Composite vs. elementary pseudo-Goldstone Higgs

Tommi Alanne

CP³Origins

MPIK Heidelberg April 24, 2017

A B + A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Outline

- I Motivational notes
- II Enhanced global symmetries
- III Vacuum misalignment and pGB Higgs
- IV Model examples
- V Conclusions

э

Beware!

Or: I don't (a priori) mind elementary scalars, and this is not a talk about the naturalness problem!

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Motivational notes

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

I

QCD

• QCD with two massless quarks q = (u, d):

$$\mathcal{L} = \overline{q}_{\mathsf{L}} \mathsf{i} \not D q_{\mathsf{L}} + \overline{q}_{\mathsf{R}} \mathsf{i} \not D q_{\mathsf{R}}$$

• Global $SU(2)_L \times SU(2)_R$ chiral symmetry

3

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

QCD

• QCD with two massless quarks q = (u, d):

$$\mathscr{L} = \overline{q}_{\mathsf{L}} \mathsf{i} \not D q_{\mathsf{L}} + \overline{q}_{\mathsf{R}} \mathsf{i} \not D q_{\mathsf{R}}$$

- Global SU(2)_L × SU(2)_R chiral symmetry
- RG: gauge coupling large at low energies
 - ► Non-zero vev $\langle \overline{q}q \rangle \sim 4\pi f_{\pi}^{3}$ ⇒ dynamical masses for mesons and baryons
 - Characteristic QCD scale $4\pi f_{\pi} \approx m_p$

QCD

• QCD with two massless quarks q = (u, d):

$$\mathscr{L} = \overline{q}_{\mathsf{L}} \mathsf{i} \not D q_{\mathsf{L}} + \overline{q}_{\mathsf{R}} \mathsf{i} \not D q_{\mathsf{R}}$$

- ▶ Global SU(2)_L × SU(2)_R chiral symmetry
- RG: gauge coupling large at low energies
 - ► Non-zero vev $\langle \overline{q}q \rangle \sim 4\pi f_{\pi}^{3}$ ⇒ dynamical masses for mesons and baryons
 - Characteristic QCD scale $4\pi f_{\pi} \approx m_p$
- Mass gap: pions light, only about 140 MeV
 - GB's of $SU(2)_L \times SU(2)_R \rightarrow SU_V$
 - But: u, d not quite massless ⇒ chiral symmetry explicitly broken
 ⇒ Masses for pions ⇒ pseudo-GB's
 - EW interactions \Rightarrow Mass splitting between π^{\pm} and π^{0}

(日) (周) (日) (日)

What is disturbing with the EW sector?

- SM is not all
 - Landau poles / triviality
 - DM, matter–antimatter asymmetry, origin of neutrino masses, inflation...?

- Still the Higgs mass is light (and EWSB scale low)
 - Why is it not sensitive to the new-physics scale?
 - Why don't we observe anything else at EW scale?

What is disturbing with the EW sector?

- SM is not all
 - Landau poles / triviality
 - DM, matter–antimatter asymmetry, origin of neutrino masses, inflation...?

- Still the Higgs mass is light (and EWSB scale low)
 - Why is it not sensitive to the new-physics scale?
 - Why don't we observe anything else at EW scale?
- What if the real symmetry-breaking scale f were much higher?
 - EW scale $v_w = 246 \text{ GeV}$ just radiatively generated
 - Higgs a pGB related to the symmetry breaking

Enhanced global symmetries

Composite

- Take N_f fermions $Q = (Q_1, ..., Q_{N_f})$ on rep. R of gauge group G
 - Kinetic terms have global $SU(N_f)_L \times SU(N_f)_R$ symmetry
 - However, if R is (pseudo)real, the global symmetry is enhanced to $SU(2N_f)$
- R real: $SU(2N_f) \rightarrow SO(2N_f)$
 - ▶ $SU(4) \rightarrow SO(4)$: Two Dirac fermions on the adjoint of $G = SU(2)_{TC}$
 - The SU(4)/SO(4) coset does not contain the Higgs doublet
- *R* pseudoreal: $SU(2N_f) \rightarrow Sp(2N_f)$
 - ▶ $SU(4) \rightarrow Sp(4)$: Two Dirac fermions on the fundamental of $G = SU(2)_{TC}$
 - Minimal composite-Higgs scenario with underlying 4D fermionic model
- *R* complex: $SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V$

< □ > < □ > < □ > < □ > < □ > < □ >

Elementary

- Scalar potential can have an enhanced global symmetry as well
 - ► E.g. SM: V_H has SO(4) \cong SU(2)_L × SU(2)_R global symmetry
- General idea [Weinberg, PRL29 (1972)]:
 - Take scalar, S, on rep. R of gauge group G
 - Write the most general potential
 - Impose renormalisability
 - \Rightarrow Potential truncated at order 4

