Running of Neutrino Mass Parameters

Michael Schmidt

MPI für Kernphysik Heidelberg

LAUNCH 2007

mostly based on based on work in collaboration with S. Antusch, J. Kersten, M. Lindner, M. Ratz [JHEP 0503:024] and part of my diploma thesis [hep-ph/0703...]

ヘロト 人間 ト くほ ト くほ トー

Why do we need the renormalization group?

Why do we need the renormalization group?

Michael Schmidt Running of Neutrino Mass Parameters

Why do we need the renormalization group?

Outline

ヘロト 人間 とくほとくほとう

Outline

2 RG evolution in standard seesaw model

Michael Schmidt Running of Neutrino Mass Parameters

ヘロト ヘアト ヘビト ヘビト

2 RG evolution in standard seesaw model

3 RG evolution in type–II seesaw model

イロン イボン イヨン イヨン

- 2 RG evolution in standard seesaw model
- 3 RG evolution in type–II seesaw model

4 Summary

くロト (過) (目) (日)

æ

Outline

- RG evolution in standard seesaw model
- 8 RG evolution in type–II seesaw model

4 Summary

ヘロト ヘワト ヘビト ヘビト

Seesaw model

neutrino mass matrix

$$\left(\begin{array}{c}\nu\\\overline{\nu}\end{array}\right)^{T}\left(\begin{array}{c}0&m_{D}^{T}\\m_{D}&M_{R}\end{array}\right)\left(\begin{array}{c}\nu\\\overline{\nu}\end{array}\right)$$

Michael Schmidt Running of Neutrino Mass Parameters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Seesaw model

neutrino mass matrix

$$\begin{pmatrix} \nu \\ \overline{\nu} \end{pmatrix}^T \begin{pmatrix} 0 & m_D^T \\ m_D & M_R \end{pmatrix} \begin{pmatrix} \nu \\ \overline{\nu} \end{pmatrix} \Rightarrow m_\nu = -\frac{v^2}{2} Y_\nu^T M^{-1} Y_\nu$$

RH neutrinos decouple and give mass $(m_{\nu})_{ij} = -\frac{v^2}{2} \frac{(Y_{\nu})_{ki}(Y_{\nu})_{kj}}{M_k}$ to light neutrinos by the seesaw mechanism [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

ヘロン 人間 とくほ とくほ とう

Seesaw model

neutrino mass matrix

$$\begin{pmatrix} \nu \\ \overline{\nu} \end{pmatrix}^{T} \begin{pmatrix} m_{L} & m_{D}^{T} \\ m_{D} & M_{R} \end{pmatrix} \begin{pmatrix} \nu \\ \overline{\nu} \end{pmatrix} \Rightarrow m_{\nu} = m_{L} - \frac{v^{2}}{2} Y_{\nu}^{T} M^{-1} Y_{\nu}$$

RH neutrinos decouple and give mass $(m_{\nu})_{ij} = -\frac{v^2}{2} \frac{(Y_{\nu})_{ki}(Y_{\nu})_{kj}}{M_k}$ to light neutrinos by the seesaw mechanism [Minkowski;Yanagida;Glashow;Gell-Mann,Ramond,Slansky;Mohapatra,Senjanovic]

Higgs triplet $\Delta \sim (\mathbf{3}, \mathbf{1})$: $\sum_{\Delta} \Delta = m_L = \frac{v^2}{2} \frac{\Lambda_6}{M_\Delta^2} Y_\Delta$

Magg, Wetterich;Lazaridis, Shafi, Wetterich; Mohapatra, Senjanovic

General structure of β -function

1 loop β -function:

P.H. Chankowski, Z. Pluciennik (1993)

K.S. Babu, C.N. Leung, J. Pantaleone (1993)

ヘロン 人間 とくほ とくほ とう

General structure of β -function

1 loop β -function:

$$P = P(Y_{\theta}, Y_{\nu}, Y_{\Delta})$$

$$\alpha = \alpha(g_1, g_2, \operatorname{Tr} Y^{\dagger} Y, \Lambda_i)$$

$$16\pi^2 \mu \frac{\mathrm{d}m_{\nu}}{\mathrm{d}\mu} = 16\pi^2 \beta_{m_{\nu}} = m_{\nu} P + P^T m_{\nu} + \alpha m_{\nu}$$

