Dark Matter Across the Scales based on : 1607.04278,1705.09455, 1710.02146 in collaboration with Joachim Kopp, Jia Liu and Xiao-Ping Wang

Vedran Brdar

Johannes Gutenberg Universität Mainz Max-Planck-Institut für Kernphysik Heidelberg

DM in Galaxy clusters (Perseus...) and Galaxies (M31, MW)

DM candidate : keV-scale fermion (one may refer to it as "sterile neutrino")

DM in Galactic Supernovae

DM candidate : WIMP

DM at Earth

DM candidate : Ultralight "Fuzzy" DM

DM candidate : keV-scale fermion

Dark Matter Across the Scales

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

keV-scale sterile neutrino (decaying DM)

- keV DM proposed originally in hep-ph/9303287 by Dodelson and Widrow
- revival in 2014

w-

1 □ >

 $v_2^{(m)}$

- stacked clusters (Bulbul et al. 1402.2301), Perseus and M31 (Boyarski et al. 1402.4119)
- (Cappelluti et al., 1701.07932) – Deep Field search using Chandra satellite

Particle and Astroparticle Theory Seminar, MPIK

< 🗇 🕨 👘

Dark Matter Across the Scales

Dark Matter or atomic physics?

- Jeltema, Profumo : "Dark matter searches going bananas"
 Potassium contribution
- "Hitomi constraints from Perseus" (1607.07420)

"We do not find anomalously high fluxes of the nearby faint K line or the Ar satellite line that were proposed as explanations for the earlier 3.5 keV detections."

- x-rays from charge exchange : "Laboratory measurements compellingly support charge-exchange mechanism for the 'dark matter' 3.5 keV X-ray line" (1608.04751)
- from Cappelluti et al.

"According to these measurements and atomic calculations, we can conclude that, at $> 3\sigma$ confidence level, the totality of the 3.5 keV line flux is not produced by charge exchange"

Final answer coming soon?

Micro-X: A Sounding Rocket Dark Matter Search (1506.05519)

- 3 eV energy resolution (comparable to Hitomi)
- Iaunch in 2019

Return of the X-rays: A New Hope for Fermionic Dark Matter at the keV Scale

(VB, J. Kopp, J.Liu, X-P Wang 1710.02146)

Particle and Astroparticle Theory Seminar, MPIK

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

May the Force Be With DM Annihilation (rather than Decay)

Particle and Astroparticle Theory Seminar, MPIK

Model and BSM Particle Content

- \blacktriangleright keV-scale fermion χ and keV scale real scalar ϕ
- effective Lagrangian :

Dark Matter Across the Scales

DM Production

Freeze-in (Hall et al. 0911.1120)

UV freeze-in

• valid in regime $T_{RH} < M_L$

• freeze-in of ϕ followed by a decay to $\chi \bar{\chi} \ (m_{\phi}(T) = m_{\phi}^2 + \lambda T^2)$

$$\mathcal{L}_{\mathsf{eff}} \supset \frac{lpha}{4\pi\Lambda} F_{\mu
u} F^{\mu
u} \phi + y \phi \bar{\chi} \chi$$

Alternative Production Mechanisms

• Low energy Freeze-in valid in regime $T_{RH} > M_L$

$$\Omega h^2 \simeq \begin{cases} 0.1 \times \left(\frac{y}{10^{-6}}\right)^2 \left(\frac{\lambda}{10^{-8}}\right)^{\frac{3}{2}} & (\text{FI via } \phi \to \bar{\chi}\chi) \\ 0.094 \times \left(\frac{y}{10^{-6}}\right)^4 & (\text{FI via } \phi \phi \leftrightarrow \bar{\chi}\chi) \end{cases}$$

- ϕ is thermalized
- N_{eff} constraint from BBN is not violated as the dark sector has been sufficiently diluted by entropy production in the SM sector Misalignment mechanism
 - after φ and χ come into thermal contact, and a fraction of the φ energy density is transferred to χ
 - very cold DM

Limits on scalar coupling to EM and structure formation

- for freeze-in scenarios, when φ and χ come in the thermal contact, new dominant channel for scalar decay required in order to avoid CMB limit
- $I_{L} \rightarrow \chi \bar{\chi}$ production is disfavored by HB constraints
- effective temperature of the dark sector is reduced by an entropy dilution factor (sizable quartic coupling helps)

DM Annihilation

▶ the cross section for the DM annihilation process $(\bar{\chi}\chi \rightarrow \phi\phi)$ depends on the ratio between the relative mass difference $\delta \equiv (m_{\chi} - m_{\phi})/m_{\chi}$ of χ and ϕ , and the relative velocity $v_{\rm rel}$ of the annihilating DM particles