 \Rightarrow The resulting potential is "more symmetric" than G, since not all operators are allowed

Minimal scenarios for pGB Higgs

- Need 4 GB's transforming as (2,2) under $SU(2)_L\times SU(2)_R$ to be able to build the SM-Higgs doublet out of GB's
- Original idea $SU(3)_L \times SU(3)_R \rightarrow SU(3)_V$ [Georgi & Kaplan, PLB136B (1984)]
- SO(5)/SO(4)
 - Minimal breaking pattern: 4 GB's
 - No underlying 4D fermionic realisation
 - Minimal Composite Higgs [Agashe, Contino, Pomarol, NPB719 (2005)]
- $SO(6)/SO(5) \cong SU(4)/Sp(4)$
 - ▶ 5 GB's, (2,2)+(1,1)
 - 2 Dirac fermions on fundamental of SU(2)

[Katz, Nelson, Walker, JHEP0508 (2005), Gripaios, Pomarol, Riva, Serra, JHEP0904 (2009), Galloway, Evans, Luty, Tacchi, JHEP1010 (2010), Barnard, Gherghetta, Ray, JHEP 1402 (2014), Ferretti & Karateev, JHEP1403 (2014), Cacciapaglia & Sannino, JHEP 1404 (2014)]

▲日▼ ▲冊▼ ▲目▼ ▲目▼ 目 ろの⊙

$\left| \right| \right|$

Vacuum misalignment and pGB Higgs

▲ロト ▲園ト ▲画ト ▲画ト 三国 - のへで

EW embedding and vacuum misalignment

- Enhanced global symmetry $G \rightarrow H$
 - Identify the $SU(2) \times SU(2)$ subgroup as the SM chiral group
 - Gauge $G_{EW} = SU(2)_L \times U(1)_Y$ subgroup
- What is the relative alignment of G_{EW} and H?
 - H should include at least $U(1)_Q$, but is there more?
- Simplest case: this can be parameterised by an angle
 - Clever parameterisation of the vacuum: E_θ = cosθE₀ + sinθE_B
 - Angle θ determined by radiative effects:

$$\left.\frac{\partial V_{\rm eff}}{\partial \theta}\right|_{\rm vac} = 0$$

 $m_{W} = \frac{1}{2}gf$ Only U(1)_Q $m_{W} = \frac{1}{2}gf\sin\theta$ H G_{EW} $m_{W} = 0$

Sources for misalignment

- To determine the alignment, need to evaluate the radiative effects from the explicit breaking sectors to the effective potential
 - (EW) gauge interactions
 - SM-fermion masses
 - Vector-like masses for the new fermions
 - Extra scalars
 - <u>۱</u>...
- If the model is perturbative, the one-loop effective potential can be calculated:

$$V_1 = -\frac{i}{2} \int \frac{d^4 k}{(2\pi)^4} \operatorname{Str} \left[\log \left(k^2 + M^2(\phi_c) \right) \right] + \text{ c.t.}$$

• With hard Euclidean cut-off, $k_{\mathsf{E}}^2 = \Lambda^2$, this yields

$$V_{1} = \frac{1}{64\pi^{2}} \operatorname{Str}\left[\Lambda^{4} \left(\log \Lambda^{2} - \frac{1}{2}\right) + 2M^{2}(\phi_{c})\Lambda^{2} + M^{4}(\phi_{c}) \left(\log \frac{M^{2}(\phi_{c})}{\Lambda^{2}} - \frac{1}{2}\right)\right] + \text{c.t.}$$

$$V_1 = \frac{1}{64\pi^2} \text{Str} \left[\Lambda^4 \left(\log \Lambda^2 - \frac{1}{2} \right) + 2M^2 \Lambda^2 + M^4 \left(\log \frac{M^2}{\Lambda^2} - \frac{1}{2} \right) \right] + \text{ c.t.}$$

æ

Image: A matching of the second se

Elementary pGB's?

- Only fermions: generating the SM-fermion masses is a tricky business
 - 4f interactions / partial compositeness from extended strong dynamics?
- Extended elementary scalar sectors: can you solve the triviality and phenomenological issues, and still decouple the high-scale physics?

A B A A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Elementary pGB's?

