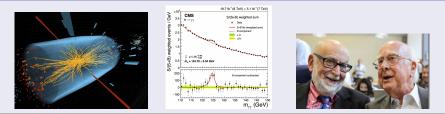
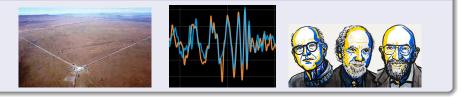
Gravitational Waves and Dark Matter

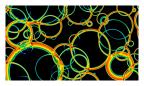

lason Baldes In collaboration with Camilo Garcia-Cely arXiv:1809.01198


MPIK, Heidelberg 13 May 2019

Two big discoveries in the past decade

2012. Discovery of the Brout Englert Higgs boson

2016. Direct Detection of Gravitational Waves

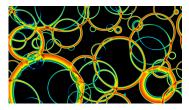

Let us merge the two ideas.

Gravitational Waves from an early Universe Phase Transition

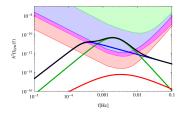
Actually already done by Witten '84, Hogan '86, ... PHYSICAL REVIEW D VOLUME 30, NUMBER 2 Institute for Advanced Study, Princeton, New Jersey 08540 (Received 9 April 1984)

- Symmetry is typically restored at high T.
- Violent events (e.g. cosmological phase transitions) produce gravitational waves.

Gravitational Waves from an early Universe Phase Transition


From a simulation by Weir et. al.

Since then


- Detected Higgs and GWs.
- Quantitative understanding of the predicted GW spectra has improved.
- IISA pathfinder has successfully flown.
- G Concrete future proposals such as LISA have been developed.

Quick review of the predicted GW spectra from PTs

Predicted GW spectra

From a simulation by Weir et. al.

LISA working group 1512.06239

$$h^2 \Omega_{
m GW}(f) \equiv h^2 rac{f}{
ho_c} rac{d
ho_{
m GW}}{df}$$

Three contributions

- Scalar field contribution
- Sound waves in the plasma
- Magnetohydrodynamic Turbulence.

Predicted GW spectra

The spectra depend on the macroscopic properties

- Latent heat α
- Timescale of the transition β^{-1}
- The Hubble scale (or almost equivalently T_n)
- The wall velocity vw

These are all calculable from microphysics (although v_w is technically challenging).

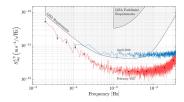
We can calculate these quantities and then match onto results from simulations/semi-analytic studies.

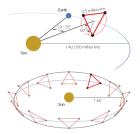
If enough of a plasma is present - Bodeker, Moore 1703.08215

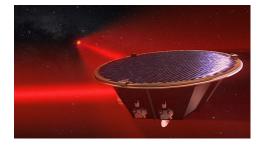
- Runaway wall is prevented by $P_{
 m LO} \sim T^2 \Delta M^2$ or $P_{
 m NLO} \sim \gamma g^2 T^3 \Delta M$
- Scalar field contribution is suppressed.

Quick review of future experimental prospects

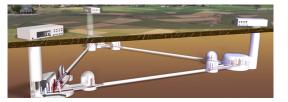
LISA Pathfinder. 3/12/15 - 30/6/17

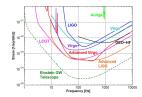

PHYSICAL REVIEW LETTERS 120, 061101 (2018)


Editors' Suggestion


Featured in Physics

Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20 $\mu \rm Hz$

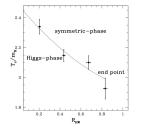




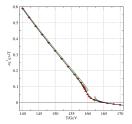
Proposal submitted to ESA - 1702.00786. Planned launch: 2034.

Underground LISA

Could be built in Sardinia or in Belgium. The belgian site has particularly good rock.


Big Bang Observer: a super LISA

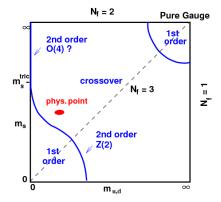
- Currently this is a largely virtual experiment.
- However, it seems sensible to consider the possibility of post-LISA GW observatories with better sensitivity in the frequency range spanning the LISA and LIGO bands.
- The sensitivity curve has been calculated using a six satellite configuration. Thrane, Romano 1310.5300


Having the predicted spectra and future experiments in mind...

We now need a strong PT!

