

Neutrino detection at nuclear reactors

Christian Buck MPIK Heidelberg

Gentner Kolloquium, Dec 20, 2023

Outline

1. $\overline{\nu}_e$ detection in organic liquids

$$\overline{\nu}_e + p \longrightarrow e^+ + n$$

Inverse beta decay (IBD)

Nuclear reactors: strong and pure source of electron antineutrinos

Reactor antineutrino spectrum

IBD energy threshold: 1.8 MeV
 "Visible energy" in detector: E_{vis} = E_{nu} - 0.78 MeV

Organic liquid scintillators

Simplified Jablonski diagram

- Basis: fluorescent, aromatic molecules
- Composition: solvent, primary and secondary fluor (wavelength shifting agents, WLS)

5

Energy transfer in liquid scintillators

C. Buck, M. Yeh, J. Phys. G43 (2016) 093001

Radiative and non-radiative energy transfer

Strong overlap between donor emission and acceptor absorption bands

6

Scintillator requirements in neutrino detector

Detector response

- Light yield
- Transparency
- Stability
- Quantum yield
- Quenching
- Refractive index

Background level

- Radiopurity (U, Th, K)
- Pulse shape discrimination

Statistics

- Proton fraction
- Density

Safety and detector integrity

- Flash point
- Toxicity
- Environmental "friendliness"
- Material compatibility

Light yield

MPIK liquid scintillator modul

A. Bonhomme, C. Buck, B. Gramlich, M. Raab, JINST 17 (2022) P11025

Compton spectrum with ¹³⁷Cs source

- Relevance: energy resolution and threshold
- Challenges: absolute light level, reference samples, control systematics
- Compton edge fitting vs Compton backscattering peak

Transparency

https://www.agilent.com/en/support/molecular-spectroscopy/uv-vis-uv-vis-nir-spectroscopy/uv-vis-spectroscopy-spectrophotometer-basics

Relevance: crucial in large scale detectors, energy reconstruction
 Challenges: light scattering, reflections, definition of zero absorbance
 Application of Beer-Lambert law? (A= ε·d·c)

Fluorescence quantum yield

Pulse shape discrimination

Delayed fluorescence involving triplet states

- Relevance: background reduction
- Challenges: Energy dependence, define PSD parameter, reflections
- Light yield setup and AmBe source (γ +n); use "late light ratio" method

Outline

1. $\overline{\nu}_e$ detection in organic liquids

$$\overline{\nu}_e + p \longrightarrow e^+ + n$$

The Double Chooz detectors

Double Chooz, Nature Physics 16 (2020) 558–564

Detector responsibilities

- Scintillators (~10 m³ Gd-LS, ~20m³ unloaded LS)
- Chemical region design
- Liquid and filling systems
- Nitrogen and vent systems
- Source calibration

Which aromatic solvent?

Safe scintillators

Results vary with purity, storage conditions, sample prep., supplier,...
 Parameters can be tuned by solvent mixture

Double Chooz solvents

Why not 100 % PXE? Material compatibility

Why not LAB? Proton number uncertainty!

Why n-dodecane? Radiopurity and transparency (KamLAND)

Metal loading

- Prepare and dissolve organometallic complex (1 g/l Gadolinium)
- Option 1: Carboxylate systems: favorable optics
- Option 2: Beta-diketone systems (BDK): radiopurity, stability

M. Apollonio et al., EPJ C **27** (2003) 331

Sublimation of Gd-BDK molecules

C. Aberle, C. Buck et al., JINST 7 (2012) P06008

Light quenching

Compensate light loss by increase of primary fluor (PPO) concentration

C. Aberle, C. Buck et al., JINST 7 (2012) P06008

Secondary fluor dominates ~400 nm

C. Aberle, C. Buck, F.X.Hartmann, S.Schönert, Chem. Phys. Lett. **516** (2011) 257

19

Stereo experiment

Stereo, Nature 613 (2023) 257

Stereo scintillator

- Use same loading technique as in Double Chooz (about 2 t Target)
- Different needs: higher Gd-loading, pulse shape discrimination
- Solvent tuning (light yield, PSD, transparency)

Column purification

Transparency of Stereo scintillator

Values calculated/measured at 430 nm

Component	LAB	PXE	DIN	PPO	bis-MSB	$Gd(thd)_3$	total
$\Lambda_{Gd-loaded}$ (m)	23	35	33	41	176	94	7.0
$\Lambda_{unloaded}$ (m)	23	35	33	95	176		8.4

Scattering length ~ 25 m

Measured (±10 %):

