

Status of Daya Bay

Kam-Biu Luk

University of California at Berkeley

and

Lawrence Berkeley National Laboratory

For The Daya Bay Collaboration

LAUNCH Workshop at MPI, Heidelberg, Germany, 23 March, 2007

Significance of θ_{13}

Some Methods For Determining $\boldsymbol{\theta}_{13}$

Method 1: Accelerator Experiments

$$P_{\mu e} \approx \sin^2 2\theta_{13} \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) + \dots$$

- $v_{\mu} \rightarrow v_{e}$ appearance experiment
- need other mixing parameters to extract θ_{13}
- baseline O(100-1000 km), matter effects present
- expensive

Method 2: Reactor Experiments

$$P_{ee} \approx 1 - \sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E_v}\right) - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E_v}\right)$$

- $\cdot \overline{v}_e \rightarrow X$ disappearance experiment
- baseline O(1 km), no matter effect, no ambiguity
- relatively cheap

Reactor \overline{v}_e

• Fission processes in nuclear reactors produce huge number of low-energy \overline{v}_e :

3 GW_{th} generates 6 × $10^{20} \overline{v}_e$ per sec

Detecting $\overline{\mathbf{v}}$ With Liquid Scintillator

• Use the inverse β -decay reaction in 0.1% Gd-doped liquid scintillator:

$$\overline{v}_{e} + p \rightarrow e^{+} + n \text{ (prompt)}$$

$$0.3b \rightarrow + p \rightarrow D + \gamma(2.2 \text{ MeV}) \text{ (delayed)}$$

$$50,000b \rightarrow + Gd \rightarrow Gd^{*}$$

$$Gd + \gamma's(8 \text{ MeV}) \text{ (delayed)}$$

- Time- and energy-tagged signal is a good tool to suppress background events.
- Energy of \overline{v}_e is given by:

$$E_{\overline{v}} \approx T_{e^+} + T_n + (m_n - m_p) + m_{e^+} \approx T_{e^+} + 1.8 \text{ MeV}$$

10-40 keV

Chooz: Finding θ_{13}

5-ton 0.1% Gd-loaded liquid scintillator to detect $\overline{v}_e + p \rightarrow e^+ + n$

Rate:

~5 evts/day/ton (full power) including 0.2-0.4 bkg/day/ton

Systematic uncertainties

parameter	relative uncertainty (%)
reaction cross section	1.9
number of protons	0.8
detection efficiency	1.5
reactor power	0.7
energy released per fission	0.6
combined	2.7

Current Knowledge of θ_{13}

Direct search

Global fit

Daya Bay Collaboration

Daya Bay: Goal And Approach

• Determine $sin^2 2\theta_{13}$ with a sensitivity of ≤ 0.01

by measuring deficit in \overline{v}_e rate and spectral distortion.

Recommendation of the APS Neutrino Study Group:

• An expeditiously deployed multidetector reactor experiment with sensitivity to $\overline{\nu}_{e}$ disappearance down to $\sin^{2} 2\theta_{13} = 0.01$, an order of magnitude below present limits.

How To Reach A Precision of 0.01 in Daya Bay?

• Increase statistics:

- Use more powerful nuclear reactors
- Utilize larger target mass, hence larger detectors

Suppress background:

- Go deeper underground to gain overburden for reducing cosmogenic background
- Use active shield around the target
- Reduce systematic uncertainties:
 - Reactor-related:
 - Optimize baseline for best sensitivity and smaller residual reactorrelated errors
 - Near and far detectors to minimize reactor-related errors
 - Detector-related:
 - Use "Identical" pairs of detectors to do *relative* measurement
 - Comprehensive program in calibration/monitoring of detectors
 - Interchange near and far detectors (optional)

The Daya Bay Nuclear Power Complex

- 12th most powerful in the world $(11.6 \text{ GW}_{\text{th}})$
- Fifth most powerful by 2011 (17.4 GW_{th})

 Adjacent to mountain, easy to construct tunnels to reach underground labs with sufficient overburden to suppress cosmic rays

Where To Place The Detectors ?