P.H. Chankowski, Z. Pluciennik (1993)

$$P = C_e Y_e^{\dagger} Y_e + C_{\nu} Y_{\nu}^{\dagger} Y_{\nu} + C_{\Delta} Y_{\Delta}^{\dagger} Y_{\Delta}$$

K.S. Babu, C.N. Leung, J. Pantaleone (1993)

Mixing parameters

MNS mixing matrix

 $U = \operatorname{diag}(e^{\mathrm{i}\delta_{e}}, e^{\mathrm{i}\delta_{\mu}}, e^{\mathrm{i}\delta_{\tau}}) \cdot V \cdot \operatorname{diag}(e^{-\mathrm{i}\varphi_{1}/2}, e^{-\mathrm{i}\varphi_{2}/2}, 1)$

where
$$(s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij})$$

$$V = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -c_{23}s_{12} - s_{23}s_{13}c_{12}e^{i\delta} & c_{23}c_{12} - s_{23}s_{13}s_{12}e^{i\delta} & s_{23}c_{13} \\ s_{23}s_{12} - c_{23}s_{13}c_{12}e^{i\delta} & -s_{23}c_{12} - c_{23}s_{13}s_{12}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

Experimental data

T. Schwetz [hep-ph/0606060]

1

ヘロト ヘアト ヘビト ヘビト

Parameter	Best-fit	Allowed range (3σ)
sin ² θ ₁₂ [°]	0.30	0.24 0.40
sin ² θ ₂₃ [°]	0.50	0.34 0.68
sin ² θ ₁₃ [°]	0.000	≤ 0.041
$\Delta m_{21}^2 [10^{-5} \text{eV}^2]$	7.9	7.18.9
$ \Delta m_{31}^2 $ [10 ⁻³ eV ²]	2.5	1.93.2

Premlinaries

RG evolution in standard seesaw model RG evolution in type–II seesaw model Summary

Effective field theory

$$P = C_e Y_e^{\dagger} Y_e \qquad \qquad C_e^{\text{SM}} = -\frac{3}{2}, C_e^{\text{MSSM}} = 1$$

S. Antusch, J. Kersten, M. Lindner, M. Ratz [hep-ph/0305273]

Effective field theory

$$P = C_e Y_e^{\dagger} Y_e \qquad \qquad C_e^{\text{SM}} = -\frac{3}{2}, \ C_e^{\text{MSSM}} = 1$$

General structure (also applicable for phases):

$$(\text{Renormalization scale} \qquad \mu \frac{\mathrm{d}\theta_{ij}}{\mathrm{d}\mu} \propto \frac{f(m_l, \delta, \varphi_1, \varphi_2)}{m_l^2 - m_l^2} \times F^{(ij)}(y_k, \theta_{lm})$$

S. Antusch, J. Kersten, M. Lindner, M. Ratz [hep-ph/0305273]

Effective field theory

$$P = C_e Y_e^{\dagger} Y_e \qquad \qquad C_e^{\text{SM}} = -\frac{3}{2}, \ C_e^{\text{MSSM}} = 1$$

General structure (also applicable for phases):

Effective field theory

$$P = C_e Y_e^{\dagger} Y_e \qquad \qquad C_e^{\text{SM}} = -\frac{3}{2}, \ C_e^{\text{MSSM}} = 1$$

General structure (also applicable for phases):

Michael Schmidt

Running of Neutrino Mass Parameters

Outline

2 RG evolution in standard seesaw model

3 RG evolution in type–II seesaw model

4 Summary

くロト (過) (目) (日)

æ

Full theory

ヘロト 人間 とくほとくほとう

æ -

Full theory

・ロト ・ 理 ト ・ ヨ ト ・

Full theory

ヘロン 人間 とくほ とくほ とう

Full theory

cancellations possible

ヘロト ヘアト ヘビト ヘビト

Full theory

- cancellations possible
- off-diagonal terms \rightarrow mixing can be generated

ヘロト 人間 ト くほ ト くほ トー

Full theory

- cancellations possible
- \bullet off–diagonal terms \rightarrow mixing can be generated
- GUT: Y_{ν} strongly hierarchical \rightarrow P_{33} dominates

Thresholds

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Thresholds

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Thresholds

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Between thresholds

• 2 contributions to m_{ν} :

