

э

Outline

Motivation of family symmetries

- 2 A 'vanilla' family symmetry model
 - The Altarelli-Feruglio A_4 model
- 3 Non-zero $heta_{13}$
 - Mixing patterns of finite modular groups
 - Mixing patterns with large NLO corrections
 - Flavour symmetries at the Electroweak scale

conclusions

∃ → (∃ →

- Central theme of my thesis: family symmetries.
- Related to the existence of three families
- Motivation is threefold.
 - Structure in similarity
 - Structure in difference 1: masses
 - Structure in difference 2: mixing

Structure in similarity

- Charged leptons of all three generations
 - Same charges
 - Same spin
- Complete generation replication quite special
 - Although partly explained by anomalies
- In the Standard Model this is considered an experimental fact...
 - ...but not explained by a deeper reason.

Structure in difference 1: masses

- Particles of the three generations differ in their masses.
- The masses are highly hierarchical.
- On a logarithmic scale, there might be some structure.

Structure in difference 1: masses

- Particles of the three generations differ in their masses.
- The masses are highly hierarchical.
- On a logarithmic scale, there might be some structure.

Structure in difference 1: masses

- Particles of the three generations differ in their masses.
- The masses are highly hierarchical.
- On a logarithmic scale, there might be some structure.

Structure in difference 2: mixing

• Mass and weak interaction eigenstates do not coincide.

- Quarks: moderate CKM-mixing,
- Leptons: strong PMNS-mixing.

(日) (周) (三) (三)

Structure in difference 2: mixing

• Mass and weak interaction eigenstates do not coincide.

- Quarks: moderate CKM-mixing,
- Leptons: strong PMNS-mixing.

$$|(V_{CKM})_{ij}| = \begin{pmatrix} 0.97 & 0.23 & 0.0039 \\ 0.23 & 1.0 & 0.041 \\ 0.0081 & 0.038 & 1? \end{pmatrix}$$

C. Amsler et al. Review of particle physics, July 2008

Structure in difference 2: mixing

• Mass and weak interaction eigenstates do not coincide.

- Quarks: moderate CKM-mixing,
- Leptons: strong PMNS-mixing.

$$|(U_{PMNS})_{ij}| = \\ \begin{pmatrix} 0.81 & 0.56 & < 0.22 \\ 0.39 & 0.59 & 0.68 \\ 0.38 & 0.55 & 0.70 \end{pmatrix}$$

M.C. Gonzales Garcia Nucl. Phys. A 827 (2009) 5C

Coincidence or symmetry?

- The observed patterns might be purely coincidental.
 - 22 of 28 free parameters in SM relate to fermion mass sector.
 - Their values may just be like this.
- More interesting: the patterns follow from a symmetry principle.

Flavour Symmetries

These structures might be explained by flavour/family symmetries

- We charge the families under a symmetry group.
- To make the Lagrangian invariant, we need to add Higgs-like fields 'flavons'.
- Structure in flavon-VEVs leads to structure in the fermion masses.
- Non-renormalizable operators often occur
 - $\bullet\,$ Terms suppressed by VEV/ $\Lambda.$

A very good introduction: G. Altarelli, Models of neutrino masses and mixings; hep-ph/0611117

The Altarelli-Feruglio model

• We consider a model by Altarelli and Feruglio

G. Altarelli and F. Feruglio,, Nucl. Phys. B741 (2006) 215-235. [hep-ph/0512103]

• It discusses only the lepton sector.

- It explains charged lepton and neutrino masses.
- It reproduces tribimaximal mixing.

The group A_4 and the A-F model

• The flavour symmetry group is A_4

• The symmetry group of the tetrahedron.

- "toprotations" 120° and 240° .
- "axisrotations" 180°.

< ∃ ►

The group A_4 and the A-F model

• The flavour symmetry group is A_4

- The symmetry group of the tetrahedron.
 - "toprotations" 120° and 240° .
 - "axisrotations" 180°.

- ×

The group A_4 and the A-F model

- The flavour symmetry group is A_4
- The symmetry group of the tetrahedron.
 - "toprotations" 120° and $240^\circ.$
 - "axisrotations" 180°.

