Project 8

Towards a radio-frequency measurement of the neutrino mass

Sebastian Böser Gentner Kolloquium | MPIK Heidelberg | January 31st 2024

β-decay of tritium

Energy conservation

- sum of rest masses and kinetic energy
 - ► initial mass of ³H nucleus

Momentum conservation

- electron energy maximal when neutrino at rest
 - ▶ $p_{\nu} = 0 \rightarrow \text{solve for } m_{\nu}$

Tritium β-spectrum

End-point of spectrum depends on neutrino mass

$$\frac{dN}{dE} \sim F(Z, E)p_e(E + m_e)\sqrt{(E - E_0)^2 - m_\beta^2)}$$

direct measurement of electron neutrino mass m_β

Tritium β-spectrum

End-point of spectrum depends on neutrino mass

$$\frac{dN}{dE} \sim F(Z, E)p_e(E + m_e)\sqrt{(E - E_0)^2 - m_{\beta}^2)}$$

$$\bullet \text{ direct measurement of electron neutrino mass } m_{\beta} ???$$

$$\bullet \text{ Project 8} = 3$$

Mass of the electron neutrino ?!?

Electron neutrino

• super-position of mass eigenstates $|
u_e
angle = \sum_i^{n_{
u}} U_{ei} |
u_i
angle$

Mass of the electron neutrino ?!?

Electron neutrino

• super-position of mass eigenstates $| u_e angle = \sum_i^{n_ u} U_{ei} | u_i angle$

Kinematik of β -decay

- energy- & momentum conservation
 - only apply to mass eigenstates
 - kinks in the spectrum

Mass of the electron neutrino ?!?

Electron neutrino

• super-position of mass eigenstates $| u_e angle = \sum_i^{n_ u} U_{ei} | u_i angle$

Kinematik of β -decay

- energy- & momentum conservation
 - only apply to mass eigenstates
 - kinks in the spectrum

Experimental resolution

- not sufficient
 - define effective neutrino mass

$$m_eta^2 = \sum_i^{n_
u} \left| U_{ei}^2
ight| m_i^2$$

β-decay experiment

Fraction of electrons im range of interest

- last 10eV: 2 · 10 · 10
- last 1eV: 2 · 10 · 13

β-decay experiment

Fraction of electrons im range of interest

- last 10eV: 2 · 10 · 10
- last 1eV: 2 · 10 · 13

Project 8 — 5

β-decay experiment

State of the art — KATRIN

Key components

- windowless gaseous tritium source $(T_2) \rightarrow$ statistic
- MAC-E spectrometer (10m diameter!) → resolution

Status — KATRIN limit

Current world-best limit

 Combination of 1st & 2nd campaign results

▶ m_β < 0.8 eV (90% CL)

- Results from 1st-5th campaign
 - expected soon
 - sensitivity to
 m_β ≤ 0.5 eV (90% CL)

Future

- Expected sensitivity
 - ▶ m_β ≈ 0.3 eV (90% CL)
- Limited by

RîSMA

- ▶ statistics ~ scales with $N^{-\frac{1}{4}}$
- systematics
- backgrounds

cyclotron radiation

$$f_c = \frac{1}{2\pi} \frac{eB}{m_e}$$

cyclotron radiation

 $f_c = \frac{1}{2\pi} \frac{eB}{m_e}$

First-order relativistic correction

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}}$$

energy measurement!

cyclotron radiation

 $f_c = \frac{1}{2\pi} \frac{eB}{m_e}$

First-order relativistic correction

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}}$$

energy measurement!

Energy resolution $\Delta E/E \sim \Delta f/f$ • $\Delta E/E \sim 0.1 \text{eV} / 18.6 \text{ keV} = 5 \text{ppm} \rightarrow \text{easy!}$

"Never measure anything but frequency" — A. L. Schawlow

cyclotron radiation

 $f_c = \frac{1}{2\pi} \frac{eB}{m_e}$

First-order relativistic correction

$$f_{\gamma} = \frac{f_c}{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}}$$

- energy measurement!
- Energy resolution $\Delta E/E\sim \Delta f/f$
 - $\Delta E/E \sim 0.1 eV / 18.6 keV = 5 ppm \rightarrow easy!$