Michael Schmidt Running of Neutrino Mass Parameters

イロト 不得 とくほと くほとう

Between thresholds

• 2 contributions to m_{ν} :

• composite operator $Y_{\nu}^{T}M^{-1}Y_{\nu}$

イロト 不得 とくほと くほとう

Between thresholds

- 2 contributions to m_{ν} :
 - composite operator $Y_{\nu}^{T}M^{-1}Y_{\nu}$
 - D = 5 operator κ

・ロト ・ 理 ト ・ ヨ ト ・

Between thresholds

- 2 contributions to m_{ν} :
 - composite operator $Y_{\nu}^{T}M^{-1}Y_{\nu}$
 - D = 5 operator κ
- MSSM → same RGE (non–renormalization theorem)

ヘロン 人間 とくほ とくほ とう

Between thresholds

- 2 contributions to m_{ν} :
 - composite operator $Y_{\nu}^{T}M^{-1}Y_{\nu}$
 - D = 5 operator κ
- MSSM → same RGE (non–renormalization theorem)
- SM: additional vertex corrections

Between thresholds

- 2 contributions to m_{ν} :
 - composite operator $Y_{\nu}^{T}M^{-1}Y_{\nu}$
 - D = 5 operator κ
- MSSM → same RGE (non–renormalization theorem)
- SM: additional vertex corrections

rescaling of right-handed neutrino masses

M. Lindner, MS, A. Smirnov, hep-ph/0505162

$$m_{\nu} = Z_{\text{ext}}^{T} Y_{\nu}^{T} X M^{-1} Y_{\nu} Z_{\text{ext}}$$
additional vertex corrections

Example for RG evolution

$$\delta = \varphi_1 = \varphi_2 = 0$$

프 🕨 🗉 프

]	NuFact-II	JPARC-HK	T2K+NuMI	Beams	Current			
	0.055	0.020	0.050	0.1	0.16			
	030681	z W. Winter [hen_nh/0/	r M Bolinec T Schwet	uber M Lindner	РН			
	Michael Schmidt Running of Neutrino Mass Parameters							

θ_{23}

 $\tan \beta =$ 20, $\delta = \varphi_1 = \varphi_2 =$ 0, analytic estimate

Current	Beams	T2K+NuMI	JPARC-HK	NuFact-II		
0.16	0.1	0.050	0.020	0.055	-	5
PH	uber M Lindner	M Rolinec T Schwet	z W Winter [hen_ph/0/	030681		
P Huber M Lindner M Rolinec L Schwetz W Winter Dep-ph/04030681 Michael Schmidt Running of Neutrino Mass Parameters						

θ_{23}

• $|0.5 - \sin^2 \theta_{23}| \le 0.16$

T. Schwetz [hep-ph/0606060]

 $\tan \beta =$ 20, $\delta = \varphi_1 = \varphi_2 =$ 0, analytic estimate

Current	Beams	T2K+NuMI	JPARC-HK	NuFact-II		
0.16	0.1	0.050	0.020	0.055	_	5
PH	uber M Lindner	M Bolinec T Schwet	z W Winter [hen-ph/04	030681	-	
Michael Schmidt Pupping of Noutring Mass Parameters						

θ_{23}

•
$$|0.5 - \sin^2 \theta_{23}| \le 0.16$$

T. Schwetz [hep-ph/0606060]

 small deviations from maximal mixing

Current	Beams	T2K+NuMI	JPARC-HK	NuFact-II		
0.16	0.1	0.050	0.020	0.055	-	5
PH	uber M Lindner	M Rolinec T Schwe	tz W. Winter [hen_nh/0/	030681	-	
	Mic	hael Schmidt Bu	nning of Neutrino Mass	Parameters		

θ_{23}

$$\tan \beta = 20, \, \delta = \varphi_1 = \varphi_2 = 0$$
, analytic estimate

$$|0.5 - \sin^2 \theta_{23}| \le 0.16$$

T. Schwetz [hep-ph/0606060]

- small deviations from maximal mixing
- running above see—saw scales

Current	Beams	T2K+NuMI	JPARC-HK	NuFact-II		
0.16	0.1	0.050	0.020	0.055	-	5
PH	uber M Lindner	M Rolinec T Schwet	z W Winter [hen-ph/04	030681	-	
Michael Schmidt Bunning of Neutrino Mass Parameters						