Matter in the A-F model

- The group A_4 has
 - Three 1-d irreps: 1, 1' and 1".
 - One 3-d irrep

- Matter assignment:
 - Lepton doublets in 3
 - lefthanded electron
 - normal neutrino
 - Lepton singlets are in the three different 1-d reps.
 - righthanded electron
 - The Higgs transforms trivially under A_4 .
- The model is supersymmetric for practical purposes.

- 4 回 ト - 4 回 ト

Matter in the A-F model

- The group A_4 has
 - Three 1-d irreps: 1, 1' and 1".
 - One 3-d irrep

- Matter assignment:
 - Lepton doublets in 3
 - lefthanded electron
 - normal neutrino
 - Lepton singlets are in the three different 1-d reps.
 - righthanded electron
 - The Higgs transforms trivially under A₄.
- The model is supersymmetric for practical purposes.

Flavons in the A-F model

- \mathcal{L} is not invariant under A_4 .
- Two flavons are needed.
- One couples to the neutrinos.
 - Its vacuum expectation values breaks A_4 .
 - But leaves a Z₂ symmetry.
- One couples to the charged leptons.
 - It leaves a Z_3 symmetry.

Flavons in the A-F model

- \mathcal{L} is not invariant under A_4 .
- Two flavons are needed.
- One couples to the neutrinos.
 - Its vacuum expectation values breaks A_4 .
 - But leaves a Z₂ symmetry.
- One couples to the charged leptons.
 - It leaves a Z_3 symmetry.

$$w_{e} = \frac{y_{e}}{\Lambda} \bar{e_{R}}(\varphi_{T}l_{L})_{1}h + \frac{y_{\mu}}{\Lambda} \bar{\mu_{R}}(\varphi_{T}l_{L})_{1'}h + \frac{y_{\tau}}{\Lambda} \bar{\tau_{R}}(\varphi_{T}l_{L})_{1''}h$$
$$w_{\nu} = \frac{x_{a}}{\Lambda}(\tilde{h}l)(\tilde{h}l) + \frac{x_{a}}{\Lambda^{2}}\varphi_{S}(\tilde{h}l)(\tilde{h}l)$$
$$\langle H \rangle = v, \quad \langle \varphi_{T} \rangle = (u, 0, 0)\Lambda, \quad \langle \varphi_{S} \rangle = (u', u', u')\Lambda$$

Flavons in the A-F model

- \mathcal{L} is not invariant under A_4 .
- Two flavons are needed.
- One couples to the neutrinos.
 - Its vacuum expectation values breaks A_4 .
 - But leaves a Z₂ symmetry.
- One couples to the charged leptons.
 - It leaves a Z_3 symmetry.

Tri-bimaximal mixing in the A-F model

The superpotential

- Together with the vev structures
- Gives the mass matrices
- That is exactly diagonalized by the tribimaximal matrix

$$w_e = \frac{y_e}{\Lambda} \bar{e_R}(\varphi_T l_L)_1 h + \frac{y_\mu}{\Lambda} \bar{\mu_R}(\varphi_T l_L)_{1'} h + \frac{y_\tau}{\Lambda} \bar{\tau_R}(\varphi_T l_L)_{1''} h$$
$$w_\nu = \frac{x_a}{\Lambda} (\tilde{h}l)(\tilde{h}l) + \frac{x_a}{\Lambda^2} \varphi_S(\tilde{h}l)(\tilde{h}l)$$

(日) (周) (三) (三)

Tri-bimaximal mixing in the A-F model

- The superpotential
- Together with the vev structures
- Gives the mass matrices
- That is exactly diagonalized by the tribimaximal matrix

$$\langle H \rangle = v, \quad \langle \varphi_T \rangle = (u, 0, 0)\Lambda, \quad \langle \varphi_S \rangle = (u', u', u')\Lambda$$

A B F A B F

Tri-bimaximal mixing in the A-F model

- The superpotential
- Together with the vev structures
- Gives the mass matrices
- That is exactly diagonalized by the tribimaximal matrix

$$M_{l} = \text{diag}(y_{e}, y_{\mu}, y_{\tau})vu$$
$$M_{\nu} = \begin{pmatrix} a + 2b & -b & -b \\ -b & 2b & a - b \\ -b & a - b & 2b \end{pmatrix}v^{2}$$

