## Supernova Neutrinos LAUNCH, 21-23 March 2007, MPIK Heidelberg

Georg G. Raffelt Max-Planck-Institut für Physik, München, Germany

# Sanduleak -69 202

Tarantula Nebula

Large Magellanic Cloud Distance 50 kpc (160.000 light years)

LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germ

# Sanduleak -69 202

4.4

# Supernova 1987A 23 February 1987

LAUNCH Workshop, 21-23 March 2007, Heidelberg, German

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germa

## SN 1987A Rings (Hubble Space Telescope 4/1994)



## SN 1987A Rings (Hubble Space Telescope 4/1994)

**Foreground Star** 

Supernova Remnant (SNR) 1987A

500 Light-days

Ring system consists of material ejected from the progenitor star, illuminated by UV flash from SN 1987A

**Foreground Star** 

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

### SN 1987A - Explosion Hits Inner Ring



September 24, 1994



- Eebruar
  - February 6, 1996



July 10, 1997



Februay 6, 1998



January 8, 1999



April 21, 1999



February 2, 2000



June 16, 2000



November 14, 2000



March 23, 2001



December 7, 2001



#### January 5, 2003



August 12, 2003



November 28, 2003

#### Supernova 1987A • 1994-2003 Hubble Space Telescope • WFPC2 • ACS

NASA and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

STScI-PRC04-09b

LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germany

## SN 1987A - Explosion Hits Inner Ring









#### **Newborn Neutron Star**



Gravitational binding energy  $E_{\rm b} \approx 3 \times 10^{53} \text{ erg} \approx 17\% \text{ M}_{\text{SUN}} \text{ c}^2$ 

# This shows up as 99% Neutrinos 1% Kinetic energy of explosion (1% of this into cosmic rays) 0.01% Photons, outshine host galaxy

Neutrino luminosity  $L_v \approx 3 \times 10^{53} \text{ erg } / 3 \text{ sec}$   $\approx 3 \times 10^{19} L_{SUN}$ While it lasts, outshines the entire visible universe

#### Neutrino Signal of Supernova 1987A



Kamiokande-II (Japan) Water Cherenkov detector 2140 tons Clock uncertainty ±1 min

Irvine-Michigan-Brookhaven (US) Water Cherenkov detector 6800 tons Clock uncertainty ±50 ms

Baksan Scintillator Telescope (Soviet Union), 200 tons Random event cluster ~ 0.7/day Clock uncertainty +2/-54 s

Within clock uncertainties, signals are contemporaneous

#### **Neutrino-Driven Delayed Explosion**



Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germany

#### **Delayed Explosion**



#### Exploding Models (8-10 Solar Masses) with O-Ne-Cores



Kitaura, Janka & Hillebrandt: "Explosions of O-Ne-Mg cores, the Crab supernova, and subluminous type II-P supernovae", astro-ph/0512065

LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germany

## Standing Accretion Shock Instability (SASI)

Mezzacappa et al., http://www.phy.ornl.gov/tsi/pages/simulations.html



#### Gravitational Waves from Core-Collapse Supernovae



# Future Supernova Neutrino Observations

#### Large Detectors for Supernova Neutrinos



#### SuperNova Early Warning System (SNEWS)



Supernova 1987A Early Light Curve Neutrino observation can alert astronomers several hours in advance to a supernova. To avoid false alarms, require alarm from at least two experiments.