θ_{23}

 $\tan \beta =$ 20, $\delta = \varphi_1 = \varphi_2 =$ 0, analytic estimate

•
$$|0.5 - \sin^2 \theta_{23}| \le 0.16$$

T. Schwetz [hep-ph/0606060]

- small deviations from maximal mixing
- running above see—saw scales
- suppression by phases possible

ſ	Current	Beams	T2K+NuMI	JPARC-HK	NuFact-II			
	0.16	0.1	0.050	0.020	0.055		_	4
7	РН	uber M Lindner	r M Bolinec T Schwe	tz W Winter [hen_nh/0/	030681			
	Michael Schmidt Running of Neutrino Mass Parameters							

Outline

- RG evolution in standard seesaw model
- 3 RG evolution in type–II seesaw model

4 Summary

Michael Schmidt Running of Neutrino Mass Parameters

ヘロト ヘ戸ト ヘヨト ヘヨト

Only Higgs triplet

$$P=C_eY_e^\dagger Y_e+C_\Delta Y_\Delta^\dagger Y_\Delta$$

Michael Schmidt Running of Neutrino Mass Parameters

ヘロト 人間 とくほとくほとう

Only Higgs triplet

$$P=C_eY_e^\dagger Y_e$$

Michael Schmidt Running of Neutrino Mass Parameters

ヘロト 人間 とくほとくほとう

Only Higgs triplet

 $C_{\Delta} Y^{\dagger}_{\Delta} Y_{\Delta}$ P =

Michael Schmidt Running of Neutrino Mass Parameters

ヘロト 人間 とくほとくほとう

Only Higgs triplet

$$P = C_{\Delta} Y_{\Delta}^{\dagger} Y_{\Delta}$$

convenient basis: $Y_{\Delta} = \text{diag}(y_1, y_2, y_3)$ diagonal

$$16\pi^{2} \dot{y}_{i} = 2C_{\Delta} y_{i}^{3} + \alpha y_{i}$$
$$16\pi^{2} \left(\dot{Y}_{e} \right)_{ij} = (Y_{e})_{ij} D_{\Delta} y_{j}^{2} + \alpha_{e} (Y_{e})_{ij}$$

Chao, Zhang [hep-ph/0611323]

Only Higgs triplet

$$P = C_{\Delta} Y_{\Delta}^{\dagger} Y_{\Delta}$$

convenient basis: $Y_{\Delta} = \text{diag}(y_1, y_2, y_3)$ diagonal

$$16\pi^{2} \dot{y}_{i} = 2C_{\Delta} y_{i}^{3} + \alpha y_{i}$$
$$16\pi^{2} \left(\dot{Y}_{e} \right)_{ij} = (Y_{e})_{ij} D_{\Delta} y_{j}^{2} + \alpha_{e} (Y_{e})_{ij}$$

Chao, Zhang [hep-ph/0611323]

Neutrino mass matrix stays diagonal

Only Higgs triplet

$$P = C_{\Delta} Y_{\Delta}^{\dagger} Y_{\Delta}$$

convenient basis: $Y_{\Delta} = \text{diag}(y_1, y_2, y_3)$ diagonal

$$16\pi^{2} \dot{y}_{i} = 2C_{\Delta} y_{i}^{3} + \alpha y_{i}$$
$$16\pi^{2} \left(\dot{Y}_{e} \right)_{ij} = (Y_{e})_{ij} D_{\Delta} y_{j}^{2} + \alpha_{e} (Y_{e})_{ij}$$

Chao,Zhang [hep-ph/0611323]

- Neutrino mass matrix stays diagonal
- Running of angles and phases described by charged leptons

General structure of RG equations I

$$16\pi^{2}\dot{\theta}_{12} = -\frac{D_{\Delta}}{2}y_{21}^{2}\sin 2\theta_{12}$$

$$16\pi^{2}\dot{\theta}_{13} = -\frac{D_{\Delta}}{4}\left[y_{31}^{2} + y_{32}^{2} + y_{21}^{2}\cos 2\theta_{12}\right]\sin 2\theta_{13}$$

$$16\pi^{2}\dot{\theta}_{23} = -\frac{D_{\Delta}}{2}\left[\left(y_{32}^{2}c_{12}^{2} + y_{31}^{2}s_{12}^{2}\right)\sin 2\theta_{23} + y_{21}^{2}\cos \delta \sin 2\theta_{12}c_{23}^{2}\theta_{13}\right] + \mathcal{O}(\theta_{13}^{2})$$

$$y_{ji}^2 = y_j^2 - y_i^2, \, y_i \epsilon \left\{ y_1, \, y_2, \, y_3, \, y_e, \, y_\mu, \, y_ au
ight\}$$

