

One wave to rule (out) them all? On how GW astronomy is challenging scalar DE

Dario Bettoni

In collaboration with:

J.M. Ezquiaga, M. Zumalacarregui, K. Hinterbichler, G. Domenech, L. Amendola, A. Gomes

Introduction

- Modern cosmology is living a golden age
- Universe evolution well encompassed by ΛCDM model

General Relativity & A & DM & SM particles

- In agreement with observations on a very broad range of scales
- BBN, CMB, LSS,
 Solar System, ...

Introduction

 However, this success is also a curse: ΛCDM is an effective description that is not showing much of its fundamental nature.

General Relativity & A & DM & SM particles

- So far DM has been elusive despite all the experimental and theoretical efforts. Neither direct nor indirect detection so far.
- The Cosmological Constant is still a theoretical puzzle

20 years of acceleration

"The data are strongly inconsistent with a Λ = 0 flat cosmology, the simplest inflationary universe model. An open, Λ = 0 cosmology also does not fit the data well: the data indicate that the cosmological constant is non-zero and positive"

"For a flat universe prior the spectroscopically confirmed SNe Ia require $\Omega \land > 0$ at 7σ and 9σ [...]. A universe closed by ordinary matter is formally ruled out"

20 years of acceleration

December 1998 $m_B^{\text{effective}} \equiv \mathcal{M}_B + 5 \log \mathcal{D}_L(z; \Omega_M, \Omega_\Lambda)$ May 1998

20 years of acceleration

More evidences of DE

Probes of acceleration:

- CMB
- Supernovae
- baryon acoustic oscillations
- weak lensing
- Clusters

New probes of acceleration:

- 21cm lines
- Gravitational waves

More evidences of DE

Probes of acceleration:

- CMB
- Supernovae
- baryon acoustic oscillations
- weak lensing
- Clusters

New probes of acceleration:

- 21cm lines
- Gravitational waves

PRL **119,** 161101 (2017)

Selected for a Viewpoint in Physics

PHYSICAL REVIEW LETTERS

week ending 20 OCTOBER 2017

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

PRL 119, 161101 (2017)

Selected for a Viewpoint in Physics

PHYSICAL REVIEW LETTERS

week ending 20 OCTOBER 2017

GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

B. P. Abbott et al.*

(LIGO Scientific Collaboration and Virgo Collaboration)
(Received 26 September 2017; revised manuscript received 2 October 2017; published 16 October 2017)

THE ASTROPHYSICAL JOURNAL LETTERS, 848:L14 (14pp), 2017 October 20
© 2017. The American Astronomical Society. All rights reserved.

https://doi.org/10.3847/2041-8213/aa8f41

An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A

A. Goldstein¹, P. Veres², E. Burns^{3,17}, M. S. Briggs^{2,4}, R. Hamburg^{2,4}, D. Kocevski⁵, C. A. Wilson-Hodge⁵, R. D. Preece^{2,4}, S. Poolakkil^{2,4}, O. J. Roberts¹, C. M. Hui⁵, V. Connaughton¹, J. Racusin⁶, A. von Kienlin⁷, T. Dal Canton^{3,17}, N. Christensen^{8,9}, T. Littenberg⁵, K. Siellez¹⁰, L. Blackburn¹¹, J. Broida⁸, E. Bissaldi^{12,13}, W. H. Cleveland¹, M. H. Gibby¹⁴, M. M. Giles¹⁴, R. M. Kippen¹⁵, S. McBreen¹⁶, J. McEnery⁶, C. A. Meegan², W. S. Paciesas¹, and M. Stanbro⁴

- ▶ Located 40 Mpc (z=0.008) from us
- > Low energy, $\lambda \sim 10000 \, \mathrm{km}$

Speed of GW measured:

[NGC 4993 HST]

$$-3 \times 10^{-15} \le \frac{c_T}{c_\gamma} - 1 \le 7 \times 10^{-16}$$

- ▶ Located 40 Mpc (z=0.008) from us
- ▶Low energy, $\lambda \sim 10000 \, \mathrm{km}$

Speed of GW measured:

[NGC 4993 HST]

$$-3 \times 10^{-15} \le \frac{c_T}{c_\gamma} - 1 \le 7 \times 10^{-16}$$

Previous constraints

•Cherenkov radiation $\,c-c_{\mathrm{gw}} < 2 imes 10^{-15}c\,$

[Moore & Nelson et al., 2001]

•Binary pulsars $0.995 \lesssim c/c_{gw} \lesssim 1$

[Jiménez et al., 2015]

Time delay between LIGO detectors

[Cornish et al., 2017]
$$0.55c < c_{
m gw} < 1.42c$$

Caveat: these constraints are either in the high frequency regime or in regions where screening is occurring or indirect.

