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Two big discoveries in the past decade

2012. Discovery of the Brout Englert Higgs boson

>
3

Let us merge the two ideas.
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Gravitational Waves from an early Universe Phase
Transition

Actually already done
by Witten '84, Hogan '86, ...

PHYSICAL REVIEW D VOLUME 30, NUMBER 2 15 JULY 1984

Cosmic separation of phases
Edward Witten*

Institute for Advanced Study, Princeton, New Jersey 08540
(Received 9 April 1984)

@ Symmetry is typically restored at high T.

@ Violent events (e.g. cosmological phase transitions) produce
gravitational waves.
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Gravitational Waves from an early Universe Phase
Transition

From a simulation by Weir et. al.

© Detected Higgs and GWs.

@ Quantitative understanding of the predicted GW spectra has
improved.

© LISA pathfinder has successfully flown.

@ Concrete future proposals such as LISA have been developed.
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Quick review of the predicted GW spectra from PTs )
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Predicted GW spectra
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Three contributions

@ Scalar field contribution
@ Sound waves in the plasma
© Magnetohydrodynamic Turbulence.

6/43



Predicted GW spectra

The spectra depend on the macroscopic properties

o Latent heat «

@ Timescale of the transition 571

@ The Hubble scale (or almost equivalently T,)
°

The wall velocity v,

These are all calculable from microphysics (although v, is technically
challenging).

We can calculate these quantities and then match onto results from
simulations/semi-analytic studies.

If enough of a plasma is present - Bodeker, Moore 1703.08215

@ Runaway wall is prevented by Pro ~ T2AM? or Pxro ~ 7g2 T3AM

@ Scalar field contribution is suppressed.
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Quick review of future experimental prospects J
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LISA Pathfinder. 3/12/15 - 30/6/17

PHYSICAL REVIEW LETTERS 120, 061101 (2018)

Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results
down to 20 uHz

h

Fobruaey 2017

10° 10 07 07
Frequency [H7
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Proposal submitted to ESA - 1702.00786.
Planned launch: 2034.
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Einstein Telescope

Underground LISA )

ain [tisan(H)]

Einsteln GW~. _
Telesdope -l ____- -

Could be built in Sardinia or in Belgium.
The belgian site has particularly good rock.
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Big Bang Observer: a super LISA

o Currently this is a largely virtual experiment.

@ However, it seems sensible to consider the possibility of post-LISA
GW observatories with better sensitivity in the frequency range
spanning the LISA and LIGO bands.

@ The sensitivity curve has been calculated using a six satellite
configuration. - Thrane, Romano 1310.5300

12/43



Having the predicted spectra and future experiments in mind...

We now need a strong PT! J
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EW phase transition

Higgs—phase{' Fo03

T./m

end point 02

18 4 |

T
0z 0.4 06 08 ! 4o 15 150 155 160 165 170
TiGeV.

- Csikor, Fodor, Heitger, hep-ph/9809291, D’Onofrio, Rummukainen 1508.07161

SM with my, = 125 GeV predicts a crossover. Nevertheless, only the
minimum (VEV) of the potential, and the 2nd derivative there (my), is
known.

Strong EW phase transition

@ BSM physics can give a strong EWPT.
o Attractive scenario: EWBG.

@ However, EWBG requires a sub-sonic wall. This typically disfavours
the verv strong PTs which lead to GWs detectable at LISA. 14 /43
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Similarly the QCD phase transition in the SM is a crossover.
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Phase Transitions in a Dark Sector

Wpe)]

ectrum (9 (b

@ We introduce some new fields as a solution to the DM puzzle.
o Additional scalar fields may result in a dark phase transition.

@ The phase transition we study below can even set the DM density.

The idea here is to explore a simple case study as to the feasibility of using
GWs to detect SSB in a dark sector.
Link to neutrino mass instead - Brdar, Helmboldt, Kubo 1810.12306
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A simple DM model - Hambye 0811.0172
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The Model: SU(3)C X 5U(2)L X U(l)y X 5U(2)D

1
LD —ZFD'FD+(DHD)T(DHD)_M§ HbHp =Xy (HhHp)? =M HyHp HTH

Custodial SO(3) symmetry
Dark gauge bosons, A, are stable and form the DM!

Potential possibilities

@ Standard Potential with Mass terms - Hambye 0811.0172

@ Classically Scale Invariant
- Hambye, Strumia 1306.2329, - Hambye, Strumia, Teresi 1805.01473




Standard Freezeout
A +hp A :} _<hp A A A EE\IJ\/A
A :} A “hp A o~ ~hp A :}VV\AF;\:“ A o~ ~hp

Relic abundance for my > my,

ma
1 TeV

gD ~ 0.9 x

Gauge coupling gp

@ Determines relic abundance.

@ Generates a thermal barrier — first order PT.

Close link between parameters determing Qpyr and SSB
— Test using GWs!
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But first let us check the experimental constraints on the model

J
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Direct Detection - Limit on Mixing

Standard Freezeout
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For ma 2 O(100) GeV, need 6 < 0.2.
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LHC constraints - Limit on Mixing
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Let us now turn to the phase transition. J

Reminder:

Gauge coupling gp

@ Determines relic abundance.