#### http://snews.bnl.gov astro-ph/0406214

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germany

#### Simulated Supernova Signal at Super-Kamiokande



based on a numerical Livermore model [Totani, Sato, Dalhed & Wilson, ApJ 496 (1998) 216]

#### Southpole Ice-Cherenkov Neutrino Detectors

#### AMANDA II (0.1 km<sup>3</sup>, 800 PMTs)

#### Future IceCube (1 km<sup>3</sup>, 4800 PMTs)





#### IceCube as a Supernova Neutrino Detector



# Supernova Neutrino Oscillations

#### **Flavor-Dependent Fluxes and Spectra**



#### **Broad characteristics**

- Duration a few seconds
- $\langle E_{v} \rangle \sim 10{-}20 \text{ MeV}$
- $\langle E_{v} \rangle$  increases with time
- Hierarchy of energies

$$\left< \mathsf{E}_{\mathbf{v}_{\mathbf{e}}} \right> < \left< \mathsf{E}_{\overline{\mathbf{v}}_{\mathbf{e}}} \right> < \left< \mathsf{E}_{\mathbf{v}_{\mathbf{x}}} \right>$$

 Approximate equipartition of energy between flavors

However, in traditional simulations transport of  $v_{\mu}$  and  $v_{\tau}$  schematic

- Incomplete microphysics
- Crude numerics to couple neutrino transport with hydro code

#### H- and L-Resonance for MSW Oscillations



#### **Shock-Wave Propagation in IceCube**



Choubey, Harries & Ross, "Probing neutrino oscillations from supernovae shock waves via the IceCube detector", astro-ph/0604300

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germany

#### Self-Induced Flavor Oscillations of SN Neutrinos



LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germany

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

### Self-Induced Flavor Oscillations of SN Neutrinos



LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germany

#### **Types of Neutrino Oscillation Phenomena**

|                                        | Ordinary Flavor Oscillations                                                                                        | Collective Pair Oscillations                                                                                                       |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| What oscillates?                       | Flavor: $\begin{array}{c} \nu_e \rightarrow \nu_\mu \\ \overline{\nu}_e \rightarrow \overline{\nu}_\mu \end{array}$ | Pairs: $\nu_e \overline{\nu}_e \rightarrow \nu_\mu \overline{\nu}_\mu$<br>(flavor lepton number is<br>conserved in the mass basis) |
| Frequency in vacuum                    | $\omega = \frac{\Delta m^2}{2E}$                                                                                    | $\kappa = \sqrt{\omega \mu}$ with $\mu = \sqrt{2} G_F n_v$                                                                         |
| Role of mixing angle                   | Determines oscillation<br>amplitude                                                                                 | Almost no dependence                                                                                                               |
| Role of matter                         | <ul> <li>Modifies mixing angle and oscillation length</li> <li>Can lead to resonance (MSW)</li> </ul>               | Almost no effect                                                                                                                   |
| Role of dense neutrinos $\mu > \omega$ | Synchronization of ordinary flavor oscillations                                                                     | Is a prerequisite for<br>any collective phenomena                                                                                  |

## Toy Supernova in "Single-Angle" Approximation



#### Inverted Hierarchy - Asymmetric Case ( $\alpha = 0.8$ )



#### **Kinematical Decoherence - Symmetric Case**



### Nonlinear Neutrino Conversion in Supernovae



Duan, Fuller, Carlson, Qian: "Simulation of Coherent Non-Linear Neutrino Flavor Transformation in the Supernova Environment. 1. Correlated Neutrino Trajectories", astro-ph/0606616. See also: astro-ph/0608050