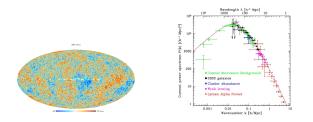
EW phase transition

- Csikor, Fodor, Heitger, hep-ph/9809291,


D'Onofrio, Rummukainen 1508.07161

SM with $m_h = 125$ GeV predicts a crossover. Nevertheless, only the minimum (VEV) of the potential, and the 2nd derivative there (m_h) , is known.

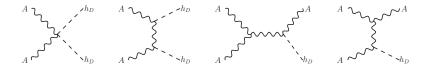
Strong EW phase transition


- BSM physics can give a strong EWPT.
- Attractive scenario: EWBG.
- However, EWBG requires a *sub-sonic* wall. This typically *disfavours* the very strong PTs which lead to GWs detectable at LISA.

QCD confinement

Similarly the QCD phase transition in the SM is a crossover.

Phase Transitions in a Dark Sector



- We introduce some new fields as a solution to the DM puzzle.
- Additional scalar fields may result in a dark phase transition.
- The phase transition we study below can even set the DM density.

The idea here is to explore a simple case study as to the feasibility of using GWs to detect SSB in a dark sector.

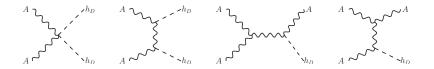
Link to neutrino mass instead - Brdar, Helmboldt, Kubo 1810.12306

A simple DM model - Hambye 0811.0172

The Model: $SU(3)_C \times SU(2)_L \times U(1)_Y \times SU(2)_D$

$$\mathcal{L} \supset -\frac{1}{4} F_D \cdot F_D + (\mathcal{D}H_D)^{\dagger} (\mathcal{D}H_D) - \mu_2^2 H_D^{\dagger} H_D - \lambda_\eta (H_D^{\dagger} H_D)^2 - \lambda_{h\eta} H_D^{\dagger} H_D H^{\dagger} H_D$$

Custodial SO(3) symmetry


Dark gauge bosons, A, are stable and form the DM!

Potential possibilities

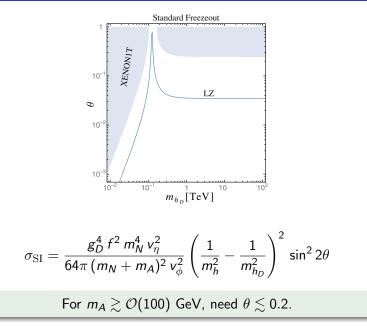
- Standard Potential with Mass terms Hambye 0811.0172
- ② Classically Scale Invariant

- Hambye, Strumia 1306.2329, - Hambye, Strumia, Teresi 1805.01473

Standard Freezeout

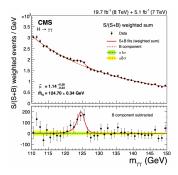
Relic abundance for $m_A \gg m_{h_D}$

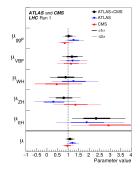
$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1~{
m TeV}}}$$


Gauge coupling g_D

- Determines relic abundance.
- Generates a thermal barrier \rightarrow first order PT.

Close link between parameters determing $\Omega_{\rm DM}$ and SSB \rightarrow Test using GWs!

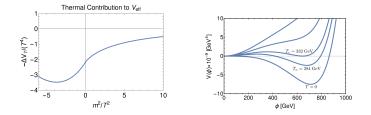

But first let us check the experimental constraints on the model


Direct Detection - Limit on Mixing

20 / 43

LHC constraints - Limit on Mixing

 $heta \lesssim \mathcal{O}(0.1)$

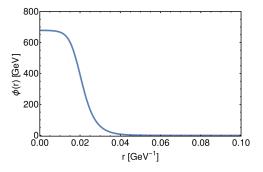

Let us now turn to the phase transition.

Reminder:

Gauge coupling g_D

- Determines relic abundance.
- \bullet Generates a thermal barrier \rightarrow first order PT.

Finite temperature effective potential

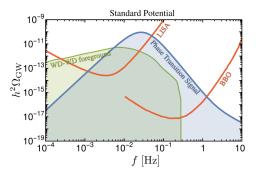


$$V_{\text{eff}} = V_{\text{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi, T) + V_{\text{Daisy}}(\phi, T)$$

Thermal Contribution

$$\begin{aligned} \frac{2\pi^2}{T^4} V_1^{T}(\phi, T) &= \int_0^\infty y^2 \mathrm{Log} \left(1 - e^{-\sqrt{y^2 + m_i^2(\phi)/T^2}} \right) \mathrm{d}y \\ &\approx -\frac{\pi^4}{45} + \frac{\pi^2 m^2}{12T^2} - \frac{\pi m^3}{6T^3} - \frac{m^4}{32T^4} \mathrm{Ln} \left(\frac{m^2}{220T^2} \right) \end{aligned}$$

