

Don't look now, but you are surrounded by invisible things!

- A mysterious, invisible particle species is all around us,
- a relic of the first fraction of a second of the Universe,
- and a few hundred million are in this room at any instant
- flying around at about a half million miles per hour, and
- about million-million will pass through you during this talk,
- but you can't see them, feel them, or smell them, and yet
- they shape the large-scale structure of the Universe...and

• we may *finally* be at the threshold of "discovering" them!

A Fantastical Story!

Astronomers Discover Dark Matter

1932 Local Neighborhood a Little Dim $(M/L)_{\text{IV}} \sim 2-3$

Oort

Astronomers Discover Dark Matter

Oort	1932	Local Neighborhood a Little Dim	(M/L) _⊮ ~	2-3
Zwicky	1937	Galaxy Clusters Really Dark	(M/L) _⊮ ~	500

Astronomers Discover Dark Matter

1932	Local Neighborhood a Little Dim	$(M/L)_{K} \sim 2-3$
------	---------------------------------	----------------------

1937 Galaxy Clusters Really Dark (M/L) ~

1970s Individual Galaxy Halos Also Dark (M/L)

500

60

Vera Rubin 1970s

Zwicky

Oort

Rubin & Ford

Astronomers Discover Dark Matter

Particle Dark Matter Taxonomy

Fermi National Accelerator Laboratory

FERMILAB-Pub-77/41-THY May 1977

Ξ

Cosmological Lower Bound on

Heavy Neutrino Masses

BENJAMIN W. LEE * Fermi National Accelerator Laboratory, Batavia, Illinois 60510

AND

STEVEN WEINBERG^{**} Stanford University, Physics Department, Stanford, California 94305

ABSTRACT

The present cosmic mass density of possible stable neutral heavy leptons is calculated in a standard cosmological model. In order for this density not to exceed the upper limit of 2×10^{-29} g/cm³, the lepton mass would have to be <u>greater</u> than a lower bound of the order of 2 GeV.

** On leave 1976-7 from Harvard University.

Ben Lee (1935 — June 1977)

Steve Weinberg

* An object of particular veneration.

The WIMP "Miracle"

Cold thermal relic: weak scale cross section (and mass?) (1 GeV – 1000 GeV) WIMP (Weakly Interacting Massive Particle)

WIMPs are BSM, but not far BSM

(+ EDELWEISS, DAMA, EURECA, ZEPLIN, DEAP, ArDM, WARP, LUX, SIMPLE, PICASSO, DMTPC, DRIFT, KIMS, ...)

Direct Detection

- Local WIMP phase-space density
 - Assume: $\rho_{DM} = 0.3 \text{ GeV cm}^{-3}$ (subclumps, streams, cusps,...?)
 - Assume: Maxwellian velocity distribution $v^2 v^2 = 220 \text{ km s}^{-1}$
- Spin dependence (A, T)?

$$s_{cN}$$
 (axial) = $\frac{8}{p} \frac{m_c^2 m_N^2}{(m_c + m_N)^2} L^2 J (J+1)$

• Same coupling to p and n (scalar)? $s_{cN} = \frac{1}{p} \frac{m_c^2 m_N^2}{\left(m_c + m_N\right)^2} \not Z f_p + (A - Z) f_n \dot{\bullet}$

Compare different expts. w/ care

DAMA/LIBRA (NaI)

Amplitude of modulation surprisingly high

KIMS (CsI) \rightarrow modulation not due to WIMP scattering on lodine

CoGeNT (Ge)

30% surface events, low-mass (10 GeV) WIMP with large cross section (10^{-4} pb)

CoGeNT (Ge)

In 2011 data: 2.8σ annual modulation signal Aalseth et al.

Including 2012 data results in smaller significance

<u>Skeptic</u>:

Signal was never there in the first place (it was a fluctuation). Evidence for light WIMP weaker.

True Believer:

Amplitude of modulation was too high anyway. Evidence for light WIMP even stronger!

CRESST (CaWO₄)

Direct Detection

Low-mass region: either unexplained backgrounds in DAMA, CoGeNT, and CRESST-II, ...

or

... other experiments do not understand low recoil energy calibration, ...

or

... can't compare different experiments

<u>High-mass region</u>: Reaching shades of grey of the CMSSM iceberg, just as heat from LHC melts it!