- 4 週 ト - 4 三 ト - 4 三 ト

The Altarelli-Feruglio A_4 model

Tri-bimaximal mixing in the A-F model

- The superpotential
- Together with the vev structures
- Gives the mass matrices
- That is exactly diagonalized by the tribimaximal matrix

$$U_{\text{TBM}}^T M_{\nu} U_{\text{TBM}} = \begin{pmatrix} m_1 = a + b & 0 & 0 \\ 0 & m_2 = a & 0 \\ 0 & 0 & m_3 = -a + b \end{pmatrix}$$

A B K A B K

The A-F model: conclusion

The Altarelli-Feruglio model can reproduce tribimaximal mixing.

- The residual symmetries of the flavons were crucial.
- Basically, the Z_3 and the Z_2 give the *tri* and the *bi* of tribimaximal mixing.

過 ト イヨ ト イヨト

The A-F model: conclusion

- The Altarelli-Feruglio model can reproduce tribimaximal mixing.
- The residual symmetries of the flavons were crucial.
- Basically, the Z_3 and the Z_2 give the *tri* and the *bi* of tribimaximal mixing.

The A-F model: conclusion

- The Altarelli-Feruglio model can reproduce tribimaximal mixing.
- The residual symmetries of the flavons were crucial.
- Basically, the Z_3 and the Z_2 give the *tri* and the *bi* of tribimaximal mixing.

Vanishing reactor mixing angle $\theta_{13} = 0$

- The Altarelli-Feruglio model reproduces tribimaximal mixing.
- It thus gives $\theta_{13} = 0$.
 - Subleading corrections can give tiny corrections.
- Allowed at $\sim 2\sigma$ at the time of the model.

3

・ロト ・四ト ・ヨト ・ヨト

Non-zero reactor mixing angle $\theta_{13} \neq 0$

- Recent results of T2K, Minos, Double Chooz and (last week) Daya Bay.
- $\theta_{13} \neq 0$ at the 3-5 sigma level.
- But 'vanilla' flavour symmetry models predict it to be zero.

4 3 5 4 3

Non-zero θ_{13}

What to do?

- Directions in theory space.
 - Give up on flavour symmetries.
 - Work out new mixing patterns apart from TBM mixing.
 - Build models with (T)BM and large corrections.
 - Build models that do not predict mixing angles.
 - Keep they other good properties.
 - At the electroweak scale.

- 4 B b - 4 B b

1. Give up on flavour symmetries.

3

過 ト イヨ ト イヨト

2. Find new mixing patterns.

3

A B F A B F

Modular Subgroups

Based on R. de Adelhart Toorop, F. Feruglio and C. Hagendorn Phys.Lett. B703 (2011) 447 and Nucl.Phys. B858 (2012) 437

- In the Altarelli-Feruglio model, the group A₄ reproduced tribimaximal mixing
- Many other models in the literature use the groups S_4 and A_5
- These groups have in common
 - That they are symmetry groups of Platonic solids.
 - That they are subgroups of the modular group.

A B A A B A
Based on R. de Adelhart Toorop, F. Feruglio and C. Hagendorn Phys.Lett. B703 (2011) 447 and Nucl.Phys. B858 (2012) 437

- In the Altarelli-Feruglio model, the group A_4 reproduced tribimaximal mixing
- Many other models in the literature use the groups S_4 and A_5
- These groups have in common
 - That they are symmetry groups of Platonic solids.
 - That they are subgroups of the modular group.

$$S^2 = 1,$$
 $(S.T)^3 = 1,$ $\begin{cases} T^3 = 1, & \text{for } A_4 \\ T^4 = 1, & \text{for } S_4 \\ T^5 = 1, & \text{for } A_5 \end{cases}$

* E > < E >

Based on R. de Adelhart Toorop, F. Feruglio and C. Hagendorn Phys.Lett. B703 (2011) 447 and Nucl.Phys. B858 (2012) 437

- In the Altarelli-Feruglio model, the group ${\cal A}_4$ reproduced tribimaximal mixing
- Many other models in the literature use the groups S_4 and A_5
- These groups have in common
 - That they are symmetry groups of Platonic solids.
 - That they are subgroups of the modular group.