Cosmological constant

We have a successful candidate

$$G_{\mu\nu} = 8\pi G T_{\mu\nu}^{(m)} - \Lambda g_{\mu\nu}$$

For which $\,c_T=c\,.$ So, why bother?

Λ is know to suffer from several issues. It is a measure of our ignorance on gravity!

[Martin, 2012]

- Value is at odds with quantum (vacuum fluctuations) $\Lambda \sim 10^{-29} g/cm^3$ and classic (phase transitions) expectations $\Lambda \sim 10^{-43} GeV^4$
- ullet Coincidence problem $\Omega_{\Lambda}^0 \sim \Omega_m^0$

Beyond Λ

But can be something that is not lambda?

We do not solve Λ problems but we adventure beyond GR boundaries

However, Lovelock theorem:

- One metric
- Diffeomorphism invariance
- 4 dimensions
- local theory
- Second order equation

GR

[Lovelock, 1971]

From GR to scalar-tensor theories

- Extra "matter" fields
- Non local theories
- Higher derivatives
- Breaking symmetries

Scalar, Vector, Tensor fields (Includes also. f(R))

$$R\left(\frac{1}{\square^2}\right)R,\dots$$

$$f(R, R_{\mu\nu}, R_{\mu\nu\alpha\beta})$$

Einstein-Aether, Horava-Lifschitz

• ...

In most cases, it reduces to specifying the nature of the new d.o.f. and their couplings to matter or gravity.

From GR to scalar-tensor theories

Extra "matter" fields

Non local theories

Higher derivatives

Breaking symmetries

Scalar, Vector, Tensor fields (Includes also. f(R))

$$R\left(\frac{1}{\square^2}\right)R,...$$

$$f(R, R_{\mu\nu}, R_{\mu\nu\alpha\beta})$$

Einstein-Aether, Horava-Lifschitz

• ...

In most cases, it reduces to specifying the nature of the new d.o.f. and their couplings to matter or gravity.

From solar system to cosmology

From GR to scalar-tensor theories

Not all possible interactions are viable:

Lagrangians with more than one time derivative induce linear instabilities in the Hamiltonian [Ostrograski (1850)]

But there is a loophole in the argument:

Horndeski theorem!

[Horndeski (1974)]

The most general action for a metric and a scalar field that gives second order field equations in four dimensions is:

$$S_{\rm H} = \sum_{i=2}^{4} \int d^4x \sqrt{-g} \mathcal{L}_i(g_{\mu\nu}, \phi)$$

The most general action for a metric and a scalar field that gives second order field equations in four dimensions is:

$$S_{\rm H} = \sum_{i=2}^{4} \int d^4x \sqrt{-g} \mathcal{L}_i(g_{\mu\nu}, \phi)$$

$$\mathcal{L}_2 = G_2(\phi, X)$$

The most general action for a metric and a scalar field that gives second order field equations in four dimensions is:

$$S_{\rm H} = \sum_{i=2}^{4} \int d^4x \sqrt{-g} \mathcal{L}_i(g_{\mu\nu}, \phi)$$

$$\mathcal{L}_2 = G_2(\phi, X)$$

$$\mathcal{L}_3 = G_3(\phi, X) \square \phi$$

The most general action for a metric and a scalar field that gives second order field equations in four dimensions is:

$$S_{\rm H} = \sum_{i=2}^{4} \int d^4x \sqrt{-g} \mathcal{L}_i(g_{\mu\nu}, \phi)$$

$$\mathcal{L}_2 = G_2(\phi, X)$$

$$\mathcal{L}_3 = G_3(\phi, X) \square \phi$$

$$\mathcal{L}_4 = G_4(\phi) R$$

The most general action for a metric and a scalar field that gives second order field equations in four dimensions is:

$$S_{\rm H} = \sum_{i=2}^{4} \int d^4x \sqrt{-g} \mathcal{L}_i(g_{\mu\nu}, \phi)$$

$$\mathcal{L}_2 = G_2(\phi, X)$$

$$\mathcal{L}_3 = G_3(\phi, X) \square \phi$$

$$\mathcal{L}_4 = G_4(\phi, X)R - G_{4,X}(\phi, X)[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2]$$