LAUNCH Workshop, 21-23 March 2007, Heidelberg, Germar

#### **Different Oscillation Modes in Supernovae**



#### Papers on collective neutrino oscillations

| 1992 Flavor off-diagonal refractive index                                                                      | Pantaleone, PLB 287(1992) 128                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1992-1998<br>Numerical & analytic studies,<br>but not much impact<br>(nobody really understood)                | Samuel, Kostolecký & Pantaleone<br>in various combinations:<br>PLB 315:46 & 318:127 (1993), 385:159 (1996)<br>PRD 48:1462 (1993), 49:1740 (1994), 52:621 & 3184<br>(1995), 53:5382 (1996), 58:073002 (1998) |
| 2001-2002<br>Flavor equilibration of<br>cosmological neutrinos with<br>chemical potential before<br>BBN epoch  | Pastor, Raffelt & Semikoz, hep-ph/0109035<br>Lunardini & Smirnov, hep-ph/0012056<br>Dolgov et al., hep-ph/0201287<br>Wong, hep-ph/0203180<br>Abazajian, Beacom & Bell, astro-ph/0203442                     |
| 1994-2004<br>SN neutrino oscillations and<br>r-process nucleosynthesis<br>(everybody missed the main<br>point) | Pantaleone, astro-ph/9405008<br>Qian & Fuller, astro-ph/9406073<br>Sigl, astro-ph/9410094<br>Pastor & Raffelt, astro-ph/0207281<br>Balantekin & Yüksel, astro-ph/0411159                                    |
| 2006-2007<br>"Bipolar" oscillations<br>crucial for SN neutrinos                                                | Duan, Fuller & Qian, astro-ph/0511275<br>Duan, Fuller, Carlson & Qian, astro-ph/0606616<br>Hannestad, Raffelt, Sigl & Wong, astro-ph/0608695<br>Raffelt & Sigl, hep-ph/0701182                              |

Georg Raffelt, Max-Planck-Institut für Physik, München, Germany

LAUNCH Workshop, 21-23 March 2007, Heidelberg, German

**Cosmic Diffuse Supernova Neutrino Background (DSNB)** 

#### **Experimental Limits on Relic Supernova Neutrinos**



### Improved Sensitivity with Neutron Tagging

| Beacom & Vagins, hep-ph/0309300<br>[Phys. Rev. Lett., 93 (2004) 171101]                                                                                                                                                                                                                                                                              | Status of R & D (04/2006)<br>[Mark Vagins, private communication]                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Detection of DSNB limited by<br>• Solar neutrinos for $E_v \leq 18 \text{ MeV}$<br>• Sub-Cherenkov muons from atm nus<br>$\mu \rightarrow e + \nu_e + \overline{\nu}_{\mu}$<br>• Solution: neutron tagging from<br>$\overline{\nu}_e + p \rightarrow e^+ + n$<br>• 2.2 MeV gamma from n + p $\rightarrow$ d<br>invisible in water Cherenkov detector | <ul> <li>Nov 05: Gd Cl<sub>3</sub> added to K2K test tank<br/>(kiloton or KT detector)</li> <li>Gd Cl<sub>3</sub> is easy to dissolve</li> <li>Gd Cl<sub>3</sub> does not significantly affect<br/>the light collection</li> <li>Choice of detector materials critical<br/>(old rust in KT with Gd Cl<sub>3</sub> badly<br/>affected transparency)</li> <li>The 20 inch Super-K PMT's operate<br/>well in conductive water</li> <li>Gd filtration works as designed at<br/>3.6 tons/h, can easily be scaled up</li> </ul> |
| Add gadolinium to Super-Kamiokande<br>• Efficient neutron capture on Gd<br>• 8 MeV gamma cascade easily visible                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>0.1% (100 tons of Gd Cl<sub>3</sub>)<br/>achieves &gt; 90% tagging efficiency</li> <li>Diffuse SN nu background (DSNB):<br/>a few events per year in Super-K<br/>with no background at all</li> </ul>                                                                                                                                       | <ul> <li>Looks promising for Super-K,<br/>conceivable within next few years</li> <li>Capital cost negligible for future<br/>megatonne-class detectors</li> </ul>                                                                                                                                                                                                                                                                                                                                                          |

#### **DSNB Measurement with Neutron Tagging**



FIG. 1: Spectra of low-energy  $\bar{\nu}_e + p \rightarrow e^+ + n$  coincidence events and the sub-Čerenkov muon background. We assume full efficiencies, and include energy resolution and neutrino oscillations. Singles rates (not shown) are efficiently suppressed.

Pushing the boundaries of neutrino astronomy to cosmological distances

Looking forward to the next galactic supernova

http://antwrp.gsfc.nasa.gov/apod/ap060430.html