Frequency resolution $\Delta f \sim 1/\Delta t$

- $\Delta t = 20 \mu s \rightarrow 1400 m @ 18 keV \rightarrow hard!$
 - store in magnetic trap

"Never measure anything but frequency" — A. L. Schawlow

Experiment

Idea

- fill volume with tritium atom gas
- add magnetic field
 - decay electrons orbit around field lines
- measure cyclotron radiation
 - electron spectrum

B. Monreal and J. Formaggio, Phys. Rev D80:051301

Larmor formula

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

Larmor formula

$$P(\gamma,\theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

Radiated power

- 1.1 fW for 18 keV electrons at 90°
- 1.7 fW for 30.4 keV electron at 90°

Larmor formula

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

Radiated power

- 1.1 fW for 18 keV electrons at 90°
- 1.7 fW for 30.4 keV electron at 90°

Comparison

- 10W energy saving light bulb by world population
 - ▶ 10⁶ larger power per person

Larmor formula

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

Radiated power

- 1.1 fW for 18 keV electrons at 90°
- 1.7 fW for 30.4 keV electron at 90°

Comparison

- 10W energy saving light bulb by world population
 - ► 10⁶ larger power per person

Consequences

- need very low-noise detection system
- see mostly electrons at very large pitch angle θ

Project 8 — 10

Phase I: apparatus

Begin of data-taking on 06.06.2014

• first signal \rightarrow captured electron

Begin of data-taking on 06.06.2014

• first signal \rightarrow captured electron

$$f_{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}}$$

Begin of data-taking on 06.06.2014

■ first signal → captured electron

$$f_{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}}$$

Begin of data-taking on 06.06.2014

■ first signal → captured electron

$$f_{\gamma} = \frac{1}{2\pi} \frac{eB}{m_e + E_{\rm kin}}$$

Phase I: results

Improved Phase I setup

- more homogeneous
 B-field
- reduced sensor noise
- improved temperature stability

Achieved resolutions

■ σ(E) = 5.1eV @ 17.8keV

new measurement method established

Phase I: results

Improved Phase I setup

- more homogeneous
 B-field
- reduced sensor noise
- improved temperature stability

Achieved resolutions

- σ(E) = 3.3eV @ 30.4keV
- σ(E) = 5.1eV @ 17.8keV

30.35

Track Initial Energy [keV]

30.40

new measurement method established

CRES — Cyclotron Radiation Emission Spectroscopy

30.20

30.25

30.30

30.45

30.50

Project Plan (and talk outline)

Phase I

demonstrate CRES technique

Phase II

first Tritium spectrum with CRES

Phase III

- Go bigger! demonstrate large cavity
- Go atomic! demonstrate atomic tritium trapping

Phase IV

full apparatus, reaching
 m_β < 0.04 eV sensitivity

Project 8 — 14

Region of interest near the 30.4 keV lines (bins are 0.5 eV wide)

30.35

Track Initial Energy [keV]

30.30

30.40

30.45

30.50

Natural line widths: 1.84 &1.4 eV: Observed FWHM 3.3 eV

Separation is 52.8 e

> 0.8

හ<u>ි</u> 0.6

30.20

Phase II setup

Krypton data taking

- shallow traps
 - ► only retain large pitch angles → low rate
 - ► little variation in B field within trap → good energy resolution

Electron scattering

- before detection
 - Iow-energy (high-frequency) tail in spectrum

Hydrogen scattering model

- 4eV FWHM Voigt profile
- 2.84eV line width in ^{83m}Kr
 - detector resolution surpasses intrinsic line width

Phase II: T₂ data

Tritium data taking

• $6 \cdot 10^4$ longer half-life \rightarrow dramatically decreased rate

increasing pressure

Phase II: T₂ data

Tritium data taking

- 6 · 10⁴ longer half-life → dramatically decreased rate
 - increasing pressure

Tritium configuration

- optimized configuration for best endpoint sensitivity with ~100 days of data
- use deeper trap
 - better statistics
 - ► worse energy resolution $\sigma(E) = 1.5 \text{ eV} \rightarrow 12.0 \text{ eV}$
- lineshape still well described by model (gas composition!)