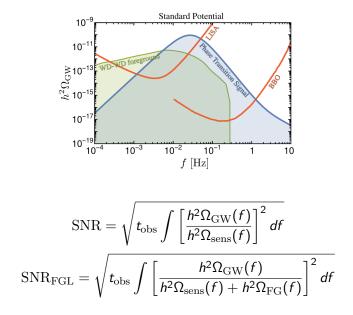
Calculation of the GW spectrum

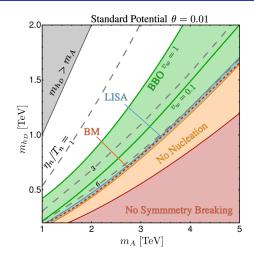


Euclidean Action

$$S_3 = 4\pi \int r^2 \left(\frac{1}{2} \left(\frac{d\phi_i}{dr} \right)^2 + \Delta V(\phi, \eta, T) \right) dr$$

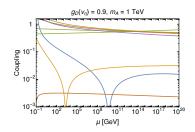
Nucleation when $\Gamma/V \sim T^4 e^{-S_3/T} \sim H^4$.


Calculation of the GW spectrum


Find the latent heat and timescale of the PT

$$\alpha = \frac{1}{\rho_{\rm rad}} \left(1 - T \frac{\partial}{\partial T} \right) \left(V[\phi_0, \eta_0] - V[\phi_n, \eta_n] \right) \Big|_{T_n}$$
$$\beta = -\frac{d}{dt} \left(\frac{S_3}{T} \right) = H T_n \frac{d}{dT} \left(\frac{S_3}{T} \right) \Big|_{T_n}$$

Detectability of the signal

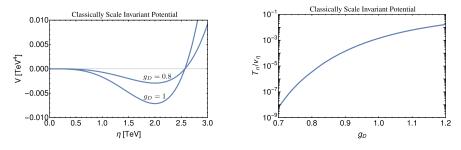


Results

LISA can test only limited parameter space of standard, polynomial type, potentials. BBO can do somewhat better. But we are really after a scenario which generically returns a lot of supercooling.

Radiative Symmetry Breaking

We start with a classically scale invariant theory

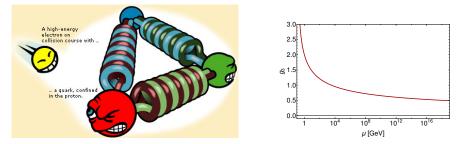

The dark gauge coupling drives the exotic quartic negative in the IR

$$\beta_{\lambda_{\eta}} = \frac{1}{(4\pi)^2} \left(\frac{9}{8} g_D^4 - 9 g_D^2 \lambda_{\eta} + 2\lambda_{h\eta}^2 + 24\lambda_{\eta}^2 \right)$$

- This signals radiative symmetry breaking Coleman, E. Weinberg '73
- The potential is approximated in the flat direction in field space - Gildener, S. Weinberg '76

Classically Scale Invariant Potential

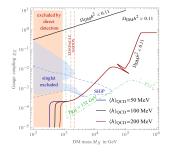
- Hambye, Strumia 1306.2329



Potential at T = 0

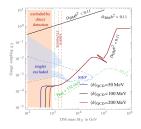
$$V_1^0(\eta) \simeq rac{9g_D^4\eta^4}{512\pi^2} \, \left({
m Ln}\left[rac{\eta}{v_\eta}
ight] - rac{1}{4}
ight)$$

The thermal contribution of the gauge bosons is added to this. The EW Higgs mass is generated through the portal. Universe generically becomes vacuum dominated before PT.


Taking into account QCD

If $T_n \leq \Lambda_{QCD}$, QCD confinement must be taken into account.

