrinos coming from the Galactic Center Observed: Isotropy

New physics in the angular distribution: v-DM interactions

Interaction between astrophysical neutrinos and the Galactic dark matter profile -

Expected: Fewer neutrinos coming from the Galactic Center Observed: Isotropy
New physics in the energy & angular distribution

Lorentz invariance violation – Hamiltonian: $H \sim m^2/(2E) + a^{(3)} - E \cdot c^{(4)} + E^2 \cdot a^{(5)} - E^3 \cdot c^{(6)}$

New physics in timing — TeV–PeV

Multiple secret vv scatterings may delay the arrival of neutrinos from a transient

See also: Alcock & Hatchett, ApJ 1978

New physics in timing — TeV–PeV

New physics in timing — MeV

- Secret vv interactions delay the arrival of the burst of supernova v
- Look for changes in:
 - Start time of the v light curve (hard)
 - Shape of the v light curve (easier)
- Sensitive to mediator masses of keV
- > Probes the same parameter as vv in early Universe, but differently

(Ahlgren, Ohlsson, Zhou, PRL 2013)

New physics in the flavor composition

Reading a ternary plot

Assumes underlying unitarity – sum of projections on each axis is 1

How to read it: Follow the tilt of the tick marks, *e.g.*,

 $(e:\mu:\tau) = (0.30:0.45:0.25)$

Flavor content of neutrino mass eigenstates

Flavor content for every allowed combination of mixing parameters –

IceCube flavor composition

Flavor – there and here

At the sources

 $(f_e; f_\mu; f_\tau)_{\rm S} = (1/3:2/3:0)_{\rm S}$

Flavor composition – Standard allowed region

At the sources

At Earth

All possible flavor ratios

Flavor composition – Standard allowed region

Flavor – What is it good for?

Trusting particle physics and learning about astrophysics

Trusting astrophysics and learning about particle physics

Two classes of new physics

▶ Neutrinos propagate as an incoherent mix of v_1 , v_2 , v_3

Each one has a different flavor content:

Flavor ratios at Earth are the result of their combination

► New physics may:

- Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
- ▶ Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Two classes of new physics

- ▶ Neutrinos propagate as an incoherent mix of v_1 , v_2 , v_3
- Each one has a different flavor content:

Flavor ratios at Earth are the result of their combination

► New physics may:

- Only reweigh the proportion of each v_i reaching Earth (*e.g.*, v decay)
- ▶ Redefine the propagation states (*e.g.*, Lorentz-invariance violation)

Flavor ratios accessible with decay-like physics

Flavor ratios accessible with decay-like physics

Measuring the neutrino lifetime

Earth

Measuring the neutrino lifetime

Earth

MB, Beacom, Murase, PRD 2017

What lies beyond? *Take your pick*

- High-energy effective field theories
 - Violation of Lorentz and CPT invariance
 [Barenboim & Quigg, PRD 2003; MB, Gago, Peña-Garay, JHEP 2010; Kostelecky & Mewes 2004]
 - Violation of equivalence principle [Gasperini, PRD 1989; Glashow et al., PRD 1997]
 - Coupling to a gravitational torsion field [De Sabbata & Gasperini, Nuovo Cim. 1981]
 - Renormalization-group-running of mixing parameters
 [MB, Gago, Jones, JHEP 2011]
- Active-sterile mixing

[Aeikens et al., JCAP 2015; Brdar, JCAP 2017]

- Flavor-violating physics
 - New vv interactions

[Ng & Beacom, PRD 2014; Cherry, Friedland, Shoemaker, 1411.1071; Blum, Hook, Murase, 1408.3799]

New neutrino-electron interactions

[MB & Agarwalla, PRL 2019]

New physics – High-energy effects For n = 0 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ (similar for n = 1) $H_{\text{std}} = \frac{1}{2F} U_{\text{PMNS}}^{\dagger} \operatorname{diag}\left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ $H_{\rm NP} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ This can populate *all* of the triangle – 0.6 • Use current atmospheric bounds on $O_{n,i}$: 0.8 $O_0 < 10^{-23}$ GeV, $O_1 / \Lambda_1 < 10^{-27}$ GeV 0.2().()Sample the unknown new mixing angles Argüelles, Katori, Salvadó, PRL 2015 See also: Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015; MB, Gago, Peña-Garay JCAP 2010;

Bazo, MB, Gago, Miranda IJMPA 2009; + many others

Mauricio Bustamante (Niels Bohr Institute)

0.0

1.0

(1:2:0)

(1:0:0)

(0:1:0)

(0:0:1)

