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The big picture
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NASA, http://science.gsfc.nasa.gov/663/research/index.html



Gravitational-wave astronomy 2.0

Space-based missions: GWs produced
in the early Universe
- LISA (Laser Interferometer Space
Antenna)

- launch: 2034
- 3 satellites
- 2.5-10° km arms

https://sci.esa.int/s/8k0LjeA



Gravitational-wave astronomy 2.0

Space-based missions: GWs produced
in the early Universe

- LISA (Laser Interferometer Space
Antenna)

- DECIGO (Deci-Hertz Interferometer
Gravitational-Wave Observatory)

- launch: 2027 (?)
- 3 satellites (?)
- 1000 km arms

https://sci.esa.int/s/8k0LjeA



Gravitational-wave astronomy 2.0

Space-based missions: GWs produced
in the early Universe

- LISA (Laser Interferometer Space
Antenna)

- DECIGO (Deci-Hertz Interferometer
Gravitational-Wave Observatory)
- BBO (Big-Bang Observer)

- post-LISA idea
- 3+3 satellites
- 5.10% km arms

https://sci.esa.int/s/8k0LjeA



Gravitational-wave astronomy 2.0

Gravitational —wave frequency at the present time, f[Hz]
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Probe on the early Universe

- Direct searches (colliders, DM, ...) of new physics so far
discouraging
- On the other hand studying the cosmic background
radiation has turned out very fruitful
- Could stochastic GW backgroung turn out equally rewarding?



Probe on the early Universe

- Direct searches (colliders, DM, ...) of new physics so far
discouraging
- On the other hand studying the cosmic background
radiation has turned out very fruitful
- Could stochastic GW backgroung turn out equally rewarding?

- Potential beyond the reach of current colliders
- Direct probe on beyond-SM physics

- Strong first-oder phase transitions
- Cosmic strings Blasi, Brdar & Schmitz, 2004.02889
- Inflaton...



GWs from first-order phase transition
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State of the art
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State of the art
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Vaskonen, 1611.02073

publish

- Importantly, many potentially interesting scenarios
producing detectable GWs have been found!



Open questions

Qq: What if a signal is detected?

- Can different models / classes of models be distinguished
or at least (dis)favoured?
- Systematic study lacking

Q,: How to get a better handle on the micro-macro connection?

- How to predict the fluid dynamics from the model
parameters accurately enough?

Qs: What are the actual multi-messenger prospects?



Peak-Integrated Sensitivity Curves



What happens in the plasma during SFOPT?

- Three types of transitions:
deflagrations (v < ¢s), hybrid (v > ¢s), detonations
(Vi > Cs)
- In fluid rest frame, green: non-zero fluid velocity

Q0o

Espinosa et al., 1004.4187

Cutting, Hindmarsh, Weir, 1906.00480



GW spectra from SFOPTs

- sources
- bubble collisions (b)
- sound waves in the bulk plasma (s)
- turbulence in the plasma (t)
- The corresponding spectra can be approximately computed
and written in terms of peak amplitudes, Q,.peak and spectral
shapes, S;

R2Q; (f) = QP (v, B/Hs, Toy Vi, 1) Si(f )



Peak amplitudes

The peak amplitudes have fit formulas
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Spectral-shape functions

And likewise the spectral-shape functions
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Signal-to-noise ratio

- SNR defined by

p= | [ (1 sl
s 1, Hz \ h?Qpoise(f)

min

,11/2

* Nget = 1for LISA (auto-correlation), nget = 2 for DECIGO (?)
and BBO (cross-correlation)



SNR rewritten

- SNR can be rewritten as

2 2 2

,02 ~ hzﬂgeak . thEeak . hzﬂtpeak
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peak\ 2 peak\ 2 peak\ 2
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- The integration over the frequency range has already been
carried out implicitly