The Past Is Prelude to the Future

Indirect Detection

Indirect Detection $\langle S V \rangle$ $N_{g,n}$ $I_{g,n}(y) \stackrel{*}{=}$ ds line of sight

What to look for

- Charged particles easier to see \overline{p} , high-energy $e^+e^$ bent by magnetic field astronomical backgrounds
- Continuum photons, neutrinos, usually not dominant channel background from astro. sources neutrinos hard to see
- Photon line low background (probably) low signal "golden" detection channel

Where to look for it

 $m_{
m WIMP}$

(s, y)

- **Galactic Center** largest signal largest backgrounds know where to look
- Nearby subclump signal down 10⁻³ clean: no baryons don't know where it is
- Dwarf spheroidals $(M/L)_{\mathbb{N}} > 3000$ signal down another 10^{-3} clean: few baryons know where to look (about 20)

Indirect Signals Have Come (and Gone?)

Fermi/GLAST Line

Weniger 1204.2797

Fermi/GLAST Line(s)

Fermi/GLAST Line(s)

• Wimp-charged particle coupling \rightarrow decays to $\gamma \gamma + \gamma Z + ZZ + ...$).

But also decays at tree-level to e⁺e⁻, quarks, ..., producing "continuum" γ -ray background. Tree larger than loop by 𝔅 (α²/4π).

Spectra calculated with PPPC 4 DM ID [Cirelli et al. 2010]

Fermi/GLAST Line(s)

Wimp-charged particle coupling \rightarrow decays to $\gamma \gamma + \gamma Z + ZZ + ...$).

- But also decays at tree-level to e^+e^- , quarks, ..., producing "continuum" γ -ray background. Tree larger than loop by $\mathbb{M}(\alpha^{2/4}\pi)$.
- Continuum constrained by observations, $BR(\gamma \gamma)$ must be $\mathbb{K}(1)$.
- Inner bremsstrahlung also produces γ 's, only suppressed $\mathbb{W}(\alpha)$.
- Models with no tree-level annihilation: *e.g.*, Jackson *et al*. 0912.0004
- Could take effective field theory approach (in progress w/ Liantao Wang and Jingyuan Chen; also Tait et al.), χ e.g., $\Lambda^{-4} \chi \gamma_{\mu} \gamma^{5} \chi B^{\mu\alpha} \Phi^{\dagger} D_{\alpha} \Phi$

Fermi/GLAST Line(s)

 $\mathsf{HESS-II}\ 600\ \mathrm{m}^2$

Cherenkov Telescope Array

WIMPs: Socialists or Mavericks

Socialist WIMPs:

Socialist WIMPs are part of a social network. Pal around with new un-WIMPy particles. Part of a larger framework. Find the WIMP through its friends. Example: SUSY

Maverick WIMPs:

Maverick WIMPs don't relate to others. Not friended by any new particles. Have no discernible core positions. Find the WIMP through what is not seen. Example: Neutrinos before late 1960s.

WIMP: Social or Maverick Species

Social WIMP

- WIMP part of a social network
- Motivated model framework, *e.g.,* low-energy SUSY, UED, ...
- Many new particles/parameters
- Unclear relationships between $\sigma_{\!_A}$, $\sigma_{\!_S}$, and $\sigma_{\!_P}$

Maverick* WIMP

- WIMP is a loner
- Use effective field theory, *e.g.*: 4-Fermi interaction
- WIMP only new species
- Clearer relationship between $\sigma_{\!_A}$, $\sigma_{\!_S}$, and $\sigma_{\!_P}$

^{*} Beltran, Hooper, Kolb, Krusberg PRD 2009 Beltran, Hooper, Kolb, Krusberg, Tait JHEP 2010

SUSY WIMPs at the LHC

Favorite cold thermal relic: the neutralino

SUSY WIMPs at the LHC

- Typical SUSY models consistent w/ collider and other HEP data have too small annihilation cross section \rightarrow too large Ω
- Need chicanery to increase annihilation cross section
- -s-channel resonance through light H and Z poles
- co-annihilation with t/ or t/
- large tan β (s-channel annihilation via broad A resonance)
- high values of m_0 : Higgsino- like neutralino annihilates into W & Z pairs (focus point region)

- ...

- Higgs mass limit constrains SUSY models
- Squark/gluino ssearchs constrain SUSY models
- Or, unconstrained, nonminimal

SUSY WIMPs at the LHC

Collider Searches for WIMPs

Complicated decay chain First see squarks, gluinos, *etc*. Very model dependent Maybe, just maybe, SUSY won't be seen at the LHC, and dark matter is not a neutralino (or sneutrino, or gravitino, or any ino).