The most general action for a metric and a scalar field that gives second order field equations in four dimensions is:

$$S_{\rm H} = \sum_{i=2}^{4} \int d^4x \sqrt{-g} \mathcal{L}_i(g_{\mu\nu}, \phi)$$

$$\mathcal{L}_2 = G_2(\phi, X)$$

$$\mathcal{L}_3 = G_3(\phi, X) \square \phi$$

$$\mathcal{L}_4 = G_4(\phi, X)R - G_{4,X}(\phi, X)[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2]$$

$$\mathcal{L}_{5} = G_{5}(\phi, X)G_{\mu\nu}\nabla^{\mu}\nabla^{\nu}\phi + \frac{G_{5,X}}{6}\left[(\Box\phi)^{3} - 3\Box\phi(\nabla_{\mu}\nabla_{\nu}\phi)^{2} + 2(\nabla_{\mu}\nabla_{\nu}\phi)^{3}\right]$$

Horndeski, beyond Horndeski and beyond beyond Horndeski: DHOST theories

Degenerate theories:

The **degeneracy** of the Lagrangian is the most fundamental starting point in order to build theories that do not propagate extra d.o.f. but contains accelerations

Beyond Horndeski

Using this criteria more general theories have been found that do not propagate any unwanted extra d.o.f.:

DHOST theories

[Crisostomi, Koyama, Langlois, Noui, Gao and more (2013-2018)]

Other, analogous approach is EFT for DE

[Senatore, Luty, Creminelli, Vernizzi, Piazza, Gubitosi, Raveri and more (2013-2018)]

Why these complicated models?

Horndeski action from limit of more fundamental theories

Decoupling limit of massive gravity

$$g_{\mu\nu} \supset \partial_{\mu}\partial_{\nu}\phi$$

[De Rham, Gabadadze, Tolley (2010)

Extra dimensions, DGP

Gravitons interact with scalars via $\partial_{\mu}\partial_{\nu}\phi$

Horndeski predicts anomalous propagation of GW

Derivative couplings and GW speed

$$\mathcal{L} = G(X)R + G'(X) \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$

Perturb the variables $g_{\mu\nu}\to g_{\mu\nu}+h_{\mu\nu}\,,\quad \phi\to\phi+\varphi$ and expand to second order

$$\mathcal{L}^{(2)} \propto h_{\alpha\beta}^{TT} \left(\mathcal{G}_{\mu\nu} \partial^{\mu} \partial^{\nu} \right) h_{TT}^{\alpha\beta}$$

Horndeski predicts anomalous propagation of GW

Derivative couplings and GW speed

$$\mathcal{L} = G(X)R + G'(X) \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$

Perturb the variables $g_{\mu\nu}\to g_{\mu\nu}+h_{\mu\nu}\,,\quad \phi\to\phi+\varphi$ and expand to second order

$$\mathcal{L}^{(2)} \propto h_{\alpha\beta}^{TT} \left(\mathcal{G}_{\mu\nu} \partial^{\mu} \partial^{\nu} \right) h_{TT}^{\alpha\beta}$$

$$\mathsf{GR} \qquad \mathcal{G}_{\mu\nu} = \qquad g_{\mu\nu}$$

Horndeski predicts anomalous propagation of GW

Derivative couplings and GW speed

$$\mathcal{L} = G(X)R + G'(X) \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$

Perturb the variables $g_{\mu\nu}\to g_{\mu\nu}+h_{\mu\nu}\,,\quad \phi\to\phi+\varphi$ and expand to second order

$$\mathcal{L}^{(2)} \propto h_{\alpha\beta}^{TT} \left(\mathcal{G}_{\mu\nu} \partial^{\mu} \partial^{\nu} \right) h_{TT}^{\alpha\beta}$$

BD
$$\mathcal{G}_{\mu\nu}=f(\phi)g_{\mu\nu}$$

Horndeski predicts anomalous propagation of GW

Derivative couplings and GW speed

$$\mathcal{L} = G(X)R + G'(X) \left[(\Box \phi)^2 - (\nabla_{\mu} \nabla_{\nu} \phi)^2 \right]$$

Perturb the variables $g_{\mu\nu}\to g_{\mu\nu}+h_{\mu\nu}\,,\quad \phi\to\phi+\varphi$ and expand to second order

$$\mathcal{L}^{(2)} \propto h_{\alpha\beta}^{TT} \left(\mathcal{G}_{\mu\nu} \partial^{\mu} \partial^{\nu} \right) h_{TT}^{\alpha\beta}$$