@ Generates a thermal barrier — first order PT.
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Finite temperature effective potential

Thermal Contribution to Ve
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Calculation of the GW spectrum
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Euclidean Action

doi\?
S3 = 47r/r2 (% (d—?) + AV(p,n, T)) dr

Nucleation when [/V ~ T*e=5/T ~ H*.
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Calculation of the GW spectrum

10°¢ Standard Potential

107"
EST A
O

~

%1078

Find the latent heat and timescale of the PT

a= prlad (1 - TBiT) (V[</>0,770] = V[¢n7nn])
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Detectability of the signal

10-° Standard Potential
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LISA can test only limited parameter space of standard, polynomial type,
potentials. BBO can do somewhat better. But we are really after a
scenario which generically returns a lot of supercooling.
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Radiative Symmetry Breaking

9o(vy) = 0.9, my=1TeV

Coupling
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We start with a classically scale invariant theory

@ The dark gauge coupling drives the exotic quartic negative in the IR
B, = L 9g,f-‘, — 0gA A, +2)\2 4 24)2
T (4m)2 \ 8 " "l n

@ This signals radiative symmetry breaking - Coleman, E. Weinberg '73

@ The potential is approximated in the flat direction in field space
- Gildener, S. Weinberg '76
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Classically Scale Invariant Potential

- Hambye, Strumia 1306.2329

Classically Scale Invariant Potential

Classically Scale Invariant Potential 107

107°
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The thermal contribution of the gauge bosons is added to this.
The EW Higgs mass is generated through the portal.

Universe generically becomes vacuum dominated before PT.
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Taking into account QCD
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If T S Aqep, QCD confinement must be taken into account.

@ When QCD confines a mass scale enters the potential.

@ EW Symmetry is broken by the quark condensate.

@ The Higgs gets a VEV (h) ~ Aqcp induced by yrh(t tr).
- Witten '81

o This gives a mass term Veg D —Ap,AGep?.

@ The thermal barrier disappears at T ~ myAgcp/ma.
- Iso, Serpico, Shimada 1704.04955
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DM relic density
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DM relic density

= (h)gcp=50MeV
— (h)cp=100MeV/
— (h)cp=200MeV

DM and PT possibilities

o Regime (i): standard freeze-out.

(ia). T, > AQCD-

(ib). Tn < Aqcp. (QCD effects must be added to Vig.)
e Regime (ii): super-cool DM.

(iia). T, > AQCD-

(iib). Th < Aqcp. (QCD effects must be added to Vig.)

Regime (ia) and (iia) are amenable for testing using GWsl!
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Why is the signal suppressed for T, < Aqcp?

@ With massless quarks QCD PT is first order at T ~ Agcp: GW signal
- Helmboldt, Kubo, van der Woude 1904.07891

@ However inflation continues until T ~ myAgcp/ma
— suppresses signal.

e SU(2)p PT is also first order.

o But due to mass term Veg D —ApyAgcpn? signal is weak.

v

So we focus on T, > Aqcp instead.
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GW signal Regime (ia) - Standard Freezeout

Classically Scale Invariant Potential Regime (ia)
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GW signal Regime (iia) - Super-cool DM
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Super-cool DM

yed Tri ( Tena )’

YDMlsuper cool = TpM Tintl Tintl
in in

Here gp ~ 1 and my 2= 370 TeV.
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GW signal Regime (iia) - Super-cool DM
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Peak Frequency Regime (iia) - Super-cool DM

10 Classically Scale Invariant Potential Regime (iia)

S 1k_[HA]
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Key prediction of the model

We find the peak frequency here is ~ 102 Hz almost independent of mpg.
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Completion of the Phase Transtion
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If nucleation rate is low, we can form bubbles which never meet. 38,43



Completion of the Phase Transtion
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If nucleation grows enough, sufficient bubbles to meet will nucleate. 39/43



Completion of the Phase Transtion
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In the classically scale invariant potential we have a slow transition but an
exponentially growing nucleation rate.
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Completion of the Phase Transtion

We can explicitly check the volume of false vacuum decreases and the
bubbles will percolate.

=1000 TeV, gp=0.98
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Calculation can be improved: running of gp potentially important.

Super cool DM in composite Higgs scenario - Baratella, Pomarol,
Rompineve 1812.06996

Detailed pheno study - IB, Gouttenoire, Sala, Servant (In progress)

GW signal from QCD PT in other models? - Helmboldt, Kubo, van der
Woude 1904.07891
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@ Extensively studied the PTs for spin-one DM.
o Case study for sensitivity of future GW observatories to DM models.

@ LISA, which will launch in 2034, will test scenarios with significant
supercooling.

@ ET also has some sensitivity.
@ More advanced instruments needed for polynomial potentials.

@ Phase transitions: another pheno avenue to explore in your favourite
models.

@ Much work still needed — exciting times ahead.




The terms of the one-loop effective potential

Effective Potential

Vet = Viree(#) + VP(0) + V' (¢, T) + Viaisy (6, T)
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gp Coupling
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Dark Running - Including All Coupligns
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go(vy) =0.9, my=1TeV
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