Dirac fermion Maverick WIMP, χ

$$\mathcal{L} = \hat{\mathbf{A}}_{q} \frac{G_{i,2}}{\sqrt{2}} [\overline{c} \mathbf{G}_{i} c] \hat{\mathbf{F}}_{q} \mathbf{G}_{j} q^{\mathbf{S}}$$
$$\mathbf{G}_{i,j} = \{1, g^{5}, g^{m}, g^{m} g^{5}, s^{m}\}$$

Complex scalar Maverick WIMP, ϕ

$$\mathcal{L}^{=} \hat{\mathbf{A}}_{q} \frac{F_{i,2}}{\sqrt{2}} \overset{}{\not} \stackrel{*}{\bullet} \mathbf{G}_{i} f \overset{\sim}{\bullet} \overset{}{\not} q \overset{\sim}{\bullet} \mathbf{G}_{j} q \overset{\sim}{\bullet} \mathbf{G}_{i} = \{1, \partial^{m}\}$$

<u>Expect</u> terms that break SU(2)_L via SM Yukawa couplings \rightarrow operators that flip quark chirality should be $\propto m_q$ (S,P)

Some terms vanish for Majorana χ

Can write
$$G \sim M_{*}^{-2}$$

(S,P) $G \sim m_{q} M_{*}^{-3}$
 $F \sim M_{*}^{-1}$
(S,P) $F \sim m_{q} M_{*}^{-2}$

Fierz identities relate various combinations

Spin	Operator	Coupling	Label
0	$\phi^\dagger \phi ar q q$	$F_{S,q} = F_S$	S-S
	$\phi^\dagger \phi ar q q$	$F_{S,q} \sim m_q$	S-SQ
	$\phi^{\dagger}\phi \bar{q}\gamma^5 q$	$F_{SP,q} = F_{SP}$	S-SP
	$\phi^{\dagger}\phi ar{q}\gamma^5 q$	$F_{SP,q} \sim m_q$	S-SPQ
	$\phi^\dagger \partial_\mu \phi ar q \gamma^\mu q$	$F_{V,q} = F_V$	S-V
	$\phi^\dagger \partial_\mu \phi ar q \gamma^\mu \gamma^5 q$	$F_{VA,q} = F_{VA}$	S-VA
1/2	$-\bar{\chi}\chi\bar{q}q$	$-G_{S,q} = G_S$	F-S-
	$ar{\chi}\chiar{q}q$	$G_{S,q} \sim m_q$	F-SQ
	$\frac{\bar{\chi}\chi\bar{q}\gamma^5q}{2}$	$G_{SP,q} = G_{SP}$	F-SP
	$ar{\chi}\chiar{q}\gamma^5 q$	$G_{SP,q} \sim m_q$	F-SPQ
	$\bar{\chi}\gamma^5\chi\bar{q}\gamma^5q$	$G_{P,q} = G_P$	F-P-
	$ar{\chi}\gamma^5\chiar{q}\gamma^5q$	$G_{P,q} \sim m_q$	F-PQ
	$\overline{\chi}\gamma^5\chi\bar{q}q$	$G_{PS,q} = G_{PS}$	F-PS
	$ar{\chi}\gamma^5\chiar{q}q$	$G_{PS,q} \sim m_q$	F-PSQ
	$\bar{\chi}\gamma_{\mu}\chi\bar{q}\gamma^{\mu}q$	$-G_{V,q} = G_V$	F-V-
	$\bar{\chi}\gamma_{\mu}\chi\bar{q}\gamma^{\mu}\gamma^{5}q$	$-G_{VA,q} = G_{VA}$	F-VA
	$ar{\chi}\gamma_\mu\gamma^5\chiar{q}\gamma^\mu\gamma^5q$	$G_{A,q} = G_A$	F-A
	$ar{\chi}\gamma_{\mu}\gamma^{5}\chiar{q}\gamma^{\mu}q$	$G_{AV,q} = G_{AV}$	F-AV
	$\bar{\chi}\sigma_{\mu\nu}\chi\bar{q}\sigma^{\mu\nu}q$	$-G_{T,q} = G_T$	F-T

- <u>Dirac</u> fermions
- Could also couple
 WIMP to gluons
- Could imagine "light" mediators (not a true Maverick)
- Range where effective field theory valid

Could also include couplings to leptons

Values of G to give correct dark matter density

spin-dependent

 σ can be as large as 10^{-3} pb to 10^{-6} pb

spin-independent

For $m \ge 10$ GeV or so $\sigma \le 10^{-7}$ pb Around a few GeV $\sigma \sim 10^{-6}$ pb