HL
$$\mathcal{G}_{\mu\nu} = G(X)g_{\mu\nu} + G'(X)\partial_{\mu}\phi\partial_{\nu}\phi$$

Derivative couplings and GW speed

Expand effective metric using a time-like scalar field derivative

$$\mathcal{L} = \frac{1}{2} \left\{ \left[G - G'\dot{\phi}^2 \right) \left(\dot{h}_{ij}^{TT} \right)^2 - G \left(\vec{\nabla} h_{ij}^{TT} \right)^2 \right\}$$

From which one can read the speed of GW

$$c_T^2 = \frac{1}{1 - \frac{G'}{G}\dot{\phi}^2}$$

Phase lag test

Test with eclipsing binaries: LISA $\sim 10^{-4} - 10^{-1} \mathrm{Hz}$

- Nearby sources
- EM cunterpart
- Periodic sources of GW & EM
- Test the phase lag:

$$\Delta\Phi(t) = 2\omega \frac{r(t)}{c} \left(\frac{c}{c_{qw}} - 1\right)$$

[DB, Ezquiaga, Hinterbichler, Zumalacarregui(2016)]

Horndeski action and GW (On FLRW background)

$$c_T = \frac{w_4}{w_1} = \frac{2G_4 - 2\ddot{\phi}XG_{5,X} - 2XG_{5,\phi}}{2(G_4 - 2XG_{4,X} - 2X(\dot{\phi}HG_{5,X} - G_{5,\phi}))}$$

[De Felice & Tsujikawa, 2011]

How do we reconcile with LIGO/Fermi observations?

- Forget about Horndeski: $G_4(\phi, X) = f(\phi)$, $G_5(\phi, X) = 0$
- Tune G_4 and G_5 functions: is **background dependent**

[Ezquiaga & Zumalacarregui, 2017] [Creminelli & Vernizzi, 2017] [Sakstein & Jain, 2017] [Baker at al., 2017]

Caveat

Use scalar field equation & assume spatial flatness

$$\mathcal{E} = A\ddot{\phi} + B = 0$$

$$c_T^2 - 1 = \frac{\mu}{2\dot{\phi} (3H\mu - \kappa_G) \mathcal{K}_X} \mathcal{E}_{\phi},$$

- •Get algebraic relations and gives a non trivial HL with ct=1
- •Effect of LSS $c_T = \bar{c}_T + \delta c_T$

Caveat

Use scalar field equation & assume spatial flatness

$$\mathcal{E} = A\ddot{\phi} + B = 0$$

$$c_T^2 - 1 = \frac{\mu}{2\dot{\phi}\left(3H\mu - \kappa_G\right)\mathcal{K}_{,X}}\mathcal{E}_{\phi},$$

- Get algebraic relations and gives a non trivial HL with ct=1
- •Effect of LSS $c_T = \bar{c}_T + \delta c_T$

Caveat

Use scalar field equation & assume spatial flatness

$$\mathcal{E} = A\ddot{\phi} + B = 0$$

$$c_T^2 - 1 = \frac{\mu}{2\dot{\phi}\left(3H\mu - \kappa_G\right)\mathcal{K}_{,X}}\mathcal{E}_{\phi},$$

- •Get algebraic relations and gives a non trivial HL with ct=1
- •Effect of LSS $c_T = \bar{c}_T + \delta c_T$ $\Rightarrow \delta c_T \sim 10^{-3}$

$$\Rightarrow \delta c_T \sim 10^{-3}$$

Caveat

Use scalar field equation & assume spatial flatness

$$\mathcal{E} = A\ddot{\phi} + B = 0$$

$$c_T^2 - 1 = \frac{\mu}{2\dot{\phi}\left(3H\mu - \kappa_G\right)\mathcal{K}_{,X}}\mathcal{E}_{\phi},$$

- Get algebraic relations and gives a non trivial HL with ct=1
- •Effect of LSS $c_T = \bar{c}_T + \delta c_T$ $\Rightarrow \delta c_T \sim 10^{-3}$

$$\Rightarrow \delta c_T \sim 10^{-3}$$

•So.. not quite working...

GW anomalous speed

Horndeski action and GW (On FLRW background)

$$c_T = \frac{w_4}{w_1} = \frac{2G_4 - 2\ddot{\phi}XG_{5,X} - 2XG_{5,\phi}}{2(G_4 - 2XG_{4,X} - 2X(\dot{\phi}HG_{5,X} - G_{5,\phi}))}$$

How do we reconcile with LIGO/Fermi observations?