0.4

0.8

 \mathcal{Q}

0.2

0.0.1.0

0.2

0.4

8.0

0.6

 $lpha_{e}^{\,\oplus}$

0.4

0.6

New physics – High-energy effects 0.0.1.0For n = 0 $H_{\text{tot}} = H_{\text{std}} + H_{\text{NP}}$ (1:2:0)(similar for n = 1) (1:0:0) $H_{\text{std}} = \frac{1}{2F} U_{\text{PMNS}}^{\dagger} \operatorname{diag}\left(0, \Delta m_{21}^2, \Delta m_{31}^2\right) U_{\text{PMNS}}$ 8.0 0(0:1:0)(0:0:1) $H_{\rm NP} = \sum \left(\frac{E}{\Lambda_n}\right)^n U_n^{\dagger} \operatorname{diag}\left(O_{n,1}, O_{n,2}, O_{n,3}\right) U_n$ 0.4 0.6 2 E This can populate *all* of the triangle – 0.6 0.4► Use current atmospheric bounds on $O_{n,i}$: $O_0 < 10^{-23}$ GeV, $O_1/\Lambda_1 < 10^{-27}$ GeV 0.8 0.2 0.00.6 0.80.20.41.0().()Sample the unknown new mixing angles Argüelles, Katori, Salvadó, PRL 2015 $lpha_{e}^{\,\oplus}$ See also: Rasmusen et al., PRD 2017; MB, Beacom, Winter PRL 2015; MB, Gago, Peña-Garay JCAP 2010; Bazo, MB, Gago, Miranda IJMPA 2009; + many others 37 Mauricio Bustamante (Niels Bohr Institute)

Using unitarity to constrain new physics

H_{tot} = H_{std} + H_{NP}
 ▶ New mixing angles unconstrained

- Use unitarity $(U_{NP}U_{NP}^{\dagger} = 1)$ to bound all possible flavor ratios at Earth
- Can be used as prior in new-physics searches in IceCube

Ahlers, **MB**, Mu, *PRD* 2018 See also: Xu, He, Rodejohann, *JCAP* 2014

Ultra-long-range flavorful interactions

Simple extension of the SM: Promote the global lepton-number symmetries L_e-L_{μ} , L_e-L_{τ} to local symmetries

They introduce new interaction between electrons and v_e and v_{μ} or v_{τ} mediated by a new neutral vector boson (Z'):

Affects oscillations

► If the *Z*′ is *very* light, *many* electrons can contribute

X.-G. He, G.C. Joshi, H. Lew, R. R. Volkas, *PRD* 1991 / R. Foot, X.-G. He, H. Lew, R. R. Volkas, *PRD*A. Joshipura, S. Mohanty, *PLB* 2004 / J. Grifols & E. Massó, *PLB* 2004 / A. Bandyopadhyay, A. Dighe, A. Joshipura, *PRD*M.C. González-García, P..C. de Holanda, E. Massó, R. Zukanovich Funchal, *JCAP* 2007 / A. Samanta, *JCAP*S.-S. Chatterjee, A. Dasgupta, S. Agarwalla, *JHEP*

The new potential sourced by an electron

Under the L_e - L_μ or L_e - L_τ symmetry, an electron sources a Yukawa potential —

A neutrino "feels" all the electrons within the interaction range $\sim (1/m')$

The new potential sourced by an electron

Under the L_e - L_μ or L_e - L_τ symmetry, an electron sources a Yukawa potential —

A neutrino "feels" all the electrons within the interaction range $\sim (1/m')$

$$H_{tot} = H_{vac}$$

Standard oscillations: Neutrinos change flavor because this is non-diagonal

$$H_{\text{tot}} = H_{\text{vac}} + \underbrace{V_{e\beta}}_{\cdot}$$

New neutrino-electron interaction: This is diagonal

$$H_{tot} = H_{vac} + V_{e\beta}$$

... We can use high-energy astrophysical neutrinos

Potential:

$$V_{e\beta} \propto \frac{1}{r} e^{-m'_{e\beta}r}$$

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Mauricio Bustamante (Niels Bohr Institute)

Quo vadis? Ultra-high-energy neutrinos

Quo vadis? Ultra-high-energy neutrinos

Quo vadis? Ultra-high-energy neutrinos

What are you taking home?

Cosmic neutrinos are the *only* feasible way to probe TeV–PeV physics

► We can extract TeV–PeV v physics *now*, in spite of astrophysical unknowns

▶ New physics is possibly sub-dominant – so we need to be thorough

► Forthcoming improvements: statistics, better reconstruction, higher energies

More information in our Astro2020 white papers:

Fundamental physics with high-energy cosmic neutrinos, 1903.04333

► Astrophysics uniquely enabled by observations of high-energy cosmic neutrinos, 1903.04334

