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Neutrino Oscillation = Physics beyond the SM

@ First conclusive experimental evidence of BSM Physics.

@ Neutrinos massless in the SM because
@ No right-handed counterpart (no Dirac mass unlike charged fermions).
@ y; part of SU(2), doublet = No Majorana mass term v] C~y,.
@ SM has an exact global (B — L)-symmetry. Even non-perturbative effects cannot
induce neutrino mass.

@ Simply adding RH neutrinos (N) requires tiny Yukawa coupling y,, < 10~"2 in the Dirac
mass term £, y =y, ;Li®N; + h.c.
@ (Unnaturally) small and has no experimentally observable effects.

@ Large hierarchy between neutrino and charged fermion masses might be suggesting some
new distinct mechanism behind neutrino masses.
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A Simple Paradigm

@ A natural way to generate neutrino mass is by breaking (B — L).

@ Within the SM, can be parametrized through Weinberg’s dimension-5 operator
Aj(L] ®)(L] ®)/A. (8. Weinberg, PRL 43, 1566 (1979

@ Three tree-level realizations: Type L,I1,Ill Seesaw mechanism.
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@ Majorana mass of the heavy particle (N, A, X) breaks L by two units.

@ Other profound implications: Leptogenesis, Dark Matter, Electroweak Vacuum Stability, ...
@ A pertinent question in the LHC era: Is LNV observable at the LHC and/or at low-energy?
@ Other relevant question: Can it also lead to a large LFV?



Type-l1 Seesaw

@ Seesaw messenger: SM singlet fermions (RH neutrinos).
@ Have a Majorana mass term MyNTC~'N, in addition to the Dirac mass Mp = vy,..
@ |In the flavor basis {VLC, N3}, leads to the general structure

0 Mp
M, = ( s
[ Minkowski '77; Mohapatra, Senjanovi¢ '79; Yanagida '79; Gell-Mann, Ramond, Slansky '79; Glashow '79]
@ In the seesaw approximation ||| < 1, where £ = MDM,g1 and ||¢]] = /Tr(£1€),

o Misht ~ —MDM,\_,1 M}, is the light neutrino mass matrix. 4 4

@ (= MDM,\71 is the heavy-light neutrino mixing. s A

@ From a bottom-up approach, we call this minimal scenario the ‘SM seesaw’.

@ No definite prediction for the seesaw scale: a wide range of possibilities over 20 orders of
magnitude (keV - 10'* GeV)!



Two Key Aspects of Seesaw

Majorana Mass Heavy-light Mixing
4

LNV: Neutrinoless Double Beta Decay @ LFV (u— ey, u— 36, u— econv,...)

ur, “r

@ Also non-unitarity of the PMNS matrix.

@ Do not necessarily prove the Majorana
nature since a Dirac neutrino can also
give large LFV and non-unitarity effects.

Does not probe the heavy-light mixing if the
mixed diagram is sub-dominant.

Low-energy tests of Seesaw at the Intensity Frontier require a synergy
between the two aspects.



Collider Signal

@ A direct test of both aspects of type-1 seesaw at the Energy Frontier.
@ ‘Smoking gun’ signal: pp — W* — (EN — Zflf;jj with no £t.
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@ Requires both the Majorana nature of N at (sub-)TeV scale and a ‘large’ heavy-light mixing
to have an observable effect.

@ A potential direct probe of both LNV and LFV (for a # ) if My = O(100 GeV - 1 TeV).



Pre-LHC Constraints
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[A. Atre, T. Han, S. Pascoli and B. Zhang, JHEP 0905, 030 (2009)]



Constraints from LHC Higgs Data

@ Additional number of events expected in the h — 2¢2v channel:
I'(h — N +cc. — EjZkVIJ
Fsm+Tn

rh— WW* — ivp)
=L h i
n(my,y) = Lowi(pp — h) | esm For 7T + %{: €jk

@ Require n(my, y) < 95% CL upper limit from LHC Higgs data.
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[PSBD, R. Franceschini and R. N. Mohapatra, PRD 86, 093010 (2012)]



LFV Constraints
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[R. Alonso, M. Dhen, M. B. Gavela and T. Hambye, JHEP 1301, 118 (2013)]

@ Only constrains the product | Vo V), | (with £ # £), and not the individual [Venl?.
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Constraints from Non-unitarity

@ The full seesaw matrix is diagonalized by the unitary matrix vV = ( g,L 5;? )
@ For large &, the (3 x 3) PMNS mixing matrix U, is no longer unitary.