• Coupling $\propto m_q$ is very important effect

- Could have smaller coupling producing larger abundance & subsequent entropy dilutes WIMPs
- Perhaps WIMPs not thermal relics, but asymmetric relics
- Usual Super-WIMP trick not in Maverick spirit

Direct Detection & Collider Production

CoGeNT

LHC

nonrelativistic $\chi + N \rightarrow \chi + N$ $10^{-4} \text{ pb} - 10^{-6} \text{ pb}$

<u>Probably</u> described by effective field theory (several operators?) relativistic $q + \overline{q} \rightarrow \chi + \chi$??? <u>Assume</u> described by effective field theory "Maxariak" WIMDa

"Maverick" WIMPs

Collider Searches for WIMPs

Backgrounds (neutrinos, QCD, ...) Only signal (other than mono- γ) Largely model independent

Beltran, Hooper, Kolb, Krusberg, Tait 2009 Goodman, Ibe, Rajaraman, Shepard, Tait, Yu 2010 Rajaraman, Shepherd, Tait, Wijangco Bai, Fox, Harnik; Fox, Harnik, Kopp, Tsai CDF, CMS, Atlas

Collider Searches for WIMPs

Backgrounds (neutrinos, QCD, ...) Only signal (other than mono- γ) Largely model independent

- MadGraph/MadEvent: Feynman diagrams, cross sections, parton-level events
- Pythia: Hadron-level events via Monte Carlo showering

• PGS:

Reconstructed events at collider

Missing Momentum = Missing Mass?

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsEXO11059Winter2012

Neutrino Background for Mavericks

Once thought that $v \overline{v}$ background

Renormalizible

$$q + \overline{q} \rightarrow Z \rightarrow v + \overline{v}$$

 $\sigma \propto s^{-1}$ (parton level)

Swamps WIMP signal

Nonrenormalizible

 $\sigma \propto s$ (parton level)

Judicious cuts on MET can pull out signal

Predicted LHC Sensitivity

Predicted LHC Sensitivity

CMS Results JHEP 2012

Atlas Results

http://indico.cern.ch/getFile.py/access?contribId=24&sessionId=10&resId=0&materialId=slides&confId=173388

http://indico.cern.ch/getFile.py/access?contribId=24&sessionId=10&resId=0&materialId=slides&confId=173388

WIMP Questions

• Why only <u>one</u> WIMP?

The 4% of matter we see is pretty complex and varied. If social network of several WIMPs, stronger interacting ones:

- Easier to detect
- Smaller Ω
- Thermal Production of WIMPS?
 - Super-WIMPs
 - Asymmetric freeze out
 - Dilution after freeze out via entropy production
- Maverick WIMPs?
 - Suppose LHC only sees SM Higgs?
 - Wither SNOOZY?
- Leptophilic, Leptophobic, Flavorful, Self-Interacting, Dynamical, Inelastic, ...
- Annual modulation: do we really understand DM phase space?
- Indirect detection gives indirect information

The Decade of the WIMP

- WIMP coincidence or causation (it ain't a miracle)?
- Situation now is muddled
- Ten years from now the WIMP hypothesis will have either: convincing evidence or near-death experience
- Direct detectors, indirect detectors, & colliders race for discovery
- Suppose by 2020 have credible signals from all three ???
- Do we need three WIMP *miracles* for WIMP sainthood ?
- How will we know they are all seeing the same phenomenon?
- When can we say we have made darkness visible?

Will Darkness Be Visible

Paradise Lost John Milton (1667)

No light, but rather darkness visible Served only to discover sights of woe...

John Baptist de Medina (1688)

WIMPs

Goal: Discover dark matter and its role in shaping the universe

Particle Physics:

Discover dark matter and learn how it is ...

- ... grounded in physical law
- ... embedded in an overarching physics model/theory

Astro Physics:

Understand the role of dark matter in ...

- ... formation of structure
- ... evolution of structure

WIMPs

(Dark is the New Black)

Dark matter is a complex physical phenomenon.

WIMPs are a simple, elegant, compelling explanation for a complex physical phenomenon.

"For every complex natural phenomenon there is a simple, elegant, compelling, wrong explanation."

— Tommy Gold

The Decade of the WIMP

- WIMP coincidence or causation (it ain't a miracle)?
- Situation now is muddled
- Ten years from now the WIMP hypothesis will have either: convincing evidence or near-death experience
 - Direct detectors, indirect detectors, & colliders race for discovery
 - Suppose by 2020 have credible signals from all three ???
 - Do we need three WIMP *miracles* for WIMP sainthood ?
- How will we know they are all seeing the same phenomenon?
- When do we stop?