Detection efficiency

Emitted cyclotron power

$$P(\gamma, \theta) = \frac{1}{4\pi\varepsilon_0} \frac{2}{3} \frac{q^4 B^2}{m_e^2} (\gamma^2 - 1) \sin^2 \theta$$

- detection probability is energy
 (→ frequency) dependent!
- distorted spectrum
 - impacts neutrino mass analysis

Additional effects

- frequency (→ energy) dependent effects of waveguide
- frequency (→ energy) dependent receiver and amplification chain
 - need calibration over ROI!

Phase II: Solenoid calibration

Cyclotron frequency

linear dependence on absolute B-field

Calibration

- cannot easily ramp NMR magnet
 - installed field-shifting solenoid inside NMR bore
 - shift background field and thus cyclotron frequency
- shifted 17.8 keV line of ^{83m}Kr
 - ▶ range of 70MHz (~1.5 keV)
 - Inearity demonstrated within ~0.010MHz (~0.0002eV)

Phase II: Solenoid calibration

Cyclotron frequency

linear dependence on absolute B-field

Calibration

- cannot easily ramp NMR magnet
 - installed field-shifting solenoid inside NMR bore
 - shift background field and thus cyclotron frequency
- shifted 17.8 keV line of ^{83m}Kr
 - ▶ range of 70MHz (~1.5 keV)
 - Inearity demonstrated within ~0.010MHz (~0.0002eV)

Phase II: Solenoid calibration

Cyclotron frequency

linear dependence on absolute B-field

Calibration

- cannot easily ramp NMR magnet
 - installed field-shifting solenoid inside NMR bore
 - shift background field and thus cyclotron frequency
- shifted 17.8 keV line of ^{83m}Kr
 - ▶ range of 70MHz (~1.5 keV)
 - Inearity demonstrated within ~0.010MHz (~0.0002eV)

T2 analysis results

Analysis methods

- Frequentist analysis
- Bayesian analysis
 - good agreement!

Analysis results

- main result
 - Phys. Rev. Lett. 131, 102502
- detailed discussion
 - ► arXiv:2302.12055 (→ PRC)

90% CL	T2 endpoint	Neutrino mass	Background rate
frequentist	$E_0 = 18548^{+19}_{-19} \text{ eV}$	$m_{\beta} \le 152 \text{ eV/c}^2$	$R \leq 3 \cdot 10^{.10} \mathrm{eV^{.1}s^{.1}}$
bayesian	$E_0 = 18553^{+18}_{-19} \text{ eV}$	$m_{\beta} \le 155 \text{ eV/c}^2$	

• density of tritium gas \rightarrow rest gas interactions

- density of tritium gas \rightarrow rest gas interactions
- molecular excitations in T₂

- density of tritium gas \rightarrow rest gas interactions
- molecular excitations in T₂

- density of tritium gas \rightarrow rest gas interactions
- molecular excitations in T₂

- density of tritium gas \rightarrow rest gas interactions
- molecular excitations in T₂
 - need atomic tritium

Molecular tritium limitations

Molecular excitations in ³HeT daughter molecule

- blur tritium endpoint
 - fundamental limit to measurement of ν-mass

Need atomic tritium for **ultimate** experiment!

Molecular tritium limitations

Molecular excitations in ³HeT daughter molecule

- blur tritium endpoint
 - fundamental limit to measurement of ν-mass

Need atomic tritium for **ultimate** experiment!

e⁻

Molecular tritium limitations

Molecular excitations in ³HeT daughter molecule

blur tritium endpoint

ν

 \bigcirc

fundamental limit to measurement of ν-mass

Need atomic tritium for **ultimate** experiment!

e⁻

Storage of atomic T

- recombination catalyzed by walls → difficult!
- H,D and T have unpaired e⁻
 - ▶ non-zero magnetic moment µ
 - tend to (anti-)align with B-field if change is adiabatic

Potential energy

- $\Box \Delta E = \cdot \vec{\mu} \cdot \vec{B}$
- → half of spin states seek field minimum

Magnetic storage of neutral atoms

Storage of atomic T

■ recombination catalyzed by walls → difficult!