@ Non-unitarity can be parametrized by ¢ = UZ U =5k—n.

@ Off-diagonal entries of € are measures of the non-unitarity.



Constraints from Non-unitarity

@ The full seesaw matrix is diagonalized by the unitary matrix vV = ( g,L 5;? )
@ For large &, the (3 x 3) PMNS mixing matrix U, is no longer unitary.
@ Non-unitarity can be parametrized by ¢ = UZ U =5k—n.
@ Off-diagonal entries of € are measures of the non-unitarity.
@ Several observable effects:
@ Modified neutrino oscillation probability, e.g.,
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Has a zero-Iength effect. [E. Fernandez-Martinez, M. B. Gavela, J. Lopez-Pavon, and O. Yasuda, PLB
649, 427 (2007)]

@ Suppression of W and Z coupling to light neutrinos.

@ Contribution to EW precision observables.



Constraints from Non-unitarity

@ The full seesaw matrix is diagonalized by the unitary matrix vV = ( g,L 5;? )
@ For large &, the (3 x 3) PMNS mixing matrix U, is no longer unitary.
@ Non-unitarity can be parametrized by ¢ = UZ U =5k—n.
@ Off-diagonal entries of € are measures of the non-unitarity.
@ Several observable effects:
@ Modified neutrino oscillation probability, e.g.,

2 2 2 Am§1L ; ; Am§1L 2
Pur ~ 4s533¢55 8in iE — 4|nur| sind,r S23C03 SN AE + 4|nur]

Has a zero-Iength effect. [E. Fernandez-Martinez, M. B. Gavela, J. Lopez-Pavon, and O. Yasuda, PLB
649, 427 (2007)]
@ Suppression of W and Z coupling to light neutrinos.
@ Contribution to EW precision observables.
@ Current limits (from a global fit of neutrino oscillation data, electroweak decays, lepton
universality tests, and rare charged lepton decays): [ Antusch, Biggio, Fernandez-Martinez, Gavela,
Lopez-Pavon, JHEP 0610, 084 (2006); Abada, Biggio, Bonnet, Gavela, Hambye, JHEP 0712, 061 (2007)]

0.994+0.005 <7.0x1075 <1.6x102
lelexp ~ | <7.0x 1075 0.995+0.005 < 1.0x 102
<16x1072 <1.0x102 0.995+0.005



Constraints from EWPD

@ Heavy neutrinos contribute to the S, T, U parameters. [Kniehl and Kohrs, PRD 48, 225 (1993);

Akhmedov, Kartavtsev, Lindner, Michaels, and Smirnov, JHEP 1305, 081 (2013)]

@ Tree-level non-unitarity effects and loop-level oblique corrections both affect the EWPD.

@ Global fit gives an indirect limit on heavy-light mixing: [del Aguila, de Blas and Perez-Victoria, PRD 78,
013010 (2008)]

@ The current best limit for |V,,y| and |V, y| for My > M.

Coupling N

Only with e V] < 0.055
[Vininl = | 0.035

Only with p V] < 0.057
‘Vmin‘ = 0.036

Only with 7 |[V| < | 0.079
[Vinin| = | 0.057

Universal V< 0.038




Direct Search Limits from LEP
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Looked for an isolated electron plus hadronic jets (N — eW — gjj). [L3 Collaboration, PLB 517, 67 (2001)]




Direct Search Limits from LHC7

@ Within SM seesaw framework, the only channel examined at the LHC so far:
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[CMS Collaboration, PLB 717, 109 (2012)] [ATLAS-CONF-2012-139]
@ Signal strength depends on the largeness of V.

@ Can effectively probe heavy neutrinos only if My < 300 GeV and |V,y|? 2 1073,
[Datta, Guchait, Pilaftsis '93; Han, Zhang '06; del Aguila, Aguilar-Saavedra, Pittau ‘07;...]