- Forget about Horndeski: $G_4(\phi, X) = f(\phi)$, $G_5(\phi, X) = 0$
- Tune G_4 and G_5 functions: is **background dependent**
- •Go to DHOST: admit $c_T=1$ exactly, but suffer at small scales [Langlois et al., 2017]
- Dynamical mechanism for which $c_T=1$ is an attractor

Doppelgänger Dark Energy

Compatibility with GW

•Look for a dynamical tuning: relax to $c_T=1\,$ today but not in the past in a non trivial Horndeski scenario

Scaling solution

Assume that DM and DE look alike

$$\rho_{DE} = c\rho_{DM}$$

DM-DE interaction is needed

DDE recipe

- Impose scaling
- Look for solutions
- Check that these are attractor
- Stability & consistency checks
- •Impose the GW constraint

$$\rho_{DE} = c\rho_{DM}$$

$$\rho_{DE} = \rho_{DE}(G_i)$$

$$c_s^2 > 0 \,, \quad c_{gw}^2 > 0$$

$$c_{gw}|_{DDE} = 1$$

DM-DE interaction

$$\frac{d\rho_{DM}}{dt} + 3H\rho_{DM} = Q(\phi)\frac{d\phi}{dt}\rho_{DM} \qquad \frac{d\rho_{\phi}}{dt} + 3H(1+w_{\phi})\rho_{\phi} = -Q(\phi)\frac{d\phi}{dt}\rho_{DM}$$

DM-DE interaction as an effective metric

$$S = \int d^4x \sqrt{-\bar{g}} \left\{ \sum_i \bar{\mathcal{L}}_i(\bar{g}, \phi) + \bar{\mathcal{L}}_{DM}(g_{\mu\nu}B(\phi)) + \bar{\mathcal{L}}_{SM} \right\}$$

DM-DE interaction

$$\frac{d\rho_{DM}}{dt} + 3H\rho_{DM} = Q(\phi)\frac{d\phi}{dt}\rho_{DM} \qquad \frac{d\rho_{\phi}}{dt} + 3H(1+w_{\phi})\rho_{\phi} = -Q(\phi)\frac{d\phi}{dt}\rho_{DM}$$

DM-DE interaction as an effective metric

$$S = \int d^4x \sqrt{-\bar{g}} \left\{ \sum_i \bar{\mathcal{L}}_i(\bar{g}, \phi) + \bar{\mathcal{L}}_{DM}(g_{\mu\nu}B(\phi)) + \bar{\mathcal{L}}_{SM} \right\}$$

Complicated. Use a trick:Invert metric $g_{\mu\nu}=B(\phi)^{-2}\bar{g}_{\mu\nu}$

DM-DE interaction

$$\frac{d\rho_{DM}}{dt} + 3H\rho_{DM} = Q(\phi)\frac{d\phi}{dt}\rho_{DM} \qquad \frac{d\rho_{\phi}}{dt} + 3H(1+w_{\phi})\rho_{\phi} = -Q(\phi)\frac{d\phi}{dt}\rho_{DM}$$

DM-DE interaction as an effective metric

Complicated. Use a trick:Invert metric $g_{\mu\nu}=B(\phi)^{-2}\bar{g}_{\mu\nu}$

DM-DE interaction

$$\frac{d\rho_{DM}}{dt} + 3H\rho_{DM} = Q(\phi)\frac{d\phi}{dt}\rho_{DM} \qquad \frac{d\rho_{\phi}}{dt} + 3H(1+w_{\phi})\rho_{\phi} = -Q(\phi)\frac{d\phi}{dt}\rho_{DM}$$

DM-DE interaction as an effective metric

$$S = \int d^4x \sqrt{-g} \left\{ \sum_i \mathcal{L}_i(g, \phi) + \mathcal{L}_{DM} + \mathcal{L}_{SM}(g_{\mu\nu}B(\phi)) \right\}$$

Complicated. Use a trick:Invert metric $g_{\mu\nu}=B(\phi)^{-2}\bar{g}_{\mu\nu}$

DM-DE interaction

$$\frac{d\rho_{DM}}{dt} + 3H\rho_{DM} = Q(\phi)\frac{d\phi}{dt}\rho_{DM} \qquad \frac{d\rho_{\phi}}{dt} + 3H(1+w_{\phi})\rho_{\phi} = -Q(\phi)\frac{d\phi}{dt}\rho_{DM}$$

DM-DE interaction as an effective metric

$$S = \int d^4x \sqrt{-g} \left\{ \sum_i \mathcal{L}_i(g, \phi) + \mathcal{L}_{DM} + \mathcal{L}_{SM}(g_{\mu\nu}B(\phi)) \right\}$$

Complicated. Use a trick:Invert metric $g_{\mu\nu} = B(\phi)^{-2} \bar{g}_{\mu\nu}$

Baryons are now coupled but since they are subdominant we neglect them... (for the moment!)