• Since reactor \overline{v}_e are low-energy, it is a disappearance experiment:

$$P(\overline{\nu}_e \rightarrow x) \approx \frac{\sin^2 2\theta_{13} \sin^2 \left(\frac{\Delta m_{31}^2 L}{4E}\right)}{4E} - \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \left(\frac{\Delta m_{21}^2 L}{4E}\right)$$

- Place near detector(s) close to reactor(s) to measure flux and spectrum of \overline{v}_{e} for normalization, hence reducing reactor-related systematic
- Position a far detector near the first oscillation maximum to get the highest sensitivity, and also be less affected by θ_{12}

Baseline optimization and site selection

Inputs to the process:

- Flux and energy spectrum of reactor antineutrino
- Systematic uncertainties of reactors and detectors
- Ambient background and uncertainties
- Position-dependent rates and spectra of cosmogenic neutrons and ⁹Li

Civil Design Almost Complete

- Total tunnel length is about 3100 m
 Estimated total construction cost is
 - ~\$11 M
- $\boldsymbol{\cdot}$ Construction will start this summer
- First experimental hall is available after 13 months
- \cdot Construction time is ~22 months

Antineutrino Detectors

- Three-zone cylindrical detector design
 - Target: 20 T (0.1% Gd-LS), radius = 1.55 m
 - Gamma catcher: 20 T (LS), thickness = 0.42 m
 - Buffer : 40 T (mineral oil) , thickness = 0.48 m
- Low-background 8" PMT: 192
- Reflectors at top and bottom
- Photocathode coverage:
 5.6 % → 12% (with reflectors)

- A.Gd-isonanoate in 4: 6 mesitylene/dodecane B.Gd-ethylhexanoate in 2: 8 mesitylene/dodecane
- C.Gd-isonanoate in LAB
- D.Gd-ethylhexanoate in 2: 8 mesitylene/LAB
 - Use LAB (Linear Alkyl Benzene):

 - used in bio. sc.
 - good stability high light yield
 - high flash point no EH&S issues
 - cheap (raw material for making detergent)

2-zone Prototype at IHEP

- 0.5 ton unloaded LS (now replaced with Gd-LS)
- 45 8" PMTs with reflecting top and bottom

Cosmic-ray Muon

- Use a modified Gaisser parametrization for cosmic-ray flux at surface
- Apply MUSIC and mountain profile to estimate muon intensity & energy

	DYB	LingAo	Mid	Far
Overburden (m)	98	112	208	355
Muon intensity (Hz/m²)	1.16	0.73	0.17	0.041
Mean Energy (GeV)	55	60	97	138

Shielding Antineutrino Detectors

 Detector modules enclosed by 2.5 m of water to shield energetic neutrons produced by cosmic-ray muons and gamma-rays from the surrounding rock

An Example of the Muon System

measured to better than 0.25%

Background

Uncorrelated background:

Sources: U/Th/K/Rn/neutron

Single gamma rate @ 0.9MeV < 50Hz/module Single neutron rate < 1000/day/module

- Correlated backgrounds: n ∝ E^{0.75}_μ
 Fast Neutrons: double coincidence
 ⁸He/⁹Li: beta-neutron emitting decays
- All these background events can be measured and corrected

Per module	Daya Bay Near	Ling Ao Near	Far Hall	
Baseline (m)	363	481 from Ling Ao	1985 from Daya Bay	
		526 from Ling Ao II	1615 from Ling Ao's	
Overburden (m)	98	112	350	
Radioactivity (Hz)	<50	<50	<50	
Muon rate (Hz)	36	22	1.2	
Antineutrino Signal (events/day)	930	760	90	
Accidental Background/Signal (%)	< 0.2	< 0.2	< 0.1	
Fast neutron Background/Signal (%)	0.1	0.1	0.1	
⁸ He+ ⁹ Li Background/Signal (%)	0.3	0.2	0.2	