Heavy Neutrino Production at the LHC

@ LHC searches considered only
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@ Many other production modes, but most of them are negligible.
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A New Dominant Production Channel

[PSBD, A. Pilaftsis, U.-k. Yang, arXiv:1308.2209 [hep-ph]]
@ Diagrams involving virtual photons in the t-channel give rise to diffractive processes, e.g.,

pp — W*y'jj — (ENjj,

which are not negligible, but infrared enhanced.

@ Divergent inclusive cross section due to collinear singularity caused by the photon
propagator.

@ A minimum p’T cut required to make the cross section finite.

@ Collinear divergence of the Iow-p"T regime is absorbed into an effective photon structure
function for the proton (analogous to the Weizsacker-Williams equivalent photon
approximation for electrons).



Comparison of the Production Cross Sections
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Comparison of the Production Cross Sections
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Comparison of the Production Cross Sections
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Comparison of the Production Cross Sections

The hadronic channels for pp — N¢*jj mediated by virtual gluons and quarks give O(as)
corrections and drop at the same rate as the pp — N¢* cross section.

The total electroweak (y + Z) contribution for pp — N¢E jj drops at a rate slower than the
pp — N¢* cross section with increasing My.

The production channel N¢% jj dominates over the earlier considered N¢* channel with
increasing My.

Similar behavior with increasing /s in the pp collisions.

The crossover point shifts towards lower My with increasing /s.

Thus, the N¢*jj process becomes increasingly important for My 2 200 GeV.
Must be taken into account in present and future analyses of the LHC data.



Improved Upper Limit on Mixing
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[PSBD, Pilaftsis, Yang, arXiv:1308.2209]

@ Improved direct limits are rather conservative since we used only the [ Ldt = 4.7 fb~'
data at /s = 7 TeV LHC (~ 1% of the total data expected).

@ |In practice, the direct limits from /s = 8 and 14 TeV LHC data could be much more
stringent (if no signal is observed!).



Extension to Other Exotic Searches

@ The infrared-enhanced mechanism can equally be extended to other exotic searches at
the LHC.

@ One example: In the context of type-Il seesaw with singly and doubly-charged scalars, we
have vertices of the form H*H~A,A, and HTtH=~A,A,.
@ Lead to diffractive processes such as

pp = Y= HYTHT T et
pp — Y= HYH jj— vt o

@ Expected to dominate over the usually considered search channel
op— Z/y* = H Y H=— s etete—e~

@ LHC exclusion limits for My;++ can be improved significantly. [PSBD, T. Figy (work in progress)]



Left-Right Seesaw

@ L-Rgauge group SU(2), x SU(2)g x U(1)g_, provides a natural embedding of the heavy

neutrinos and seesaw physics. [Pati, Salam '74; Mohapatra, Pati '75; Mohapatra, Senjanovié '75]
@ N is the parity partner of v, and required by anomaly cancellation.
@ Scale of SU(2)-breaking sets the seesaw scale.

@ Basic features:

o (u p( ug \ _ _ (v P N\ _
oFerm|ons.OL:(dL)(:r(dR>:QR, ¢L=(6L>@(eﬁ)=¢g.

A+/\/§ ATt ) ( ¢0 ¢+ )
@ Scalars: Ag = R R = 12
caars Sa ( 2, —npve ) 2=\ er &

@ Yukawa Lagrangian:

Ly = hg’a@L,ifﬁaQH,/‘ + hg’a@L,iéaQR,j + hf}’al@a:‘?j
+71§’a[,<f>al§'j + f,'j(R,'RjAR + L,‘LjAL) + h.c.



Left-Right Seesaw

@ L-Rgauge group SU(2), x SU(2)g x U(1)g_, provides a natural embedding of the heavy

neutrinos and seesaw physics. [Pati, Salam '74; Mohapatra, Pati '75; Mohapatra, Senjanovié '75]
@ N is the parity partner of v, and required by anomaly cancellation.
@ Scale of SU(2)-breaking sets the seesaw scale.

@ Basic features:

. ) _ up P up _ _ vy P N _
@ Fermions: OL_( d )@( dn >_QR, wL_( o )@( en )_zp;:,.
A+/\/§ A++ ) ( ¢0 ¢+ )
@ Scalars: Ag = R R , = 1 2 .
= (M0 A ) e=(8 B
@ Yukawa Lagrangian:
Ly = hg’a@L’,‘tﬁaQH,j + Ef}’a@L,,’&aQRJ + hf}’al@a,‘?j

+F)f}’az,‘(2>a/:?j + f,'j(R,'RjAR + L,‘LjAL) + h.c.