- Only fermions: generating the SM-fermion masses is a tricky business
 - 4f interactions / partial compositeness from extended strong dynamics?
- Extended elementary scalar sectors: can you solve the triviality and phenomenological issues, and still decouple the high-scale physics?
- Can the extra GB's be DM?
 - Topological terms can break the apparent Z₂ symmetry in the chiral Lagrangian and make the composite pGB's unstable [Wess & Zumino, PLB37 (1971), Witten NPB223 (1983)]
 - The remaining pGB in composite SU(4)/Sp(4) cannot be DM [Cacciapaglia & Sannino, JHEP1404 (2014), Duan, da Silva, Sannino, NPB592 (2001)]
 - If the pGB's are elementary, this is not a problem
 - * Elementary SU(4)/Sp(4) can accommodate DM [TA, Gertov, Sannino, Tuominen, PRD91 (2015)]

T. Alanne (CP³-Origins)

pGB Higgs

Elementary vs. composite Higgs

Composite	Elementary
 Dominant term ~ Tr[M²]f² Gauge symmetry wants to be unbroken [Peskin, NPB175 (1980), Preskill, NPB177 (1981)] If the SM fermions get masses via the condensate, TC-like vacuum preferred Need some other source to obtain a pGB Higgs 	 CW potential: dominant term Tr[M⁴(log M² + C)] Logarithmic terms change the picture: for SM field content the opposite alignment to the composite scenario Non-trivial scalar sector affects the alignment [TA, Gertov, Meroni, Sannino, PRD94 (2016)]
	• DM candidates?

pGB Higgs

э

IV

A concrete model example: Elementary SO(5)/SO(4)

[TA, Gertov, Meroni, Sannino, PRD94 (2016)]

(中) (문) (문) (문) (문)

DoF's

- Minimal coset, i.e. 4 GB's transforming as bi-doublet under $SU(2)_L \times SU(2)_R \cong SO(4)$
 - \blacktriangleright Embed SU(2)_L \times SU(2)_R subgroup to SO(5) by identifying the left and right generators

$$(T_{\mathsf{L},\mathsf{R}})^{a}_{ij} = -\frac{\mathrm{i}}{2} \left[\frac{1}{2} \epsilon^{abc} \left(\delta^{b}_{i} \delta^{c}_{j} - \delta^{b}_{j} \delta^{c}_{i} \right) \pm \left(\delta^{a}_{i} \delta^{4}_{j} - \delta^{a}_{j} \delta^{4}_{i} \right) \right]$$

э

< □ > < □ > < □ > < □ > < □ > < □ >

DoF's

- Minimal coset, i.e. 4 GB's transforming as bi-doublet under $SU(2)_L \times SU(2)_R \cong SO(4)$
 - \blacktriangleright Embed SU(2)_L \times SU(2)_R subgroup to SO(5) by identifying the left and right generators

$$(T_{\mathsf{L},\mathsf{R}})_{ij}^{a} = -\frac{\mathsf{i}}{2} \left[\frac{1}{2} \epsilon^{abc} \left(\delta_{i}^{b} \delta_{j}^{c} - \delta_{j}^{b} \delta_{i}^{c} \right) \pm \left(\delta_{i}^{a} \delta_{j}^{4} - \delta_{j}^{a} \delta_{i}^{4} \right) \right]$$

• There are two vacua that do not break $U(1)_Q$:

$$E_0 = (0,0,0,0,1)$$
 and $E_B = (0,0,1,0,0)$

- E_0 does not break EW, E_B breaks it completely to $U(1)_Q$
- General vacuum a linear combination $E_{\theta} = \cos\theta E_0 + \sin\theta E_B$

< □ > < □ > < □ > < □ > < □ > < □ >

DoF's

- Minimal coset, i.e. 4 GB's transforming as bi-doublet under $SU(2)_L \times SU(2)_R \cong SO(4)$
 - \blacktriangleright Embed SU(2)_L \times SU(2)_R subgroup to SO(5) by identifying the left and right generators

$$(T_{\mathsf{L},\mathsf{R}})_{ij}^{a} = -\frac{\mathsf{i}}{2} \left[\frac{1}{2} \epsilon^{abc} \left(\delta_{i}^{b} \delta_{j}^{c} - \delta_{j}^{b} \delta_{i}^{c} \right) \pm \left(\delta_{i}^{a} \delta_{j}^{4} - \delta_{j}^{a} \delta_{i}^{4} \right) \right]$$

• There are two vacua that do not break $U(1)_Q$:

$$E_0 = (0,0,0,0,1)$$
 and $E_B = (0,0,1,0,0)$

- E_0 does not break EW, E_B breaks it completely to $U(1)_Q$
- General vacuum a linear combination $E_{\theta} = \cos \theta E_0 + \sin \theta E_B$
- Parameterise the scalar DoF's as a linear sigma model around the vacuum E_{θ} : $\Phi = (\sigma + i\Pi^a X^a)E_{\theta}$
- SO(5)-symmetric potential: $V_0 = \frac{m_{\Phi}^2}{2} \Phi^{\dagger} \Phi + \frac{\lambda}{4!} (\Phi^{\dagger} \Phi)^2$