- The second criterion easily generalizes
- If we demand three-dimensional irreps
- Three new candidate groups
 - PSL(2,7) with $T^7 = 1$ (and $(ST^{-1}ST)^4 = 1$)
 - $\Delta(96)$ with $T^8 = 1$ (and $(ST^{-1}ST)^3 = 1$)
 - $\Delta(384)$ with $T^{16}=1$ (and $(ST^{-1}ST)^3=1)$

4 2 5 4 2 5

- We investigate lepton mixing patterns from these groups.
- Same assumptions as in Altarelli-Feruglio model.
 - Residual symmetries in charged lepton and neutrino sectors
- Interesting mixing patterns from $\Delta(96)$ and $\Delta(384)$

э

3. Mixing patterns with large corrections

()

Based on R. de Adelhart Toorop, F. Bazzocchi and L. Merlo JHEP 1008 (2010) 001 (and many other papers)

- look again at quark mixing
- Only very moderate mixing.
- Even Cabibbo angle remarkably small.

A D A D A D A

- Idea: in first approximation no mixing
- The reproduce the Cabibbo angle by NLO effects
- NLO terms have an extra flavon
 - And are thus (even more) non-renormalizable.
 - Effect suppressed by (extra) factor of VEV/ $\Lambda \sim 0.2.$
- The two other (tiny) mixing follow at even higher order.

- Idea: in first approximation no mixing
- The reproduce the Cabibbo angle by NLO effects
- NLO terms have an extra flavon
 - And are thus (even more) non-renormalizable.
 - Effect suppressed by (extra) factor of VEV/ $\Lambda \sim 0.2.$
- The two other (tiny) mixing follow at even higher order.

- Idea: in first approximation no mixing
- The reproduce the Cabibbo angle by NLO effects
- NLO terms have an extra flavon
 - And are thus (even more) non-renormalizable.
 - Effect suppressed by (extra) factor of VEV/ $\Lambda \sim 0.2.$
- The two other (tiny) mixing follow at even higher order.

Quark-lepton complementarity

- Philosophy of the previous slide:
 - Quark sector
 - moderate corrections from LO to NLO.
- This might also be the case in the neutrino sector.
 - At LO: reproduce tribimaximal mixing
 - Or the similar bimaximal mixing
 - Large corrections then give $\theta_{13} \neq 0$.
 - In accordance with the data

()

Quark-lepton complementarity

Neutrino data

• LO approximation

• NLO approximation

4. Flavour symmetries at the Electroweak scale

Flavour symmetries at the Electroweak scale

Based on R. de Adelhart Toorop, F. Bazzocchi, L. Merlo and A. Paris JHEP 1103 (2011) 035 and 040

- Models discussed so far: very high energy scale.
- Alternatively: at the Electroweak scale.
 - Models very predictive.
 - But not in mixing angles.
 - Non-zero θ_{13} no problem.

Problems of models with flavons

- Models with flavons can become quite baroque.
 - Model of the previous section: 10 new flavon fields.
- New physics at a high (GUT) scale.
 - Only indirect signals Theory hard to test.
- Flavon alignment non-trivial
 - Theoretical techniques need susy or x-dims.

Problems of models with flavons

- Models with flavons can become quite baroque.
 - Model of the previous section: 10 new flavon fields.
- New physics at a high (GUT) scale.
 - Only indirect signals Theory hard to test.
- Flavon alignment non-trivial
 - Theoretical techniques need susy or x-dims.

Problems of models with flavons

- Models with flavons can become quite baroque.
 - Model of the previous section: 10 new flavon fields.
- New physics at a high (GUT) scale.
 - Only indirect signals Theory hard to test.
- Flavon alignment non-trivial
 - Theoretical techniques need susy or x-dims.

Flavo-Higgs

• Alternative: assume only one direction in flavon space.

- The SM Higgs can play the role of the flavons.
 - Much simpler models.
 - Flavour scale = Higgs scale \rightarrow testable at LHC.