Controlling Target Mass & Composition

- Store one batch of pure LAB in a 200-T tank
- Mix and fill a pair of detector at a time underground with controls of Coriolis mass flow meters (reproducible at 0.1%), load cells (0.008% accuracy), and volume flow meters (good to 0.02%), as well as temperature monitoring :

Calibration And Monitoring

- Use a manual system to do full-volume calibrations
- Monitor level, load and temperature sensors regularly
- Weekly calibration with radioactive sources and LED along vertical axes with an automated calibration system

Calibrating Energy Cuts

- Routine calibration with
 - 68Ge: e⁺ annihilation yields two 0.511 MeV γ's
 - ⁶⁰Co: 2.6 MeV in γ 's
 - ²³⁸Pu-¹³C (α -n source):

Systematic Uncertainties

• Reactor-related:

Near detectors really help !

Number of cores	α	σ_{ρ} (power)	$\sigma_{\rho}(\text{location})$	$\sigma_{\rho}(\text{total})$
4	0.338	0.035%	0.08%	0.087%
6	0.392	0.097%	0.08%	0.126%

Detector-related:

Source of uncertainty		Chooz	Daya Bay <mark>(relative)</mark>			
		(absolute)	Baseline	Goal	Goal w/Swapping	;
# proton	s H/C ratio	0.8	0.2	0.1	0	
	Mass	-	0.2	0.02	0.006	
Detector	Energy cuts	0.8	0.2	0.1	0.1	
Efficienc	y Position cuts	0.32	0.0	0.0	0.0	
	Time cuts	0.4	0.1	0.03	0.03	
	H/Gd ratio	1.0	0.1	0.1	0.0	
	n multiplicity	0.5	0.05	0.05	0.05	
	Trigger	0	0.01	0.01	0.01	
	Live time	0	< 0.01	< 0.01	< 0.01	
Total det	Total detector-related uncertainty		0.38%	0.18%	0.12%	
			anticipated	\uparrow		
Kam-Biu Luk		Daya Bay	1	with R&D		28

Sensitivity in $sin^2 2\theta_{13}$

- Use rate and spectral shape
- input relative detector systematic error of 0.38%

Sensitivity of 9 months running with near-mid, 3 years with near-far

Funding And Support

- Funding Committed from
 - Chinese Academy of Sciences,
 - Ministry of Science and Technology
 - Natural Science Foundation of China
 - China Guangdong Nuclear Power Group
 - Shenzhen municipal government
 - Guangdong provincial government
- Strong support from:
 - China Guangdong Nuclear Power Group
 - China atomic energy agency
 - China nuclear safety agency
- Supported by BNL/LBNL LDRD funds
- Supported by DOE \$1M R&D to date
- Support by funding agencies from other countries & regions

China plans to provide civil construction and ~half of the detector systems; U.S.plans to bear ~half of the detector cost
 Kam-Biu Luk
 Daya Bay

Summary

- The Daya Bay experiment will reach a sensitivity of ≤ 0.01 for $\sin^2 2\theta_{13}$
- Design of detectors is in progress and R&D is ongoing
- Completed DOE scientific review, and is preparing for DOE CD-1 review in April, 2007
- Detailed design of tunnels and infrastructures is in progress
- The Daya Bay Collaboration continues to grow
- Received commitments from Chinese agencies and power plant
- Plan to start civil construction in 2007, deploying detectors in 2009, begin full operation in 2010, and reach the designed sensitivity by 2013

Schedule

 Will begin civil construction Jun 2007 • Bring up the first pair of detectors Jun 2009 Begin data taking with the Near-Mid configuration Sept 2009 Begin data taking with the Near-Far configuration Jun 2010 • Reach $\sin^2 2\theta_{13} < 0.01$ Jun 2013

Aberdeen Tunnel Experiment (Hong Kong)

For studying cosmic muons, spallation neutrons, and gamma background

Fig. 1 A comparison of rock compositions at Daya Bay and Aberdee