・ロト ・ 理 ト ・ ヨ ト ・

General structure of RG equations I

$$16\pi^{2}\dot{\theta}_{12} = -\frac{D_{\Delta}}{2}y_{21}^{2}\sin 2\theta_{12}$$

$$16\pi^{2}\dot{\theta}_{13} = -\frac{D_{\Delta}}{4}\left[y_{31}^{2} + y_{32}^{2} + y_{21}^{2}\cos 2\theta_{12}\right]\sin 2\theta_{13}$$

$$16\pi^{2}\dot{\theta}_{23} = -\frac{D_{\Delta}}{2}\left[\left(y_{32}^{2}c_{12}^{2} + y_{31}^{2}s_{12}^{2}\right)\sin 2\theta_{23} + y_{21}^{2}\cos \delta \sin 2\theta_{12}c_{23}^{2}\theta_{13}\right] + \mathcal{O}(\theta_{13}^{2})$$

$$16\pi^2\dot{ heta}_{ij}pprox -rac{D_\Delta}{2}\left(y_j^2-y_i^2
ight)\sin2 heta_{ij}$$

 $y_{ji}^2 = y_j^2 - y_i^2, \, y_i \in \{y_1, \, y_2, \, y_3, \, y_e, \, y_\mu, \, y_\tau\}$

э

General structure of RG equations II

$$\begin{aligned} 16\pi^{2}\dot{\theta}_{12} &= -\frac{1}{2}\left[D_{\Delta}y_{21}^{2} + C_{e}y_{\tau}^{2}\frac{y_{2} + y_{1}}{y_{2} - y_{1}}\sin\theta_{23}\right]\sin2\theta_{12} + \mathcal{O}(\theta_{13})\\ 16\pi^{2}\dot{\theta}_{13} &= -\frac{C_{e}}{2}\frac{(y_{2} - y_{1})y_{3}}{(y_{3} - y_{1})(y_{3} - y_{2})}y_{\tau}^{2}\cos\delta\sin2\theta_{12}\sin2\theta_{23} + \mathcal{O}(\theta_{13})\\ 16\pi^{2}\dot{\theta}_{23} &= -\frac{1}{2}\left[D_{\Delta}\left(y_{3}^{2} - y_{1}^{2}\sin^{2}\theta_{12} - y_{2}^{2}\cos^{2}\theta_{12}\right)\right.\\ &+ C_{e}\frac{y_{3}^{2} - y_{1}y_{2} + (y_{2} - y_{1})\cos2\theta_{12}}{(y_{3} - y_{2})(y_{3} - y_{1})}y_{\tau}^{2}\right]\sin2\theta_{23} + \mathcal{O}(\theta_{13})\end{aligned}$$

$$y_{ji}^2 = y_j^2 - y_i^2, \, y_i \in \{y_1, \, y_2, \, y_3, \, y_e, \, y_\mu, \, y_\tau\}$$