イロト イポト イヨト イヨト 二日

Gauge boson and SM fermion masses

• At the SSB, $\langle \sigma \rangle = v$, EW gauge bosons get masses

$$\mu_W^2 = \frac{1}{4}g^2v^2\sin^2\theta$$
, and $\mu_Z^2 = \frac{1}{4}(g^2 + g'^2)v^2\sin^2\theta$

- Identify $v_w = v \sin \theta$
- Writing the (SO(5)-breaking) Yukawa terms between the SM fermions and the EW doublet in Φ gives the fermions masses

$$m_f = \frac{y_f}{\sqrt{2}} v \sin \theta$$

• Both proportional to $v \sin \theta$

The CW potential

• The effective potential up to one-loop order is then

$$V_{\text{eff}} = V_0 + V_1^{\text{scalar}} + V_1^{\text{ferm}} + V_1^{\text{gauge}}$$

 $\bullet\,$ In the $\overline{\rm MS}$ scheme the contributions to the CW potential (in ϕ background) are

$$\begin{split} V_1^{\text{scalar}} &= \frac{1}{64\pi^2} \operatorname{Tr} \left[M^4(\phi) \left(\log \frac{M^2(\phi)}{\mu_0^2} - \frac{3}{2} \right) \right], \\ V_1^{\text{gauge}} &= \frac{3}{64\pi^2} \operatorname{Tr} \left[\mu^4(\phi) \left(\log \frac{\mu^2(\phi)}{\mu_0^2} - \frac{5}{6} \right) \right], \\ V_1^{\text{ferm}} &= -\frac{4}{64\pi^2} \operatorname{Tr} \left[\left(m^{\dagger}(\phi) m(\phi) \right)^2 \left(\log \frac{m^{\dagger}(\phi) m(\phi)}{\mu_0^2} - \frac{3}{2} \right) \right], \end{split}$$

• A convenient renormalisation condition is to require that the vev stays at the tree-level value: ∂V_{eff}

$$\left. \frac{\partial V_{\text{eff}}}{\partial \sigma} \right|_{\sigma = v} = 0$$

Vacuum alignment?

- Minimize V_{eff} wrt $\theta \Rightarrow$ Only solution $\theta = 0$
 - The EW does not break
 - No non-trivial alignments without further ingredients
 - Cf. composite case: top contributions would prefer $\theta = \pi/2$

Vacuum alignment?

• Minimize V_{eff} wrt $\theta \Rightarrow$ Only solution $\theta = 0$

- The EW does not break
- No non-trivial alignments without further ingredients
- Cf. composite case: top contributions would prefer $\theta = \pi/2$
- But: Add an extra Z₂-symmetric singlet scalar, S

$$V_0 \rightarrow \frac{m_\Phi^2}{2} \Phi^{\dagger} \Phi + \frac{m_S^2}{2} S^2 + \frac{\lambda}{4!} (\Phi^{\dagger} \Phi)^2 + \frac{\lambda_{\Phi S}}{4} (\Phi^{\dagger} \Phi) S^2 + \frac{\lambda_S}{4!} S^2$$

- Now solutions for small θ for sin² θ ∝ λ_{ΦS}
 ⇒ a pGB Higgs possible with non-minimal scalar sector!
- θ ≪ 1 requires tiny quartic couplings
 ⇒ Extra scalar states are very decoupled

V

Theme and variations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Cosmic connections: EWSB & Inflation

- Could cosmic inflation and EWSB be connected?
- Best-known example: Higgs inflation [Bezrukov & Shaposhnikov, PLB659 (2008)]
 - ► The SM Higgs inflation requires a very large non-minimal coupling to gravity $\xi R(H^{\dagger}H)$, $\xi \sim 10^4$
 - Unitarity of gravitational Higgs–Higgs scattering?
- Similarly for inflation driven by an additional singlet, S: $\xi_S \approx 49000 \sqrt{\lambda_S}$
 - Inflation with $\xi_S \sim \mathcal{O}(1)$, if $\lambda_S \lesssim 10^{-8}$
- Can the extra singlet, *S*, required in SO(5)/SO(4) be the inflaton if non-minimally coupled to gravity?

pGB Higgs & Inflation?