- 4 目 ト - 4 日 ト - 4 日 ト

Flavo-Higgs

- Alternative: assume only one direction in flavon space.
- The SM Higgs can play the role of the flavons.
 - Much simpler models.
 - Flavour scale = Higgs scale \rightarrow testable at LHC.

3 1 4

The A_4 -Higgs model

• Assume three copies of the SM Higgs field.

The A_4 -Higgs model

- Assume three copies of the SM Higgs field.
- In a triplet of the flavour group A_4 .

$$\begin{split} \Phi_1 &\to \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_1^1 \\ v_1 e^{i\omega_1} + \phi_1^0 \end{pmatrix}, \quad \Phi_2 \to \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_2^1 \\ v_2 e^{i\omega_2} + \phi_2^0 \end{pmatrix}, \\ \Phi_3 &\to \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_3^1 \\ v_3 e^{i\omega_3} + \phi_3^0 \end{pmatrix}. \end{split}$$

• The vector of vevs $(v_1e^{i\omega_1},v_2e^{i\omega_2},v_3e^{i\omega_3})$ serves as the flavon.

A B F A B F

The Higgs potential

The A_4 -invariant Higgs potential

• The Higgs potential

$$\begin{split} V &= \mu^2 (\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 + \Phi_3^{\dagger} \Phi_3) + \lambda_1 (\Phi_1^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_2 + \Phi_3^{\dagger} \Phi_3)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1 \Phi_2^{\dagger} \Phi_2 + \Phi_1^{\dagger} \Phi_1 \Phi_3^{\dagger} \Phi_3 + \Phi_2^{\dagger} \Phi_2 \Phi_3^{\dagger} \Phi_3) \\ &+ \lambda_4 (\Phi_1^{\dagger} \Phi_2 \Phi_2^{\dagger} \Phi_1 + \Phi_1^{\dagger} \Phi_3 \Phi_3^{\dagger} \Phi_1 + \Phi_2^{\dagger} \Phi_3 \Phi_3^{\dagger} \Phi_2) \\ &+ \frac{\lambda_5}{2} \bigg[e^{i\epsilon} [(\Phi_1^{\dagger} \Phi_2)^2 + (\Phi_2^{\dagger} \Phi_3)^2 + (\Phi_3^{\dagger} \Phi_1)^2] + \\ &e^{-i\epsilon} [(\Phi_2^{\dagger} \Phi_1)^2 + (\Phi_3^{\dagger} \Phi_2)^2 + (\Phi_1^{\dagger} \Phi_3)^2] \bigg] \,, \end{split}$$

• allows a number of minimum configurations.

3

Minima of the Higgs potential

• The Higgs potential allows a number of minimum configurations.

• If all vevs are real: CP conserving

• If some vevs are complex: CP violating

イロト 不得下 イヨト イヨト 二日

Constraining flavo-Higgs models

- Not all parameter choices give realistic models.
- We constrain the models by
 - Positive m^2 for all 5 neutral and 2 charged Higgses
 - Unitarity constraints
 - Z- and W-decay constraints
 - Oblique parameters
 - For models with explicit fermion content
 - Rare decays
 - Meson oscillations

A B M A B M

The alignment (v, v, v)

• The CP conserving alignment (v, v, v)

E. Ma and G. Rajasekaran, Phys. Rev. D 64, 113012 (2001)

- Residual Z_3 symmetry
- Higgs spectrum
 - SM Higgs boson
 - Two degenerate scalars
 - Two degenerate pseudoscalars

Fermion independent constraints

Fermion dependent constraints

• In the Ma-Rajasekaran setup, many rare decays are indeed forbidden.

- No $\mu^- \to e^- e^- e^+$ and $\mu^- \to e^- \gamma$
- Allowed decays are below experimental bounds.
 - $\tau^- \rightarrow \mu^- \mu^- e^+$

The alignment $(ve^{i\omega}, ve^{-i\omega}, rv)$

• The CP violating alignment $(ve^{i\omega}, ve^{-i\omega}, rv)$ (or permutations)

Lepton sector: S. Morisi and E. Peinado, Phys. Rev. D 80, 113011 (2009) Quark sector: L. Lavoura and H. Kuhbock, Eur. Phys. J. C 55, 303 (2008)

- No residual symmetry
- Five Higgses are mixes of scalars and pseudoscalars.
- Without softly breaking the A_4 -invariant potential, not possible to have all $m_h^2 > 0$

< ロト < 同ト < ヨト < ヨト

Fermion independent constraints (with soft Ag-breaking terms)

• Scan over 100.000 points

All masses ≥ 0 : yellow points. Unitarity OK: blue points.