Converting existing limits from decaying DM :

$$\frac{\Gamma_{\chi}}{4\pi m_{\chi}} \int dl \, d\Omega \, \rho_{\rm DM}(l,\Omega) = \frac{4}{16\pi m_{\chi}^2} \int dl \, d\Omega \, d^3 v_{\rm rel} \, \rho_{\rm DM}^2(l,\Omega) \, \sigma_{\rm ann} v_{\rm rel} \, f(l,\Omega,v_{\rm rel})$$

Dark Matter Across the Scales

degenerate χ and ϕ masses

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

quasidegenerate χ and ϕ masses

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Non-thermally Produced Dark Matter at the MeV scale

Particle and Astroparticle Theory Seminar, MPIK

DM annihilation in the Sun

Capture and Annihilation $(dN/dt = C_{cap} - C_{ann}N^2)$

1. Conditions:

•
$$C_{ann}^{\text{Sun}} \equiv \frac{1}{N^2} \int d^3 r \langle \sigma v_{\text{rel}} \rangle n_{\text{DM}}^2(r) \sim 10^{-53} s^{-1}$$

• $C_{cap} = \sum_i \int_0^{R_{\text{star}}} dr \, 4\pi r^2 \frac{dC_i(r)}{dV} \sim 10^{22} s^{-1}$

► parameters:
$$m_{DM} = 100 GeV$$
,
 $\sigma_{SD}^{H} = 10^{-40} cm^2$ and
 $\langle \sigma v_{rel} \rangle = 3 \times 10^{-26} cm^3 s^{-1}$

2. Results:

►
$$N(t) = \sqrt{\frac{C_{cap}}{C_{ann}}} \tanh \frac{t}{t_{eq}} \rightarrow \sqrt{\frac{C_{cap}}{C_{ann}}} \sim 10^{37}$$

► $t_{eq} \equiv 1/\sqrt{C_{cap}C_{ann}} \sim 10^{15}s, t_{Sun} = 10^{17}s$
► $C_{ann}N^2 = C_{cap} = 10^{22}s^{-1}$

3. Conclusion: For the case of the Sun, there is an equilibrium!

3

BSM particle content

- fermionic (Dirac) DM \sim (1,1,0)
- $\sim \mathcal{O}(1)$ GeV dark photon or scalar coupling to
 - DM
 - SM via kinetic mixing (vector) or higgs portal (scalar)

Decay modes of dark mediators

Liu, Weiner, Xue, arXiv:1412.1485

Particle and Astroparticle Theory Seminar, MPIK

3

《口》《聞》《臣》《臣》

Supernova progenitors versus the Sun

- $\mathcal{O}(10^8)$ further than the Sun, $\sim 1 kpc$
- much heavier than the Sun, $\gtrsim 8M_{Sun}$
- $\mathcal{O}(10^{-2})$ shorter lifetime $\sim 10^{15}s$

- density, temperature and chemical composition change in time much faster
- End up with a core collapse Supernova
- ▶ Peak annihilation rate (dark gamma ray burst coincident with the supernova) O(10¹²) larger than the Sun!
- Capture and Annihilation Not in Equilibrium!

Capture Rates and DM Distribution in the Star

- $\rho_i(r, t), T(r, t)$ and chemical composition from Heger *et al.*
- $m_{DM} \in [10, 10^3]$ GeV, $\sigma^{SD} = 10^{-40} cm^2$, $\sigma^{SI} = 10^{-46} cm^2$
- DM core contracts along with the baryonic matter
- Quasi-instantaneous thermalization ($n_{DM}(r) = n_0 \exp[-m_{DM}\phi(r)/T_{DM}]$)
- Large C_{cap} at early times due to large σ_{SD} on H

Dark Matter Across the Scales

Capture and Annihilation Rates

DM Annihilation Burst during Supernova cooling phase

- \blacktriangleright density and temperature fixed to $10^{14}~g\,cm^{-3}$ and 3 MeV
- DM particles within $R_{core} \sim 30 km$ (size of proto-neutron star)
- $\blacktriangleright\,$ DM gets thermalized within $\sim 10^{-6}$ seconds

Photon Spectrum

 < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Particle and Astroparticle Theory Seminar, MPIK

Dark Gamma Ray Burst

Properties

- An observable gamma ray signal after ν arrival
- ► Δt_{burst} = (C^{SN}_{ann}N₀)⁻¹ related to sensitivity
- $\Delta t_{burst} \in$ [$\mathcal{O}(10), \mathcal{O}(10^3)$] sec for p-wave, $\mathcal{O}(10^2)$ sec for s-wave
- Benchmark locations: 0.1kpc and 8kpc from GC