- Yes, it can [TA, Sannino, Tenkanen, Tuominen, PRD 95 (2017)]
 - Inflaton would trigger EWSB
 - Symmetry breaking near the inflation scale
 ⇒ The scalar self-couplings tiny
 ⇒ Already a very small non-minimal coupling (ξ < 1) is enough
 - ► For $0.1 < \xi_S < 10$ and $N \approx 60$, we obtain the spectral index $n_s \approx 0.9678$ and tensor-to-scalar ratio 0.0030 < r < 0.0078

The correct \mathcal{P}_R for N = 55,60,65 (red,blue,purple)

Hierarchy between Unification and Fermi scales

- Two vastly separated energy scales: Λ_{GUT} and $v_w = 246$ GeV
- The symmetry breaking steps are modelled via scalar sectors

•
$$\langle P \rangle \sim \Lambda_{\text{GUT}}$$
 and $\langle H \rangle = v_w$

- The SM scalar potential: $V_{SM} = m_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$
 - Physical Higgs mass 125 GeV $\Rightarrow \lambda_H = 0.13$

$$m_H^2 = -\lambda_H v_w^2$$

Hierarchy between Unification and Fermi scales

- Two vastly separated energy scales: Λ_{GUT} and $v_w = 246$ GeV
- The symmetry breaking steps are modelled via scalar sectors
 - $\langle P \rangle \sim \Lambda_{\text{GUT}}$ and $\langle H \rangle = v_w$
- The SM scalar potential: $V_{SM} = m_H^2 H^{\dagger} H + \lambda_H (H^{\dagger} H)^2$
 - Physical Higgs mass 125 GeV $\Rightarrow \lambda_H = 0.13$
 - $m_H^2 = -\lambda_H v_w^2$
- But: SM feels the GUT scalars via portal interaction $\lambda_{mix}H^{\dagger}HTr[P^{\dagger}P]$
 - $\langle P \rangle$ induces a mass term $\sim \lambda_{\rm mix} \Lambda_{\rm GUT}^2$ for H
 - λ_{mix} has to be highly suppressed $(\lambda_{\text{mix}} \lesssim v_w^2 / \Lambda_{\text{GUT}}^2)$ \Rightarrow Huge hierarchy between λ_{mix} and λ_H

Pati-Salam Unification

- As an example, consider SO(6)/SO(5) ≅ SU(4)/Sp(4) global symmetry pattern ⇒ The natural unification scenario is à la Pati–Salam
 - Unify colour with lepton number

 \Rightarrow SU(4)_{LC} of leptocolour

 \Rightarrow The full symmetry $G = SU(4)_{glo} \times SU(4)_{LC}$

- The simplest realisation to illustrate the idea [TA, Meroni, Sannino, Tuominen, PRD 93 (2016)]
 - $M \sim (6_A, 1) \in G$ breaks $SU(4)_{glo} \rightarrow Sp(4)_{glo}$
 - ▶ Add another scalar multiplet to break the leptocolour: $P \sim (1,4) \in G$

イロト イポト イヨト イヨト 二日

Results

- Fix $\Lambda_{\text{UT}} = \langle P \rangle = 2.5 \cdot 10^6 \text{ GeV}$ (above the experimental bound)
- Is it possible to find parameters that
 - give the correct EW spectrum $(v \sin \theta = v_w)$
 - Produce the correct Higgs mass?

< 67 ▶

Results

- Fix $\Lambda_{\text{UT}} = \langle P \rangle = 2.5 \cdot 10^6 \text{ GeV}$ (above the experimental bound)
- Is it possible to find parameters that
 - give the correct EW spectrum $(v \sin \theta = v_w)$
 - Produce the correct Higgs mass?
- Yes!
 - Typically $v \sim \Lambda_{\text{UT}}$
 - All quartic coupings are small (≤0.01) but no large hierarchy between them
 - The mass parameters of the same order
 - EWSB originates from the Unification scale

T. Alanne (CP³-Origins)

Conclusions and Outlook

- Different UV realisations imply different phenomenology
 - Composite framework more famous, but elementary realisation can also provide interesting possibilities
 - In a renormalisable model, a pGB Higgs can be obtained by extending the scalar sector
- Minimal scenario SO(5)/SO(4)
 - Minimal composite Higgs, but no 4D fermionic realisation
 - With elementary scalars intriguing possibilities with e.g. inflation or unification scenarios

Possible further avenues:

- Neutrinos
 - Type I See-Saw: RH neutrinos with Majorana masses near the symmetry breaking scale?
- FIMP dark matter
 - High SSB scale \Rightarrow Self-couplings tiny

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Thank you!

3

イロト イヨト イヨト イヨト