SU(2) x U(1)g—L — U(1)y by (A%) = vg. Leads to My, = grVa.
SU2)L x U(1)y — U(1)em by (¢) = diag(x’, k).
Leads to the fermion masses
My = h9%' + W9, My = h9% + h9%', M, = h'x + R'x/,
Mp = hs' + B'r, My = fvg

@ Seesaw matrix fully determined.



L-R Seesaw at the LHC

@ New contribution via Wg exchange. [Keung and Senjanovié, PRL 50, 1427 (1983)]
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@ Independent of mixing effects. Could probe My up to 2-3 TeV, and My, up to 5-6 TeV.
[Ferrari et al’00; Nemevsek, Nesti, Senjanovi¢, Zhang ’11; Das, Deppisch, Kittel, Valle *12;...]
@ Current LHC limits exclude My, below about 2.5 TeV (depending on My).
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New Diagram including Mixing Effects

(a) LL (b) RR (c) RL (d) LR

@ RL diagram could dominate over LL and RR diagrams over a large range of L-R seesaw

model parameter space.
@ The L-R phase diagram for collider studies: [Chen, PSBD, and Mohapatra, PRD 88, 033014 (2013)]
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A Unique Probe of Mp

@ The new RL mode is a unique probe of Mp in L-R seesaw at the LHC.

@ Huge impact in low-energy searches of L-R seesaw: 0v38, LFV, electron EDM, neutrino
transition moment, etc. [Nemevsek, Senjanovi¢, and Tello, PRL 110, 151802 (2013)]

@ Immediate implication at high-energy: given an experimental limit on the ¢£¢%j cross
section (oexpt),
@ (My, My, ) plane with orL > gexpt is ruled out. Complementary to that obtained from
RR mode.

@ Foro < &L < oexpt (Where &1 is oL normalized to |VinI? = 1), we can derive an
improved limit on

‘V£N|2 < Texpt — ORL

OLL

@ For LHC7, limits improve by about 10% at My = 300 GeV.

Better improvement for higher My and/or higher v/s. Could be as high as 60%.

@ Should be included in future LHC analyses to probe a bigger range of L-R seesaw
parameter space.



Distinguishing RR from RL and LL

@ Different helicity correlations lead to distinguishing features in the kinematic and angular
distributions. [Han, Lewis, Ruiz, and Si, PRD 87, 035011 (2013)]

@ Can be used to pin down the dominant mode in L-R seesaw, if a signal is observed.
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[Chen, PSBD, Mohapatra, PRD 88, 033014 (2013)]



Neutrinoless Double Beta Decay in L-R Seesaw
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Exclusion Limits from Ov 3/

@ Assuming dominance of purely RH-currents, can obtain exclusion regions complementary
to those from the LHC. [PSBD, Goswami, Mitra, and Rodejohann, PRD (R) (2013)]
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@ For My, < 10 TeV, the n-diagram could provide the most stringent constraint on the
electron-neutrino mixing parameter |VeN|2. [preliminary results]
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Charged Lepton Flavor Violation

my [TeV]

my, [TeV]
[Das, Deppisch, Kittel and Valle, PRD 86, 055006 (2012)]



Large Heavy-Light Mixing with TeV-scale My

@ Inthe ‘vanilla’ seesaw, for My 2 TeV, we expect € ~ MpMy," ~ (M, My ')'/2 < 108,
@ Suppresses all mixing effects to an unobservable level.

@ Need special textures of Mp and My to have ‘large’ mixing effects even with TeV-scale M.
[Pilaftsis '92; Kersten, Smirnov '07; Ibarra, Molinaro, Petcov 10; Mitra, Senjanovi¢, Vissani '11; ...]

@ One example: [Kersten, Smirnov '07]

my 8 € 0 M, 0
Mp = my 62 e and My = My 0 0 with €, §; < m;.
ms 03 €3 0 0 Mo

@ Inthe limit ¢;, §; — 0, the neutrino masses given by M, ~ —MDM,\‘,1 MB vanish, although
the heavy-light mixing parameters given by &; ~ m;/M; can be large.