Particle and Astroparticle Theory Seminar, MPIK

Dark Matter - vast number of candidates

▶ fuzzy DM with mass $O(10^{-22}) \, \text{eV}$

we consider both scalar and vector ultralight DM

Properties of Fuzzy DM candidate

Fuzzy DM can address:

- "core vs. cusp problem" DM density profile discrepancy between measurements and simulations
- \rightarrow DM delocalization

(huge Compton wave length $\lambda=2\pi/m_{\phi}\simeq 0.4\,{
m pc} imes(10^{-22}{
m eV}/m_{\phi}))$

- "missing satellites problem"-lower than expected abundance of dwarf galaxies
- \rightarrow higher probability for tidal disruption of DM subhalos and suppression of the matter power spectrum at small scales (Hui et al. 1610.08297)
 - "too big to fail problem" apparent failure of many of the most massive Milky Way subhalos to host visible dwarf galaxies

 \rightarrow Fuzzy DM predicts fewer such subhalos (Marsh et al. 1307.1705)

admittedly, better treatment of baryonic physics in simulations (1602.05957,1202.0554) may solve these puzzles but the possibility that DM physics plays a crucial role is not excluded

Dark Matter Across the Scales

DM production

Misalignment mechanism

 \blacktriangleright EOM for real scalar field ϕ

$$\ddot{\phi} + 3H\dot{\phi} + m_{\phi}^2\phi = 0.$$

- while $3 H \gg m_{\phi}$, ϕ is "frozen"
- at $3 H = m_{\phi}$ damping term stops dominating and the field can start to oscillate
- for vector DM ϕ^{μ} one introduces coupling to gravity $\sim R \phi_{\mu} \phi^{\mu}$
- The mass of φ^μ can be generated either through the Stückelberg mechanism or from spontaneous symmetry breaking in a dark Higgs sector
- we consider both polarized and unpolarized vector DM (polarization may be altered during structure formation)

Model

Relevant part of the Lagrangian:

Scalar
$$\mathcal{L}_{scalar} = \bar{\nu}_{L}^{\alpha} i \partial \!\!\!/ \nu_{L}^{\alpha} - \frac{1}{2} m_{\nu}^{\alpha\beta} \overline{(\nu_{L}^{c})^{\alpha}} \nu_{L}^{\beta} - \frac{1}{2} y^{\alpha\beta} \phi \overline{(\nu_{L}^{c})^{\alpha}} \nu_{L}^{\beta}.$$

The interaction term can be generated in a gauge invariant way by coupling ϕ to heavy right-handed neutrinos N_R (introduced in seesaw type-I)

• we assume
$$y = y_0(m_
u/0.1{
m eV})$$

Vector
$$\mathcal{L}_{vector} = \bar{\nu}_{L}^{\alpha} i \partial \!\!\!/ \nu_{L}^{\alpha} - \frac{1}{2} m_{\nu}^{\alpha\beta} \overline{(\nu_{L}^{c})^{\alpha}} \nu_{L}^{\beta} + g Q^{\alpha\beta} \phi^{\mu} \bar{\nu}_{L}^{\alpha} \gamma_{\mu} \nu_{L}^{\beta}$$
.

- ϕ^{μ} as the $L_{\mu} L_{\tau}$ symmetry gauge boson with couplings $Q^{\alpha\beta} = \text{diag}(0, 1, -1)$
- ▶ if $L_{\mu} L_{\tau}$ breaking occurs at TeV scale, with $m_{\phi} \sim 10^{-22}$ eV we require coupling $g \sim 10^{-30}$ which can be probed as a set of the set

Dark Matter Across the Scales

Model II

► alternatively, ϕ^{μ} could couple to the SM via mixing with a much heavier $L_{\mu} - L_{\tau}$ gauge boson K^{μ} (term $\epsilon \phi^{\mu\nu} K_{\mu\nu}$)