Scaling towards the future

Requirements

- high statistical power
 - Iarge volume
 - high detection efficiency
- good energy resolution
 - ► atomic tritium
 - track reconstruction
- lower systematic uncertainties and easier calibration
 - cavity design with simple mode structure

Concept

- Ø(m³) cavity with atom trap
 - ► TE₀₁ mode at Ø(100MHz)

Field from pinch coils

Low-frequency traps

Advantages

- Iower magnetic field
 - Iower dipolar spin-flip rate
 - Iower atom loss rate
- Iarger cavity volume
 - scales with 1/f³
 - Iarger event rate

→ push to larger, low-frequency cavities

Phase III: Cavity design

Scaling approach

- Optimize cavity design
- Develop position-sensitive reconstruction
- Increased volume step by step!

 $\times 10^{3}$

Series of demonstrators

partially parallelized

Cavity CRES Apparatus

Project 8 — 27

Pitch angle reconstruction

Magnetic field effects

- varies along axial motion
- Electron signal is frequency modulated
 - Main carrier
 - frequency proportional to average magnetic field
 - Sidebands
 - spaced by axial frequency

- Detect sidebands
 - correct for axial frequency effect
- Imited by radial variation in trap shape!

$$f_{
m c} = rac{1}{2\pi} rac{e\langle B
angle}{m_e + E/c^2}$$

Project 8 — 28

Optimization of trap design

Traps with more coils

- steeper walls
 - less axial dependence
- less homogeneity in center

Optimization approach

- optimize many loops with individual currents
- reality constraints
 - ▶ geometry, power,...

Pitch angle correction

- Imited by shape change at large radii
 - only probed at large pitch angles
- Imit axial frequency for resolution goal

Optimization of trap design

Traps with more coils

- steeper walls
 - less axial dependence
- less homogeneity in center

Optimization approach

- optimize many loops with individual currents
- reality constraints
 - ▶ geometry, power,...

Pitch angle correction

- Imited by shape change at large radii
 - only probed at large pitch angles
- Imit axial frequency for resolution goal

Optimization of trap design

Traps with more coils

- steeper walls
 - less axial dependence
- less homogeneity in center

Optimization approach

- optimize many loops with individual currents
- reality constraints
 - ▶ geometry, power,...

Pitch angle correction

- Imited by shape change at large radii
 - only probed at large pitch angles
- Imit axial frequency for resolution goal

Phase III: Atomic source R&D

Neutral particle traps

ALPHA Collaboration: Nature Phys 7:558, 2011; arXiv 1104.4982

UCNtau Collaboration: Phys Rev C89, 052501, 2014; arXiv 1310.5759v3

General design

- high magnetic field at walls
- Iow magnetic fields in the center
 - near-field to far-field transition with opposing fields

Atom trapping

loffe-Pritchard trap

- plausible field step
 - ► ΔB=2 T
- Iimit thermal loss fraction
 - $\bullet \ \mathbf{\epsilon}_{\text{loss}} = 10^{-10}$
- maximum allowed temperature
 - ► T_{max} = **30 mK**

Challenges

- cooling to sub-Kelvin level
- keep high T/T₂ purity
 - molecular T₂ not trapped!
- field uniformity in central region

Halbach arrays

Permanent magnet configuration

- alternate orientations
- circular flux configuration
 - ▶ one *"magnetic"* side
 - ▶ one "*non-magnetic*" side

on one side than on the other.

Halbach arrays

Permanent magnet configuration

- alternate orientations
- circular flux configuration
 - ▶ one "*magnetic*" side
 - ▶ one "*non-magnetic*" side

Halbach arrays

Permanent magnet configuration

- alternate orientations
- circular flux configuration
 - ▶ one "*magnetic*" side
 - one "non-magnetic" side

Flat Halbach array

- field falls exponentially with characteristic length $l = \frac{2d}{\pi}$
 - weak far field

Challenges

- Iow temperatures
- overall field strength → evaporative loss

Magneto-gravitational trap

Magnetic trapping

• $E_m = \mu_B B = 58 \,\mu \mathrm{eV/T}$

Energy of cold atomic beam

 $\bullet E_k = k_B T = 64 \,\mu \mathrm{eV/K}$

Gravitational trapping

$$E_g = mgh = 0.3 \,\mu eV/m$$

→ For 10mK cold beam, it takes 2.1 meters of gravity and 0.7T of Bfield to trap.

