Surprises at the Highest Energies

Angela V. Olinto The University of

Challenging Accelerators

to reach 10²⁰ eV LHC magnetic field, radius ~ 10⁷ km (Sun - Mercury) or 10 GT fields!

Astrophysical High Energy Accelerators

Extragalactic

Galactic

Supernova

"Known unknown"

Cosmic Magnetic Fields $R_L = kpc Z^{-1} (E / EeV) (B / \mu G)^{-1}$ $1 EeV = 10^{18} eV$

 $R_{L} = Mpc Z^{-1} (E / EeV) (B / nG)^{-1}$

Extra-galactic B? B < nG

weak deflection E > 10¹⁹eV

Galactic B deflection << 10° Z (40 EeV/E) anisotropic in sky Halo B? Milky way $B \sim \mu G$ $figure{}$ $figure{}$ f "Known unknown"

Cosmic Magnetic Fields

 $R_{L} = kpc Z^{-1} (E / EeV) (B / \mu G)^{-1} 1 EeV = 10^{18} eV$

 $R_{L} = Mpc Z^{-1} (E / EeV) (B / nG)^{-1}$

Extra-galactic B? B < nG

weak deflection E > 10¹⁹eV

Galactic B deflection << 10° Z (40 EeV/E) anisotropic in sky Halo B? Milky way $B \sim \mu G$ 10 kpckpc "Known unknown"

Cosmic Magnetic Fields

 $R_{L} = kpc Z^{-1} (E / EeV) (B / \mu G)^{-1}$ 1 EeV = 10¹⁸ eV

 $R_{L} = Mpc Z^{-1} (E / EeV) (B / nG)^{-1}$

Extra-galactic B? B < nG

Galactic B deflection << 10° Z (40 EeV/E) anisotropic in sky Halo B? Milky way $B \sim \mu G$ 10 kpcstrong deflection $E < 10^{18} \text{eV}$

weak deflection

 $E > 10^{19} eV$

Hillas Plot: Maximum Energy

High Energy Cosmic Rays

OBSERVABLES:

Spectrum Composition Sky Distribution

High Energy Cosmic Rays

OBSERVABLES:

Spectrum Composition Sky Distribution

Just Below the Knee...

Above the Knee... KASCADE + K-Grande

Above the Knee... KASCADE + K-Grande

LHC tests of Hadronic Models

Collider models

Air shower models

"Cosmologically Meaningful Termination"

$$p+\gamma_{cmb} \rightarrow \Delta^{+} \rightarrow p + \pi^{0}$$
$$\rightarrow n + \pi^{+}$$

Proton Horizon ~10²⁰ eV

GZK Cutoff Greisen, Zatsepin, Kuzmin 1966

Greisen-Zatsepin-Kuzmin cutoff

Cosmogenic (GZK) Neutrinos & Photons

$$p+\gamma_{cmb} \rightarrow \Delta^{+} \rightarrow p + \pi^{0} \rightarrow \gamma\gamma$$
$$\rightarrow n + \pi^{+}$$

$$\mu^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \nu_{\mu}$$

Ultrahigh Energy Cosmic Rays

Telescope Array Utah, USA

680 km² array3 fluorescence sites

Pierre Auger Observatory Mendoza, Argentina

3 000 km² array4 fluorescence sites

The Pierre Auger Observatory

Argentina Australia Brasil Bolivia* Croatia Czech Rep. France

Germany Italy Mexico Netherlands Poland

Portugal

Romania*

3,000 km² water cherenkov

detectors array

4 fluorescence Telescopes

surface detector

tanks aligned seen from Los Leones

國、上山北、預算部14余

H. F. L. W. W. W. W.

4 times 6 telescopes overlooking the site

Telescope Array Area: 680 km²

3 FD stations overlooking an array of
507 scintillator surface detectors (SD)
complete and operational as of ~1/2008.

Deployment (up to 50/day) 485 SDs: 10/2006 -

Telescope Array SD spectrum

COPE

20 % "absolute" energy shift

High Energy Cosmic Rays

OBSERVABLES:

Spectrum Composition Sky Distribution

CR arrival directions E < 6 10¹⁹ eV

Isotropic!