L. fmax S S _1/2
h2 Qs = !(2—5,'j)ﬂdet1yr/ af S0 2]
finin (h?Qnoise(f))
- The mixed peak amplitudes are defined as the respective

geometric means, hzﬂf/‘jak — (thlpeak hZijeak)V2



Benchmark data



Singlet extension of the SM

- Add a real singlet scalar to the SM
1 1 1
Viree = <M2H + pHsS + 2)\H552> |H|2 + E,U%SZ + §/~L3S3
1
+ Ay [H* + Z/\SS‘*

- Theoretical constraints

- Boundedness from below & vacuum stability
- Perturbative unitarity

- Complementary experimental constraints
- Higgs couplings
- EW precision



Sample of Benchmark parameters

- We generate a sample of ~ 6000 characteristic points

Vs € [72 Vh, 2Vh]
ms € [1GeV, 10 TeV|

0 [-0.5, 0.5]
3 € [=10vp, 10 vp]
Xs € [0.001, 5]

- We fix vy = 0.9, pthr = 1, tops = 1 yr
- Goal here is not to exhaustively study the parameter space,
but rather illustrate the method



Efficiencies for energy conversion

- We use the upper limit for
the turbulence factor from
Ellis et al., 1903.09642

- This likely overestimates
the turbulence fraction,
but this is an open
question

Relative occurence

- However, shows that the :
- 107 10® 10% 10t 1077 10°
turbulence can be very Efficiency factor &
relevant

- vy = 0.9 to increase the GW signal

- Most transitions detonation types
- For lower wall velocities, especially deflagrations, sound
wave contribution can be significantly suppressed

Cutting, Hindmarsh, Weir, 1906.00480
20



Bubble collisions (b)
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- black: detectable in this channel, dark gray: combined SNR
above the threshold, light gray: undetectable
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Parameter space

- Signal region for the most restrictive channel (s/t)
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BBO fi/fo=142 |
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Y

Comparison with existing
approaches
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- Cross check: agrees with previous studies Alves et al, 1812.09333
- Some level of degeneracy wrt SNR

- Studying the model parameter space less straightforward
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Power-law integrated sensitivity curves

10’ 10° 10°
f (Hz)

Thrane & Romano, 1310.5300

- black: single-detector sensitivity
red: H-L detector pair
green: one-year integrated

26



Power-law integrated sensitivity curves
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- black: single-detector sensitivity
red: H-L detector pair
green: one-year integrated
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Comparison with existing approaches

- PISCs only depend on the experimental noise spectra and
spectral shape functions
- They represent truly experimental quantities that are
insensitive to uncertainties on the theory side

- Does not depend, e.g., on how we compute the parameters
«, B/H., and T,

- Varying pw,, €asy: just Ay in the PICS plots
- Straightforward to generalize to other signal shapes
- The GW signal from inflation or cosmic strings can be
described by a large range of different shapes, depending
on the underlying model = Not possible to construct a
universally applicable sensitivity curve.

- However, possible if restricted to a more model-dependent
analysis

27



Comparison with existing approaches

- Allows for an easy comparison of the six different signal
channels (s, b, t, s/b, s/t, b/t)
- |llustrate the relative importance of these six channels
- Allows to study study the impact of change in one
component at a time

- To generate traditional SNR plots, one has to compute the
frequency integral for every parameter point in every model

- Computationally expensive and unnecessary

- Instead, it suffices to restrict oneself to the peak amplitudes
and peak frequencies which then need to be evaluated for
each point in the data set

28



Conclusions

- The next-generation space-based GW missions have an
intriguing potential to probe new physics beyond the reach
of the current colliders

- To use this potential, one needs also next-generation
research

- Discriminating power, fluid dynamics, multi-messenger
probes
- Systematic studies on different classes of models needed
- We proposed a novel way to illustrate the GW signal region
- Scatter plots in the plane of peak frequencies and peak

amplitudes similar to those seen in DM direct-detection
experiments

- The spectral shape of the signal integrated out

- Allows to study the model parameter space easily on the GW
signal region

29
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