- When QCD confines a mass scale enters the potential.
- EW Symmetry is broken by the quark condensate.
- The Higgs gets a VEV $\langle h \rangle \sim \Lambda_{\rm QCD}$ induced by $y_t h \langle \overline{t_L} t_R \rangle$. - Witten '81
- This gives a mass term $V_{\rm eff} \supset -\lambda_{h\eta} \Lambda_{QCD}^2 \eta^2$.
- The thermal barrier disappears at $T \sim m_h \Lambda_{QCD}/m_A$.
 - Iso, Serpico, Shimada 1704.04955


DM relic density

Super-cool DM - Hambye, Strumia, Teresi 1805.01473

$$\begin{split} Y_{\rm DM}|_{\rm super-cool} &= Y_{\rm DM}^{\rm eq} \frac{T_{\rm RH}}{T_{\rm infl}} \left(\frac{T_{\rm n}}{T_{\rm infl}}\right)^3 \\ Y_{\rm DM}|_{\rm sub-thermal} &= M_{\rm Pl} M_{\rm DM} \langle \sigma_{\rm ann} v_{\rm rel} \rangle \sqrt{\frac{\pi g_*}{45}} \int_{z_{\rm RH}}^{\infty} \frac{dz}{z^2} Y_{\rm eq}^2 \end{split}$$

DM relic density

DM and PT possibilities

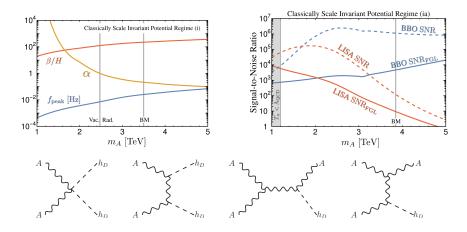
• Regime (i): standard freeze-out.

(ia).
$$T_n > \Lambda_{\rm QCD}$$
.

(ib). ${\cal T}_n < \Lambda_{\rm QCD}.$ (QCD effects must be added to $V_{\rm eff}.)$

• Regime (ii): super-cool DM.

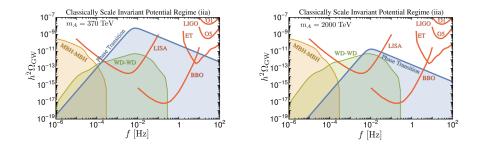
(iia).
$$T_n > \Lambda_{\rm QCD}$$
.


(iib). ${\cal T}_n < \Lambda_{\rm QCD}.$ (QCD effects must be added to $V_{\rm eff}.)$

Regime (ia) and (iia) are amenable for testing using GWs!

- \bullet With massless quarks QCD PT is first order at ${\it T} \sim \Lambda_{QCD}:$ GW signal
 - Helmboldt, Kubo, van der Woude 1904.07891
- However inflation continues until $T \sim m_h \Lambda_{QCD}/m_A$ \rightarrow suppresses signal.
- $SU(2)_D$ PT is also first order.
- But due to mass term $V_{\rm eff} \supset -\lambda_{h\eta} \Lambda^2_{QCD} \eta^2$ signal is weak.

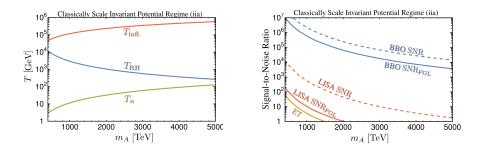
So we focus on $T_n > \Lambda_{\text{QCD}}$ instead.


GW signal Regime (ia) - Standard Freezeout

Standard Freezeout

$$g_D pprox 0.9 imes \sqrt{rac{m_A}{1 {
m TeV}}}$$

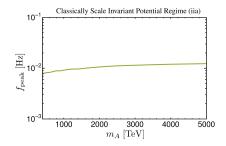
GW signal Regime (iia) - Super-cool DM



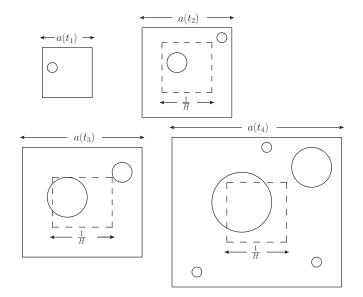
Super-cool DM

$$Y_{\mathrm{DM}}|_{\mathrm{super-cool}} = Y_{\mathrm{DM}}^{\mathrm{eq}} rac{T_{\mathrm{RH}}}{T_{\mathrm{infl}}} \left(rac{T_{\mathrm{end}}}{T_{\mathrm{infl}}}
ight)^3$$

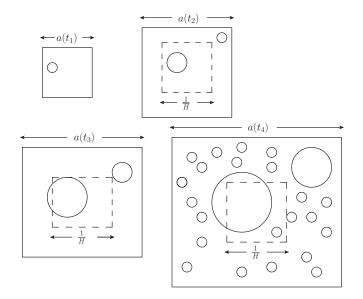
Here $g_D \simeq 1$ and $m_A \gtrsim 370$ TeV.