ヘロン ヘアン ヘビン ヘビン

General structure of RG equations II

$$\begin{aligned} 16\pi^{2}\dot{\theta}_{12} &= -\frac{1}{2} \left[D_{\Delta}y_{21}^{2} + C_{e}y_{\tau}^{2}\frac{y_{2} + y_{1}}{y_{2} - y_{1}}\sin\theta_{23} \right] \sin 2\theta_{12} + \mathcal{O}(\theta_{13}) \\ 16\pi^{2}\dot{\theta}_{13} &= -\frac{C_{e}}{2} \frac{(y_{2} - y_{1})y_{3}}{(y_{3} - y_{1})(y_{3} - y_{2})} y_{\tau}^{2}\cos\delta\sin 2\theta_{12}\sin2\theta_{23} + \mathcal{O}(\theta_{13}) \\ 16\pi^{2}\dot{\theta}_{23} &= -\frac{1}{2} \left[D_{\Delta} \left(y_{3}^{2} - y_{1}^{2}\sin^{2}\theta_{12} - y_{2}^{2}\cos^{2}\theta_{12} \right) \right. \\ &+ C_{e} \frac{y_{3}^{2} - y_{1}y_{2} + (y_{2} - y_{1})\cos2\theta_{12}}{(y_{3} - y_{2})(y_{3} - y_{1})} y_{\tau}^{2} \right] \sin 2\theta_{23} + \mathcal{O}(\theta_{13}) \\ 16\pi^{2}\dot{\delta} &= \frac{C_{e}}{2} \frac{(y_{2} - y_{1})y_{3}}{(y_{3} - y_{2})(y_{3} - y_{1})} y_{\tau}^{2} \sin\delta\sin2\theta_{12}\sin2\theta_{23}\theta_{13}^{-1} + \mathcal{O}(\theta_{13}) \\ y_{ji}^{2} &= y_{j}^{2} - y_{i}^{2}, y_{i} \in \{y_{1}, y_{2}, y_{3}, y_{e}, y_{\mu}, y_{\tau}\} \end{aligned}$$

RG evolution of θ_{23}

$$16\pi^{2}\dot{\theta}_{23}\approx-\frac{D_{\Delta}}{2}\left(y_{3}^{2}-y_{1}^{2}\sin^{2}\theta_{12}-y_{2}^{2}\cos^{2}\theta_{12}\right)\sin2\theta_{23}$$

Michael Schmidt Running of Neutrino Mass Parameters

Masses

$$16\pi^2 \dot{y}_i = 2C_\Delta y_i^3 + \alpha y_i$$

n.h.,
$$m_1 = 0 \text{ eV}, \langle \Delta \rangle \sim 0.1 \text{ eV}, Y_{\Delta} \sim \mathcal{O}(0.1 - 1), C_{\Delta} = -\frac{3}{2}, \alpha(y_i, g_2, \Lambda_i) < 0$$

ヘロト 人間 とくほとくほとう

Masses

$$16\pi^2 \dot{y}_i = 2C_\Delta y_i^3 + \alpha y_i$$

n.h., $m_1 = 0 \text{ eV}, \langle \Delta \rangle \sim 0.1 \text{ eV}, Y_\Delta \sim \mathcal{O}(0.1 - 1), C_\Delta = -\frac{3}{2}, \alpha(y_i, g_2, \Lambda_i) < 0$

REAP/MixingParameterTools: http://www.ph.tum.de/~rge

Outline

- 2 RG evolution in standard seesaw model
- 3 RG evolution in type–II seesaw model

4 Summary

ヘロト ヘワト ヘビト ヘビト

Summary

Standard seesaw

Michael Schmidt Running of Neutrino Mass Parameters

ヘロト 人間 とくほとくほとう

Summary

Standard seesaw

 Large renormalization group effects above and between thresholds possible. → High–energy symmetries can be destroyed by RG effects.

イロト イポト イヨト イヨト

Summary

Standard seesaw

- Large renormalization group effects above and between thresholds possible. → High–energy symmetries can be destroyed by RG effects.
- RG effects become comparable to sensitivity of precision experiments.

< 口 > < 同 > < 臣 > < 臣 >

Summary

Standard seesaw

- Large renormalization group effects above and between thresholds possible. → High–energy symmetries can be destroyed by RG effects.
- RG effects become comparable to sensitivity of precision experiments.

Type-II seesaw

< <>>

-∢ ≣ →

Summary

Standard seesaw

- Large renormalization group effects above and between thresholds possible. → High–energy symmetries can be destroyed by RG effects.
- RG effects become comparable to sensitivity of precision experiments.

Type-II seesaw

No enhancement factor, but RG effect for considerable Y_Δ

Summary

Standard seesaw

- Large renormalization group effects above and between thresholds possible. → High–energy symmetries can be destroyed by RG effects.
- RG effects become comparable to sensitivity of precision experiments.

Type-II seesaw

- No enhancement factor, but RG effect for considerable Y_Δ
- RG effect proportional to mass squared difference

Summary

Standard seesaw

- Large renormalization group effects above and between thresholds possible. → High–energy symmetries can be destroyed by RG effects.
- RG effects become comparable to sensitivity of precision experiments.

Type-II seesaw

- No enhancement factor, but RG effect for considerable Y_Δ
- RG effect proportional to mass squared difference
- Sizable RG effect for θ₂₃