"Known unknown"

Cosmic Magnetic Fields $R_L = kpc Z^{-1} (E / EeV) (B / \mu G)^{-1}$ $1 EeV = 10^{18} eV$

 $R_{L} = Mpc Z^{-1} (E / EeV) (B / nG)^{-1}$

Extra-galactic B? B < nG

weak deflection E > 10¹⁹eV

Galactic B deflection << 10° Z (40 EeV/E) anisotropic in sky Halo B? Milky way $B \sim \mu G$ $figure{}$ $figure{}$ f "Known unknown"

Cosmic Magnetic Fields

 $R_{L} = kpc Z^{-1} (E / EeV) (B / \mu G)^{-1} 1 EeV = 10^{18} eV$

 $R_{L} = Mpc Z^{-1} (E / EeV) (B / nG)^{-1}$

Extra-galactic B? B < nG

weak deflection E > 10¹⁹eV

Galactic B deflection << 10° Z (40 EeV/E) anisotropic in sky Halo B? Milky way $B \sim \mu G$ 10 kpckpc "Known unknown"

Cosmic Magnetic Fields

 $R_{L} = kpc Z^{-1} (E / EeV) (B / \mu G)^{-1}$ 1 EeV = 10¹⁸ eV

 $R_{L} = Mpc Z^{-1} (E / EeV) (B / nG)^{-1}$

Extra-galactic B? B < nG

Galactic B deflection << 10° Z (40 EeV/E) anisotropic in sky Halo B? Milky way $B \sim \mu G$ 10 kpcstrong deflection $E < 10^{18} \text{eV}$

weak deflection

 $E > 10^{19} eV$

Galactic Magnetic Field: Rotation Measures

Pshirkov et al, arXiv:1103.0814

Large Scale Structure Simulations with Magnetic Fields

GZK Effect

 $\Rightarrow Spectral Feature$ + LSS $\Rightarrow Anisotropic Sky Distribution$ E > 60 EeV

GZK Horizon

Horizons: 10¹⁹ eV ~ 1 Gpc Gpc **100 Mpc** $10^{20} \text{ eV} < 100 \text{ Mpc}$

Inhomogeneous

0.01 < z < 0.02

2MASS - Two Micron All Sky Survey

Pierre Auger : consistent with LSS

Centaurus A region

Centaurus A 1st id'ed UHECR source?

COMPOSITE

RADIO

X-RAY

Distribution of Galaxies

Pisces-Detus

Superclusters

Horologium .

Superclüster

Capricornus Supercluster

Hercules Capricornus Void Pavo-Indus

> Supercluster Providence Supercluster Volume Supercluster Supercluster Supercluster Supercluster

> > Virgo Com s Superclaster Hydra Perseus-Pisces

Supercluster 0

Sextans Columba

Supercluster

E > 6x10¹⁹ eV

Bootes

Superclusters

la Maior

Supercluster

Bootes Void

Separating Populations - 1,000 events

At current rate ~ 30 events/yr with E>60 EeV need over 30 years!

High Energy Cosmic Rays

OBSERVABLES:

Spectrum Composition Sky Distribution

Composition observable: shower maximum

Composition observable: shower maximum

Telescope Array Composition

GZK Horizon

Heavy Composition at UHEs

Unexpected Astrophysics:

Sources are very Iron rich: 4x Fe Galactic CRs!

and have low E_{max} (protons) < E_{GZK}

My Favorite Model:

Birth of fast spinning Pulsars

Newborn Pulsar with: $B_s \equiv 10^{13}B_{13}$ G and $\Omega_{3k} \equiv \Omega/3000$ rad s⁻¹ At the light cylinder: $R_{1c} = 10^7 \Omega_{3k}^{-1}$ cm

Magnetic wind can accelerate particles up to E_{max} , where $Z_{26} \equiv Z/26$

$$E_{\rm max} = \frac{Ze B_{\rm lc} R_{\rm lc}}{c} \simeq 8 \times 10^{20} Z_{26} B_{13} \Omega_{3k}^2 \text{ eV},$$

Plasma in the wind has Condreach-Junan density. $n_{GJ} = 1.7 \times 10^{11} B_{13} \Omega_{3k}^4 / Z \text{ cm}^{-3}$

Crab Pulsar wind

$$E_{\rm cr} \simeq B_{\rm lc}^2 / 8 \pi n_{\rm GJ}$$

$$E_{\rm er} \simeq 4 \times 10^{20} Z_{26} B_{13} \Omega_{3k}^2 \, {\rm eV}$$

Maximum Energy?