Spin-flip loading ?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
 But: stimulated emission
 - will lose trapped atoms

Spin-flip loading?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
 But: stimulated emission
 - will lose trapped atoms

Spin-flip loading ?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
- But: stimulated emission
 - will lose trapped atoms

Cornucopia* loading

- Blow cold atoms into trap

 accept loss through
 entrance hole
 required input flux
 - for 1cm hole @ 50mK
 - ► 5 · 10¹² atoms/sec

Spin-flip loading ?

- Flip atom spin at trap edge
 Carry atoms over potential wall (+ energy loss)
- But: stimulated emission
 - will lose trapped atoms

Cornucopia* loading

 Blow cold atoms into trap

 → accept loss through entrance hole

 required input flux for 1cm hole @ 50mK
 5.10¹² atoms/sec

Project 8: Designs concepts

Atomic T source

Project 8: Designs concepts

Atomic T source

Project 8: Designs concepts

Atomic T source

Project 8: Designs concepts

Atomic T source

■ Injection ✓

Trapping

Project 8: Designs concepts

Project 8: Designs concepts

Atomic T source

- Dissociation ???
- Cooling ???
- Injection ✓
- Trapping ✓
- Purification/Circulation (✓)

Thermal dissociation sources

Working principle

- Dissociation on hot tungsten surface
- Temperatures 2200K 2500K
- radiative or electron bombardment heating of capillary

Advantages

- Several models commercially available
- Partly well characterised
- MBE components "HABS"

Tschersich, K. G. et. al. J. Appl. Phys. 84 (1998), 8, 4065-4070 Tschersich, K. G. J. Appl. Phys. 87 (2000), 5, 2565-2573 Tschersich, K. G. et. al. J. Appl. Phys. 104 (2008), 034908

Principle can be adapted for higher flows

→ Good starting point

Measure dissociation efficiency

Detect with ionizing mass spectrometer

Primary challenge

- Dissociative ionization background
 - $\blacktriangleright H_2 + e^{\cdot} \rightarrow H^+ + H + 2e^{\cdot}$
- require very good H₂ suppression
 - ► but $H \rightarrow H_2$ recombination with efficiency $\varepsilon \sim 1!$

Source characterization

Measure dissociation efficiency

Detect with ionizing mass spectrometer

Primary challenge

- Dissociative ionization background
 - $\blacktriangleright H_2 + e^{\cdot} \rightarrow H^+ + H + 2e^{\cdot}$
- require very good H₂ suppression
 - ► but $H \rightarrow H_2$ recombination with efficiency $\epsilon \sim 1!$

Differential pumping

- optimized rejection of recombined H₂
 - retain good SNR

Source characterization

Measure dissociation efficiency

Detect with ionizing mass spectrometer

Primary challenge

- Dissociative ionization background
 - $\blacktriangleright H_2 + e^{\cdot} \rightarrow H^+ + H + 2e^{\cdot}$
- require very good H₂ suppression
 - ► but $H \rightarrow H_2$ recombination with efficiency $\epsilon \sim 1!$

Differential pumping

- optimized rejection of recombined H₂
 - retain good SNR

Measure dissociation efficiency

Detect with ionizing mass spectrometer

Primary challenge

- Dissociative ionization background
 - $\blacktriangleright H_2 + e^{\cdot} \rightarrow H^+ + H + 2e^{\cdot}$
- require very good H₂ suppression
 - ▶ but H → H₂ recombination with efficiency ε ~ 1!

Differential pumping

- optimized rejection of recombined H₂
 - retain good SNR

Hydrogen isotopes

Hydrogen

- Mainz atomic test stand
 - result so far

Hydrogen isotopes

Hydrogen

- Mainz atomic test stand
 - result so far

Deuterium

- UW atomic test stand
 - first dissociation signal

Hydrogen isotopes

Hydrogen

- Mainz atomic test stand
 - result so far

Deuterium

- UW atomic test stand
 - first dissociation signal

Tritium

- requires tritium handling facility
 - joint effort with TLK "KAMATE"