$$\begin{split} \mathcal{L}_{\mu-\tau} &= -\frac{1}{4} \mathcal{K}_{\mu\nu} \mathcal{K}^{\mu\nu} + \bar{L}^{\alpha} \left(i \not \!\!\!\!\partial + g_{\mu-\tau} Q^{\alpha}_{\mu-\tau} \gamma_{\mu} \mathcal{K}^{\mu} \right) \mathcal{L}^{\alpha} + \bar{e}^{\alpha}_{R} \left(i \not \!\!\!\partial + g_{\mu-\tau} Q^{\alpha}_{\mu-\tau} \gamma_{\mu} \mathcal{K}^{\mu} \right) e^{\alpha}_{R} \\ &+ \left(D^{\mu} S \right)^{\dagger} (D_{\mu} S) + \mu_{S}^{2} S^{\dagger} S - \lambda_{S} (S^{\dagger} S)^{2} \\ \mathcal{L}_{dark} &= -\frac{1}{4} \phi_{\mu\nu} \phi^{\mu\nu} + \frac{1}{2} \epsilon \phi_{\mu\nu} \mathcal{K}^{\mu\nu} + \frac{1}{2} \left(\partial_{\mu} \sigma + m_{1} \phi_{\mu} + m_{2} \mathcal{K}_{\mu} \right)^{2} \end{split}$$

kinetic and mass term in matrix form : $V = (\phi, K)^T$

$$\mathcal{L} \supset -\frac{1}{4} V_{\mu\nu}^{T} \begin{pmatrix} 1 & -\epsilon \\ -\epsilon & 1 \end{pmatrix} V^{\mu\nu} + \frac{1}{2} V_{\mu}^{T} \begin{pmatrix} m_{1}^{2} & m_{1}m_{2} \\ m_{1}m_{2} & m_{2}^{2} + (g_{\mu-\tau}v_{S})^{2} \end{pmatrix} V^{\mu}$$

after two unitary transformations

$$\begin{pmatrix} \phi \\ \mathcal{K} \end{pmatrix} = U\begin{pmatrix} \tilde{\phi} \\ \tilde{\mathcal{K}} \end{pmatrix} \equiv U_1 U_2 \begin{pmatrix} \tilde{\phi} \\ \tilde{\mathcal{K}} \end{pmatrix}$$

we identify gauge boson masses and the effective coupling $y_1 = \frac{m_i}{g_{\mu-\tau}v_s}$

$$\mathcal{L}_{\text{int}} = \left(-\frac{y_1^2 \epsilon}{1 - y_1^2} - \frac{y_1 y_2}{1 - y_1^2} \right) g_{\mu - \tau} Q_{\mu - \tau}^{\alpha} \tilde{\phi}^{\mu} \left(\bar{L}^{\alpha} \gamma_{\mu} L^{\alpha} + \bar{\mathbf{e}}_{R}^{\alpha} \gamma_{\mu} \mathbf{e}_{R}^{\alpha} \right)$$

Dark Matter Across the Scales

Neutrino Masses

▶ neutrino masses are generated by introducing 3 RH neutrinos with the following charges under SU(3)_c × SU(2)_L × U(1)_Y × U(1)_{Lµ-L_τ}

$$\begin{split} & \mathcal{N}_{1} \sim (1,1,0)(0), \quad \mathcal{N}_{2} \sim (1,1,0)(+1), \quad \mathcal{N}_{3} \sim (1,1,0)(-1) \\ & \mathcal{L}_{yuk} = \frac{1}{2} a \bar{\mathcal{N}}_{1}^{c} \mathcal{N}_{1} + \frac{1}{2} b \left(\bar{\mathcal{N}}_{2}^{c} \mathcal{N}_{3} + \bar{\mathcal{N}}_{3}^{c} \mathcal{N}_{2} \right) + \lambda_{e} \bar{\mathcal{L}}_{e} \tilde{\mathcal{H}} \mathcal{N}_{1} + \lambda_{\mu} \bar{\mathcal{L}}_{\mu} \tilde{\mathcal{H}} \mathcal{N}_{2} + \\ & \lambda_{\tau} \bar{\mathcal{L}}_{\tau} \tilde{\mathcal{H}} \mathcal{N}_{3} + h.c. + \lambda_{5}^{12} \bar{\mathcal{N}}_{1}^{c} \mathcal{N}_{2} \mathcal{S} + \lambda_{5}^{13} \bar{\mathcal{N}}_{1}^{c} \mathcal{N}_{3} \mathcal{S}^{\star} + h.c. \end{split}$$

$$m_D = \begin{pmatrix} m_{\nu_e} & 0 & 0 \\ 0 & m_{\nu_{\mu}} & 0 \\ 0 & 0 & m_{\nu_{\tau}} \end{pmatrix}, \quad m_R = \begin{pmatrix} a & s & t \\ s & 0 & b \\ t & b & 0 \end{pmatrix},$$
$$m_{\nu_j} \equiv \lambda_i v / \sqrt{2}, \ s \equiv \lambda_S^{12} v_X \text{ and } t \equiv \lambda_S^{13} v_X.$$

$$m_{\nu}\simeq -m_D\cdot m_R^{-1}\cdot m_D$$
.