25

Gd-LS: 6.9 m GC: 9.7 m

C.Buck, B.Gramlich, M.Lindner, C.Roca, S.Schoppmann, JINST 14 (2019) 01, P01027

Outline

1. $\overline{\nu}_e$ detection in organic liquids

$$\overline{\nu}_e + p \longrightarrow e^+ + n$$

Double Chooz stability

First 4 years with one detector only No optical degradation in 7 years (stable energy resolution and scale) No stratification or plate-out observed

Double Chooz, EPJ C 82 (2022) 9, 804

(stable efficiency)

24

2018

Year

Radiopurity and TnC technique

Double Chooz, Nature Physics 16 (2020) 558–564

Double Chooz oscillation result

26

Stereo: signal extraction applying pulse shape discrimination

Stereo, PRD 102 (2020) 5, 052002

Oscillation analysis in Stereo

- Data taking 2017 2020
- ~400 neutrino interactions per day (total > 100 000!)
- 273 days reactor ON
- 520 days reactor OFF
- Oata compatible with nooscillation hypothesis!

Stereo, Nature 613 (2023) 257 / Stereo, PRD 102 (2020) 5, 052002

29

Flux normalisation and efficiency

- Precise absolute
 knowledge on neutron
 detection efficiency —>
 scintillator understanding
- Confirmed deficit:
 5.5±2.1% reduction
- Relevant contribution of ²³⁵U to RAA
- Most precise result for highly enriched uranium reactors (HEU)

Stereo, Nature 613 (2023) 257 / Stereo, PRL 125 (2020) 20, 201801

Spectral distortion in Stereo

- Combine cell spectra
- Compare to different model predictions (Huber/Mueller)
- 5 MeV bump confirmed
- Joint analysis with Prospect
- Global picture: anomalies from biases in nuclear data/ measured beta spectrum ²³⁵U
- Precision era: use neutrino to validate nuclear data

Stereo, Nature 613 (2023) 257 / Stereo, J.Phys.G 48 (2021) 7, 075107

Gentner Colloquium, MPIK

Relevance of some scintillator properties

Outline

1. $\overline{\nu}_e$ detection in organic liquids

$$\overline{\nu}_e + p \longrightarrow e^+ + n$$

Opaque scintillators

- Light collection at origin using fibers + fast readout
- Highly improved vertex resolution by light confinement
- Wax based scintillator (NoWaSH)
- High metal loading possible (up to 10%), suspensions
- Potential applications: reactor, geo, $0\nu\beta\beta$, solar,...

C. Buck, B. Gramlich, S. Schoppmann, JINST 14 P11007 (2019)

Proof of principle

A. Cabrera et al., Commun. Phys. 4 (2021) 273

10 liter scale

D. Navas, Rencontres de Moriond 2023

Gel-like scintillators (silicon oils)

Pros

- Safety
- High density, higher Z
- Less sensitive to leaks
- Stability
- Cons
 - Costs
 - Purity?

 Si-O backbone (strong!)
 Side chains: methyl and phenyl groups

Other approaches: quantum dots, water based liquid scintillators

Which scintillator for which experiment?

First define your primary goals, main requirements

Outline

1. $\overline{\nu}_e$ detection in organic liquids

$$\overline{\nu}_e + p \longrightarrow e^+ + n$$

Predicted in 1974, first detected at pion decay-at-rest source 2017

CONUS concept

Run-5: improved analysis

Improvements: stability, DAQ, E threshold, PSD, reactor OFF...

Background level: ~10/(keV d kg)

New result

Detector	Signal prediction	Fit constraint (90% C.L.)		
C1	42±8	< 59		
C2	26±5	< 75		
C4	24±4	< 90		
All	92±10	< 163		

Limit factor ~2 above predicted SM value (strongest limit at reactor)

~ 1 order of magnitude improvement as compared to Run-1+2!

CONUS+

- Site characterisation (d=20.7 m): gamma, neutron and muon flux
- Further improve energy resolution, detector thresholds, trigger efficiency and muon veto performance
- Improved CONUS setup installed this Summer at KKL Leibstadt, CH
- Start of Run-1: 09 Nov 2023 (< 1 y from data taking at KBR to KKL)</p>

Signal rate expectation

Low threshold key for high statistics (noise and efficiency)
 Compensate slightly longer distance by improved detectors

Most relevant contributions (personal bias)

- Double Chooz:
 - Unique stability of Gd-scintillator
 - Unblock situations during "DC crises" when things seemed stuck

Stereo:

- Scintillator design: good compromise between light yield, PSD and transparency found with 3 solvent mixture
- Design of liquid and gas systems

CONUS:

- Achieving stable conditions in reactor ON and OFF phases
- Smooth movement of setup from KBR to KKL control zone
- Working with many talented master, PhD and PostDocs. Thank you!

Double Chooz MPIK group

Stereo MPIK group

CONUS group (including 2 external collaboration members)