Z decay OK: green points. Oblique parameters OK: red points

Non-zero θ_{13} ($ve^{i\omega}, ve^{-i\omega}, rv$)

Fermion independent constraints (with soft A4-breaking terms)

• Scan over few 1000 points; r fixed

All masses ≥ 0 : yellow points. Unitarity OK: blue points.

Z decay OK: green points. Oblique parameters OK: red points

- Rare fermion decays can be very constraining
 - $\mu^- \rightarrow e^- e^- e^+$ in Morisi and Peinaldo's model.
 - $\mu^- \rightarrow e^- \gamma$ less constraining

- ∢ ⊢⊒ →

- Rare fermion decays can be very constraining
 - $\mu^- \rightarrow e^- e^- e^+$ in Morisi and Peinaldo's model.

• $\mu^- \rightarrow e^- \gamma$ less constraining

A B A A B A

- Rare fermion decays can be very constraining
 - $\mu^- \rightarrow e^- e^- e^+$ in Morisi and Peinaldo's model.
 - $\mu^- \to e^- \gamma$ less constraining

- Rare fermion decays can be very constraining
 - $\mu^- \rightarrow e^- e^- e^+$ in Morisi and Peinaldo's model.
 - $\mu^- \rightarrow e^- \gamma$ less constraining

(3)

Meson oscillations

• In models with quarks, meson oscillations give very strong bounds.

• $\Delta_{M_{B_d}}$ in $B_d \leftrightarrow {B_d}^*$ oscillations in Lavoura and Kuhbock's model.

Meson oscillations

- In models with quarks, meson oscillations give very strong bounds.
 - $\Delta_{M_{B_d}}$ in $B_d \leftrightarrow B_d^*$ oscillations in Lavoura and Kuhbock's model.

- 4 週 ト - 4 三 ト - 4 三 ト
Conclusions

- Evidence that $\theta_{13} > 0$ ruled out 'vanilla' family symmetries.
- Other flavours are still interesting.
 - New mixing patterns beyond tribimaximal.
 - Mixing patterns with large NLO corrections.
 - Flavour symmetries at the EW scale.

• Thanks for your attention!

A B A A B A

Conclusions

- Evidence that $\theta_{13} > 0$ ruled out 'vanilla' family symmetries.
- Other flavours are still interesting.
 - New mixing patterns beyond tribimaximal.
 - Mixing patterns with large NLO corrections.
 - Flavour symmetries at the EW scale.

• Thanks for your attention!

A B A A B A

Conclusions

- Evidence that $\theta_{13} > 0$ ruled out 'vanilla' family symmetries.
- Other flavours are still interesting.
 - New mixing patterns beyond tribimaximal.
 - Mixing patterns with large NLO corrections.
 - Flavour symmetries at the EW scale.

• Thanks for your attention!

A B < A B </p>

Conclusions

- Evidence that $\theta_{13} > 0$ ruled out 'vanilla' family symmetries.
- Other flavours are still interesting.
 - New mixing patterns beyond tribimaximal.
 - Mixing patterns with large NLO corrections.
 - Flavour symmetries at the EW scale.

• Thanks for your attention!

★ 3 > < 3 >

Conclusions

- Evidence that $\theta_{13} > 0$ ruled out 'vanilla' family symmetries.
- Other flavours are still interesting.
 - New mixing patterns beyond tribimaximal.
 - Mixing patterns with large NLO corrections.
 - Flavour symmetries at the EW scale.

• Thanks for your attention!

()

Conclusions

- Evidence that $\theta_{13} > 0$ ruled out 'vanilla' family symmetries.
- Other flavours are still interesting.
 - New mixing patterns beyond tribimaximal.
 - Mixing patterns with large NLO corrections.
 - Flavour symmetries at the EW scale.

• Thanks for your attention!