Large Heavy-Light Mixing with TeV-scale My

@ Inthe ‘vanilla’ seesaw, for My 2 TeV, we expect € ~ MpMy," ~ (M, My ')'/2 < 108,
@ Suppresses all mixing effects to an unobservable level.

@ Need special textures of Mp and My to have ‘large’ mixing effects even with TeV-scale M.
[Pilaftsis '92; Kersten, Smirnov '07; Ibarra, Molinaro, Petcov 10; Mitra, Senjanovi¢, Vissani '11; ...]

@ One example: [Kersten, Smirnov '07]

my 8 € 0 M, 0
Mp = my 62 e and My = My 0 0 with €, §; < m;.

ms 03 €3 0 0 Mo

@ Inthe limit ¢;, §; — 0, the neutrino masses given by M, ~ —MDM,\‘,1 MB vanish, although
the heavy-light mixing parameters given by &; ~ m;/M; can be large.

@ Can we have an L-R embedding of these textures?

@ Nontrivial to find a phenomenologically viable scenario since Mp is related to M, in L-R
model.

@ Also need to reproduce the observed neutrino masses and mixing.
@ And all other experimental constraints.



TeV-scale L-R Seesaw with Enhanced V,y

@ Supplement the L-R gauge group with a global discrete symmetry D = Zy x Z, x Z4.

[PSBD, Lee, and Mohapatra, PRD (2013)]

@ The Yukawa Lagrangian invariant under this symmetry:

Loy = hatLag1Bi + haoLladoRo + hagladsRs + fioRiRoAg 1 + f3AR3RsAg o + hc.

Field

Zy X Z4y x Zy Transformation
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TeV-scale L-R Seesaw with Enhanced V,y

@ Supplement the L-R gauge group with a global discrete symmetry D = Zy x Z, x Z4.

[PSBD, Lee, and Mohapatra, PRD (2013)]

@ The Yukawa Lagrangian invariant under this symmetry:
Loy = hatLag1Bi + haoLladoRo + hagladsRs + fioRiRoAg 1 + f3AR3RsAg o + hc.

Field

Zy X Z4y x Zy Transformation

Lo
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1
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App2

@ In the discrete symmetry limit, (¢a) = ( 0 : ) (witha=1,2,3).
a
0
0
0

0 hypky  higrkg hiyry 0
My =1| 0  hppry  hpgrg |, Mp=| hpikq g

0  hgpkp  hsgrkg

@ In this limit, me = 0and m, ; = 0.
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A Predictive and Testable Model

@ Discrete symmetry broken by (¢a) = (

Oka 0 ),where Ska < Ka.
0 a

Can be generated naturally through loop-effects.
drx’s responsible for nonzero electron mass as well as neutrino masses:

hi10ky  hypkp  hiakg i1kt 20k hi3dkg
Mg = | ho1dky  hopke  hogks |, Mp= | hotky  headka  hogdrz | .

h316k1  hgoka  hazrkg ha1kq  hspdka  hs3dkg

Can be written in an upper-triangular form: only 11 free parameters.

Has to fit 3 charged lepton and 3 neutrino masses, 3 neutrino mixing angles, constraints
on mixing Vé,-N, (unitarity, LFV, etc), and on V,§12 (from u — 3e).

Hence predictive and testable!!

Collider signal: LL mode absent. Only RL and RR modes observable.

Only =+ e*jj final states in the RL mode.

Probes LNV and LFV simultaneously.



LFV Predictions
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[PSBD, Lee, and Mohapatra, PRD (2013)]



Leptonic Non-unitarity Effects

@ For large V,y, the light neutrino mixing matrix could have large deviations from unitarity.