Doppelgänger Dark Energy

- •Uncoupled DM behaves as a pressure less fluid $ho_{DM} \propto a^{-3}$
- •DDE condition $ho_{\phi} \propto
 ho_{DM} \propto a^{-3}$
- Friedmann equations Impose scaling

$$6H^2G_4 = \rho_{\phi} + \rho_{DM}$$
 $\frac{d\ln \rho_{\phi}}{dN} = \frac{d\ln \rho_{DM}}{dN} = -3$

Need to solve

$$\frac{d\ln G_4}{dN} = \frac{d\ln G_4}{d\phi} \frac{d\ln \phi}{dN} + \frac{d\ln G_4}{dX} \frac{d\ln X}{dN} = 3w_{eff}$$

Doppelgänger Dark Energy

ullet Solving and knowing the functional dependence $ho_\phi(G_i)$

$$G_2(\phi, X) = \phi^{p_2} a_2(Y)$$
 , $G_3(\phi, X) = \phi^{p_3} a_3(Y)$
 $G_4(\phi, X) = \phi^{p_4} a_4(Y)$, $G_5(\phi, X) = \phi^{p_5} a_5(Y)$
 $Y = X\phi^p$, $p = p_4 - p_2 - 2$, $p_3 = p_4 - 1$, $p_5 = 2p_4 - p_2 - 1$

- Y is constant on (DDE) scaling solution
- The most general solutions of DDE in the Horndeski Lagrangian that greatly extends previous results

Doppelänger Dark Energy

Compute the speed of tensor

$$c_T^2 = \frac{a_4 - p_5 Y a_5}{a_4 - 2Y a_{4,Y} + p_5 Y a_5 - (6 + p_2 - 3p_4) Y^2 a_{5,Y}}$$

•Instead of arbitrarily tuning the coefficients to satisfy the constraint we exploit the attractor nature of the DDE solution i.e. we require:

$$a_{4,Y}|_s = 0 = a_{5,Y}|_s$$
 & $a_5 = 0$ or $p_5 = 0$

- On the scaling solution the Horndeski functions are in a minimum
- Out of the scaling (i.e. in the past) GW speed can be different than 1

Effect of baryons

In general baryons will tend to bring out of scaling solution

$$\delta c_T^2 = \frac{\delta Y^{n-1}}{Y_s^{n-1}} \frac{2Y_s^n a_{4,Y^n}|_s}{a_4|_s}$$

• Horndeski function must have a minimum, e.g.

$$a_4(Y) = \frac{M_{pl}^2}{2} \left(1 + c_4 \left(1 - \frac{Y}{Y_s} \right)^n \right)$$

From this we get how many derivatives must vanish

$$\delta c_T^2 \approx -n \, 10^{-n+1} c_4 < 10^{-15}$$

•In order not to be affected by baryons n>16!

Conclusions

GW 170817 and GRB strongly constrained Horndeski action.

Reduced theory space

$$G_4(\phi, X) = f(\phi), \quad G_5(\phi, X) = 0, \quad G_2(\phi, X), \quad G_3(\phi, X)$$

• Affects also large scales:

$$c_{gw} = 1 \Rightarrow \eta \equiv -\frac{\Phi}{\Psi} = 1$$

[Amendola et al.,2017]

Viable after GW170817

Non-viable after GW170817 [Ezquiaga & Zumalacarregui,2017]

Conclusions

However:

- Attractor solutions with $c_{gw}(z=0.008)=1$ but free in the past can be found albeit with tuning
- ullet The parameter space is still very rich: Yukawa couplings, screening, G_N^{eff}
- Caveat? GW produced very close to the cut-off scale of the EFT (wait for LISA?)
- Constraint only apply to visible sector. **DM-DE (derivative) couplings**
- Is there a **symmetry** protecting the speed of GW?

Conclusions