Blasi, Epstein, AVO '00

My Favorite Model:
Birth of fast spinning Pulsars
Newborn Pulsar with:
$$B_s \equiv 10^{13}B_{13}$$
 G and $\Omega_{3k} \equiv \Omega/3000$ rad s⁻¹
At the light cylinder: $R_{lc} = 10^7 \Omega_{3k}^{-1}$ cm $Z_{26} \equiv Z/26$
 $E_{cr} \approx 4 \times 10^{20}Z_{26}B_{13}\Omega_{3k}^2$ Maximum Energy? \checkmark
Spectrum?
Spin down in a year:
 $\Omega_{3k}^2(t) = \frac{\Omega_{i3k}^2}{1 + t_8 B_{13}^2 \Omega_{i3k}^2}$
The predicted UHECR flux at the Earth is
 $F(E) = 10^{-24} \frac{\xi \epsilon Q}{\tau_2 R_1^2 B_{13} E_{20} Z_{26}}$ GeV⁻¹ cm⁻² s⁻¹

Spectrum is too hard $\sim E^{-1}$

Blasi, Epstein, AVO

But Pulsars are born in Supernovae!

the escape from SN remnant softens the spectrum and selects heavy elements above 10 EeV!!!

Escape from Supernova Remnant:

Monte-Carlo CR propagation: hadronic Interactions with EPOS + CONEX

Supernova ejecta Mas: 10 M_☉ Energy ejecta: 10⁵² ergs

dN/dE

Escape from Supernova Remnant:

Escape from Supernova Remnant:

Heavy Composition

Unexpected Astrophysics: Sources are very Iron rich young pulsars? and have low E_{max} **Very Bad News for Neutrino Detectors Interesting Particle Physics:** Hadronic Models do not represent well UHE interactions **Higher Cross Sections, Elasticities, Multiplicities...**

Cosmogenic (GZK) Neutrinos & Photons and UHECR composition

$$p+\gamma_{cmb} \rightarrow \Delta^{+} \rightarrow p + \pi^{0} \rightarrow \gamma\gamma$$

$$\rightarrow n + \pi^{+}$$

$$n \rightarrow p + e^{-} + v_{e}$$

$$\pi^{+} \rightarrow \mu^{+} + v_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + v_{e} + v_{\mu}$$

Cosmogenic (GZK) Neutrinos & Photons and UHECR composition

$$p+\gamma_{emb} \rightarrow \Delta^{+} \rightarrow p + \pi^{0} \rightarrow \gamma\gamma$$

$$\rightarrow n + \pi^{+}$$

$$n \rightarrow p + e^{-} + \nu_{e}$$

$$\pi^{+} \rightarrow \mu^{+} + \nu_{\mu}$$

$$\mu^{+} \rightarrow e^{+} + \nu_{e} + \nu_{\mu}$$

The UHE Gamma Ray Astronomical Window

Photon attenuation length 10 Mpc for E > 2 EeV

GZK/Cosmogenic Photons

Decerprit & Allard 11

Auger Photon Limits

ICRC11

TA consistent (ICRC11)

Puzzling Composition*

Unexpected Astrophysics: Sources are very Iron rich and have low E_{max} Very Bad News for Neutrino Detectors **Inter**esting Particle Physics: Hadronic Models do not represent well UHE interactions **Higher Cross Sections, Elasticities, Multiplicities...**

LHC data!!

Pierog, Engel ICRC11

UHECRs return favor

UHECRs return favor

UHECRs return favor

The primary composition can be determined Astrophysically at higher energies (above 60 EeV): through ANISOTROPIES or Secondary Neutrinos & Photons then hadronic models can be tested E > 100 TeV CM

More Statistics at the Highest energies

Scratching the Surface

Increase Exposure!

Exposure History

Exposure History

JEM-EUSO JAXA, ESA ASA

Japanese Experiment Module of ISS in 2017 Extreme Universe Space Observatory **Nadir 35° tilt** - 3 x a E_{th} ~ 1 Fluores

Nadir (2 yrs) **35° tilt** (3 yrs) - 3 x area E_{th} ~ 10²⁰ eV

Fluorescence only ~ 20% duty cycle

Future Wishes...

Future Wishes...

R&D Efforts: Radio, Microwave, Radar...

AstroParticle Physics at Ultrahigh Energies: to discover the Origin of **Extragalactic Cosmic Rays** to study UHE Neutrinos, UHE Gamma-rays, and UHE particle interactions Need Significant Increase in Statistics at the highest energies. Large-Scale International Efforts can solve this mystery! Need Significant Increase in Statistics at the highest energies. Large-Scale International Efforts can solve this mystery!