10—8 n n n L L 1078 I n L L
600 700 800 900 1000 107 107 1078 10712

My ightest (GEV) BR(u—ey)

@ Non-zero CP-phases can lead to observable leptonic CP-violation. [ongoing work]



Ov 5 Predictions

Parameter Best-fit Current Limit
Value [Barry and Rodejohann, JHEP 1309, 153 (2013)]
L =11 =7
Ny 8.1 x 10 <$7.1x10

|‘nfﬂ| 4.4 x 10712 <7.0x107°
|775,;\ 1.2x 1010 <7.0x107°
[nagl 2.1 x10~10 <7.0x107°
N 1.5 x 108 <57 %1077
(70| 1.5%x 10?9 <3.0x107°

+ interference terms]

0 ov2) L2 ov 2L 12 4 | R 2 ovp2) 2 ovp2) 12
= Gpy |:|MVV| 1= + MR (npg|” + Ingg + nagl™) + IMR 1INl + M7 [FIng]

Nucleus | Model Prediction for TP”2 (yr)

Current Limit (yr)

Future Limit (yr)

76Ge
136y

6.2 x 102 -6.2 x 1027
2.3 x 10%°-4.3 x 10%

> 2.1(3.0) x 10 (GERDA-I)
> 1.9 (3.1) x 10%® (KamLand-Zen)

6 x 1027 (GERDA-II, MAJORANA)
8 x 10%® (EX0-1000)
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@ Large mixing effects can be tested at the Intensity Frontier.

@ Both aspects can be tested directly at the Energy Frontier.

@ New heavy neutrino production mechanism gives improved LHC
sensitivity due to infrared enhancement effects.
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THANK YOU.



Selection Efficiency

@ To compare with the old limits, we use the same selection criteria as used by ATLAS for

pp — pEptjj:

Pk > 20 GeV, ph > 20 GeV, ph'=ine 5 25 Gev,

Inf| < 2.8, |n*| <25, AR > 0.4, ARM > 0.4,
My > 15 GeV, EPS < 35 GeV, myj € [55,120] GeV.

@ Total selection efficiency for the u* u* signal remains almost the same as before.

Signal my [GeV] 100 | 120 | 140 | 160 | 180 | 200 | 240 | 280 | 300
Selection Efficiency [%] | 3.9 | 13.0 | 18.1 | 21.3 | 23.9 | 25.7 | 28.7 | 30.8 | 31.7
@ SM background for di-muon+n jets (with n > 2):

Source i

wz 1.0+ 0.2 +0.3

7z 0.22+£0.05 097

W=w* 0.15+0.04 +0.08

tH+V 0.23+0.04+0.12

Charge mis-measurement < 0.03

Non—prompt 1.1+ 0.5 fgg’

Total background 27+ 0.5 07

Data

3




Comparison between LL, RL and RR Cross Sections

Mw,=3 TeV 0.1 RR
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[Chen, PSBD, Mohapatra, PRD 88, 033014 (2013)]
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[llakovac, Pilaftsis, NPB 437, 491 (1995)]



1 — e Conversion

u,d

(c) Z Penguin Diagram

(d) Box Diagram (e) Box Diagram

[Alonso, Dhen, Gavela, Hambye, JHEP 1301, 118 (2013)]



Why Z4 X Z4 X Z49

@ Choice of the product of Z, groups reduces possible multiple U(1) symmetries of the
model associated with different bi-doublets.

@ Other Z,’s restrict the terms in the Higgs potential so much that the discrete group will get
promoted to a continuous U(1) group, whose spontaneous breaking by non-zero vevs of
¢a will lead to a massless Goldstone boson.

@ With the Z; group, terms like AaTr[(qﬁL(;;a)z] break the U(1) symmetry while keeping the Z4
subgroup of it in tact (for A5z # 0).

@ Gives mass of order A\zx2 (sub-TeV scale) to the leptophilic Higgses.
@ Could also add soft D-breaking terms like Tr(¢>2¢>b) without destabilizing the vacuum.



Generating d~ through Loops




A Sample Fit

0.00153973  —0.0511895  —1.61367
M, = 0 0.0961545  —0.366453 | GeV,
0 0 —0.647105
14.0638 —7.5x 100 —18x 1074
Mp = 0 1.4 x 107° —4.1x 1075 | Gev,
0 0 —7.2x107°
0 814.118 0
My = 814.118 0 0 GeV.
0 0 —2549.95
—0.004  0.004 7.7 x 10713
Von = 0.003  —0.003 6.9x 10"
0.011 —0.011 —7.7x10"8

Output Parameter Value

Mme 0.511 MeV
my, 105.61 MeV
m. 1.777 GeV
N 7.62 x 1070 eV?
Amg, 2.41 x 1073 ev?
012 33.8°

023 39.1°

013 8.6°

My, 814.24 GeV
M, —814.24 GeV
my, 2550 GeV