MSW Potential

- Coherent Forward Scattering of Neutrinos on Fuzzy DM
- scalar DM

L. Wolfenstein, Phys.Rev. D17 (1978) S. P. Mikheev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42 (1985)

$$V_{\mathrm{eff}} = rac{1}{2E_
u} \Big(\phi \left(y \ m_
u + m_
u \ y
ight) + \phi^2 y^2 \Big), \qquad \phi = rac{\sqrt{2
ho_\phi}}{m_\phi} \cos(m_\phi t) \;,$$

vector DM

$$V_{\mathrm{eff}} = -rac{1}{2E_
u} \Big(2(p_
u\cdot\phi)gQ + g^2Q^2\phi^2 \Big). \qquad \phi^\mu = rac{\sqrt{2
ho_\phi}}{m_\phi} \xi^\mu \cos(m_\phi t)\,.$$

•
$$V^{(T,U)}_{\mu\mu} = V^{(T,U)}_{\tau\tau} = \frac{g^2 \rho_{\phi}}{E_{\nu} m_{\phi}^2} \cos^2(m_{\phi} t)$$

• for polarized DM we evaluate $p_{\nu} \cdot \phi$ assuming the polarization axis to be parallel to the ecliptic plane

Methods

- We have implemented the potential in GLoBES Huber et al. 0701187,0407333
- the time dependence of matter potential induces time dependent oscillation probabilities
- we evaluate the oscillation probabilities at several fixed times and interpolate using a second order polynomial in cos(m_{\u03c6}t)

 $P(\stackrel{(\neg)}{\nu_{\alpha}} \rightarrow \stackrel{(\neg)}{\nu_{\beta}}) = P_0^{\alpha\beta}(E_{\nu}) + P_1^{\alpha\beta}(E_{\nu}) \cdot V(t) + P_2^{\alpha\beta}(E_{\nu}) \cdot V(t)^2 + \dots$

the probability is then averaged in a given time interval T

$$ar{P}(E) = rac{1}{T} \int_0^T dt P(E_
u,t)$$

Dark Matter Across the Scales

Particle and Astroparticle Theory Seminar, MPIK

Constraints

- for vector DM, the sensitivity is more than ten orders of magnitude better in the polarized case
- for scalar and polarized vector DM acceleration-based experiments give stronger limits and sensitivities
- for unpolarized vector DM, experiments at lower energies are better (energy dependence of the potential)

Impact on Solar and Astrophysical neutrinos

- adiabatic evolution in the sun Sun
- ► survival probability of electron flavor $P_{ee}(E_{\nu}) = \sum_{i} |U_{ei}^{\odot}|^2 |U_{ei}^{\oplus}|^2$
- fitted data from Borexino, Super-K and SNO

Astrophysical

- obtaining constraints from optical depth $\tau_{\nu}(E_{\nu}) = \sigma_{\nu\phi}(E_{\nu})X_{\phi}m_{\phi}^{-1}$ with $X_{\phi} \equiv \int_{\text{l.o.s}} dl \rho_{\phi}$
- much weaker limits in comparison to oscillation exp. _ _ _ _ _ _ _ _ _ _ _

Summary I

- Novel proposal for explaining 3.5 keV line relying on annihilating DM
- For exactly degenerate χ and φ, the agreement between different searches is at 2 − 3σ level
- For quasidegenerate masses, our scenario leads to better statistical agreement between various searches wrt to decaying DM (for annihilating DM the limit from dwarf galaxies is less relevant thanks to the strong dependence of the annihilation cross section on the DM velocity)
- DM production via freeze-in or misalignment
- > DM is cold enough, evading structure formation bounds

Summary II

- We have computed the evolution of the DM core in a massive star until core collapse
- If the DM annihilation products are able to leave the exploding star and decay to SM particles later, this may lead to an observable signal
- Such dark gamma ray burst can be detected by CTA for p-wave DM
- ► p-wave has larger photon flux than s-wave! This is a special feature since p-wave annihilation is generally harder to detect than s-wave ($\langle \sigma v \rangle = \sigma_0 v^2$, with $v \sim 10^{-3}$ for galactic DM)
- The best signal is around $m_{
 m DM} \sim O(100)$ GeV

Summary III

- fuzzy DM is an interesting alternative to WIMP
- fuzzy neutrinophilic DM has recently received attention (Berlin 1608.01307, Krnjaić et al. 1705.06740)
- we have demonstrated that unique opportunities exist at current and future neutrino oscillation experiments to probe interactions between neutrinos and ultra-light DM particles