Cooling tritium atoms

Recombination processes

- Eley– Rideal Hgas + H^{surf} → H₂gas
 - decreases with T and adsorbed H^{surf}
- Langmuir–Hinshelwood H^{surf} + H^{surf} → H₂^{gas}
 - ▶ increases with H^{surf} mobility

Surface cooling approach

- first step to recombination minimum (100-150 K) → accomodator
- second step to freeze-out (10K) with limited wall interactions → nozzle

Cooling tritium atoms

Cooling tritium atoms

Cracker → purity vs. flow

RÎSMA

Accommodator (liquid nitrogen)

Final nozzle

- design for few bounces
- freeze-out 30K
 - → periodic purging

Project 8: Design concepts

Excess Electrons Pinc Pino Atomic T source 00000000000000 Dissociation **Field Solenoid** Cooling ??? ■ Injection ✓ V_{fiducial} 10 + m■ Trapping ✓ Field Background mΚ Purification/Circulation (✓) Tritium Atoms e Dissociator Accommodator Nozzle 2500 K 160 K 8 K mK-cold T 🧞 🦄 atoms Tritium Return and Recycling Project 8 — 42 RîSMA

Only atomic T guided magnetically (bend) quadrupole with skimmers

Only atomic T guided magnetically (bend) quadrupole with skimmers

Workmen putting the finishing touches on Zig-zsg turn, Mt Van Hoevenberg Olympic bobsled run

Only atomic T guided magnetically

(bend) quadrupole with skimmers

Tune acceptance for

- $T_{out} = \mathcal{O}(50 \text{mK})$
- **T**₂ contammination $< 10^{-5}$
 - efficiency $\varepsilon_{cold} \sim 25\%$ -100%

Only atomic T guided magnetically

(bend) quadrupole with skimmers

Tune acceptance for

- $T_{out} = \mathcal{O}(50 \text{mK})$
- **T**₂ contammination $< 10^{-5}$
 - efficiency $\varepsilon_{cold} \sim 25\%$ -100%

Evaporative cooling

Basic idea

- magnetic wall
 - loose *hot* atoms (high p_{\perp})
- high density
 - re-thermalization
- drop magnetic field along beam
 - continuous cooling

Boltzman transport equation

Boltzman transport equation

PRISMA

PRISMA

PRISMA

Initial atomic beam

- net forward momentum
 - need cooling and slowing

The wiggler

- several wiggles within mean free path
 - transfer longitudinal to perpendicular momentum
- re-thermalization
 - ▶ slows down beam

Initial atomic beam

- net forward momentum
 - need cooling and slowing

The wiggler

- several wiggles within mean free path
 - transfer longitudinal to perpendicular momentum
- re-thermalization
 - ▶ slows down beam

Initial atomic beam

- net forward momentum
 - need cooling and slowing

The wiggler

- several wiggles within mean free path
 - transfer longitudinal to perpendicular momentum
- re-thermalization
 - slows down beam

Atomic tritium experiment

Conceptual design

- thermal dissociation
 - \blacktriangleright T₂ \rightarrow T
- accomodation
 - ▶ Ø(K) with acceptable recombination
- evaporative wiggle cooling
 - Ø(mK) and slowing down

Hot atoms evaporate as

2500 K

confining field drops

160 K

- high atomic purity
- Magneto-gravitational trap
 - Halbach array

Potential for neutrino mass!

Measuring neutrino masses

approaches are complementary

 $\Delta m^2 \equiv m_2^2 - m_1^2$

Oscillation experiments

Measuring neutrino masses

approaches are complementary

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Oscillation experiments $M = \sum_{i}^{n_{\nu}} m_{i}$

Measuring neutrino masses

approaches are complementary

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Oscillation experiments

$$M = \sum_{i}^{n_{\nu}} m_{i}$$

Cosmological measurements
 $\left| \begin{array}{c} n_{\nu} \\ n_{\nu} \end{array} \right|^{2}$

$$m_{\beta\beta}^2 = \left| \sum_i U_{ei}^2 m_i \right|$$

 $0\nu\beta\beta$ decay experiments

Measuring neutrino masses

approaches are complementary

$$\Delta m^2 \equiv m_2^2 - m_1^2$$

Project 8 collaboration

NATIONAL LABORATORY

JGU

Thank you!