GW signal Regime (iia) - Super-cool DM

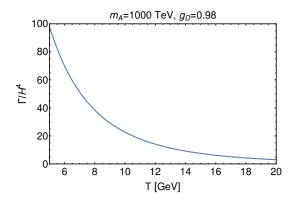
We correct for the period of matter domination after the PT.


$$f_{
m peak}
ightarrow \left(rac{T_{
m RH}}{T_{
m infl}}
ight)^{1/3} f_{
m peak} \qquad \Omega_{
m GW}
ightarrow \left(rac{T_{
m RH}}{T_{
m infl}}
ight)^{4/3} \Omega_{
m GW}$$

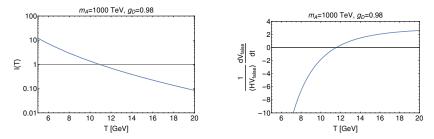
Peak Frequency Regime (iia) - Super-cool DM



Key prediction of the model


We find the peak frequency here is $\sim 10^{-2}$ Hz almost independent of m_A .

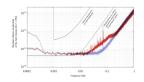
If nucleation rate is low, we can form bubbles which never meet.



If nucleation grows enough, sufficient bubbles to meet will nucleate. 39/43

In the classically scale invariant potential we have a slow transition but an exponentially growing nucleation rate.

We can explicitly check the volume of false vacuum decreases and the bubbles will percolate.


$$\begin{split} P(T) &\equiv e^{-I(T)} \lesssim 1/e \implies I(T) = \frac{4\pi}{3} \int_{t_c}^t dt' \Gamma(t') a(t')^3 r(t,t')^3 \gtrsim 1\\ &\frac{1}{H \mathcal{V}_{\text{false}}} \frac{d \mathcal{V}_{\text{false}}}{dt} = 3 + T \frac{dI}{dT} \lesssim -1. \end{split}$$

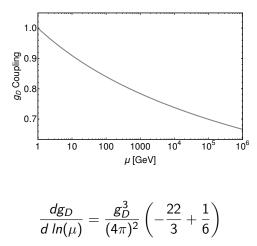
- Calculation can be improved: running of g_D potentially important.
- Super cool DM in composite Higgs scenario Baratella, Pomarol, Rompineve 1812.06996
- Detailed pheno study IB, Gouttenoire, Sala, Servant (In progress)
- GW signal from QCD PT in other models? Helmboldt, Kubo, van der Woude 1904.07891

Summary

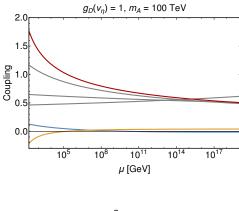
Summary

- Extensively studied the PTs for spin-one DM.
- Case study for sensitivity of future GW observatories to DM models.
- LISA, which will launch in 2034, will test scenarios with significant supercooling.
- ET also has some sensitivity.
- More advanced instruments needed for polynomial potentials.
- Phase transitions: another pheno avenue to explore in your favourite models.
- Much work still needed \rightarrow exciting times ahead.

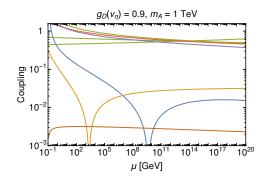
The terms of the one-loop effective potential


Effective Potential

$$V_{\text{eff}} = V_{\text{tree}}(\phi) + V_1^0(\phi) + V_1^T(\phi, T) + V_{\text{Daisy}}(\phi, T)$$


$$V_1^{0}(\phi) = \sum_{i} \frac{g_i(-1)^F}{64\pi^2} \left\{ m_i^4(\phi) \left(\text{Log}\left[\frac{m_i^2(\phi)}{m_i^2(v)}\right] - \frac{3}{2} \right) + 2m_i^2(\phi)m_i^2(v) \right\}$$

$$V_1^T(\phi, T) = \sum_i \frac{g_i(-1)^F T^4}{2\pi^2} \times \int_0^\infty y^2 \operatorname{Log}\left(1 - (-1)^F e^{-\sqrt{y^2 + m_i^2(\phi)/T^2}}\right) \mathrm{d}y$$


$$V_{\text{Daisy}}^{\phi}(\phi, T) = rac{T}{12\pi} \Big\{ m_{\phi}^{3}(\phi) - \big[m_{\phi}^{2}(\phi) + \Pi_{\phi}(\phi, T) \big]^{3/2} \Big\}$$

Dark Running - Including All Coupligns

$$\frac{dg_D}{d\ln(\mu)} = \frac{g_D^3}{(4\pi)^2} \left(-\frac{22}{3} + \frac{1}{6} \right)$$

