Discrete flavor symmetries

C. Hagedorn

hagedorn@mpi-hd.mpg.de

Max-Planck-Institut für Kernphysik, Heidelberg, Germany

LAUNCH, MPI-K, Heidelberg - p.

Observations

• Masses of the charged fermions are strongly hierarchical $m_u: m_c: m_t \approx \lambda^8 : \lambda^4 : 1, \ m_d: m_s: m_b \approx \lambda^4 : \lambda^2 : 1,$ $m_e: m_\mu: m_\tau \approx \lambda^5 : \lambda^2 : 1$ where $\lambda \approx \theta_C \approx 0.22$

- Mass hierarchy in the ν sector is milder, ordering till now unknown.
- Mixing parameters: small mixings for quarks, large mixings for leptons.
- for lepton mixing special structures are allowed:
 - "tri-bimaximal" (TB): (1σ) $\sin^2(\theta_{12}^{TB}) = \frac{1}{3}$, $\sin^2(\theta_{23}^{TB}) = \frac{1}{2}$, $\sin^2(\theta_{13}^{TB}) = 0$.
 - " μ - τ " symmetric (MTS): $\sin^2(\theta_{23}^{MTS}) = \frac{1}{2}$, $\sin^2(\theta_{13}^{MTS}) = 0$.

 \Rightarrow All these issues need a theoretical description: Flavor symmetry G_F !

Choice of Flavor Symmetry

explain existence of three generations or at least unify two of them $\rightarrow \text{needs non-abelian symmetry group}$

avoid Goldstone/ gauge bosons coming from SSB of G_F \rightarrow needs *discrete* symmetry group

possible symmetries

- **permutation symmetries:** S_N and A_N with $N \in \mathbb{N}$
- dihedral symmetries: D_n with $n \in \mathbb{N}$
- double-valued dihedral symmetries: D'_n with $n \in \mathbb{N}$
- If urther double-valued groups: T', O', I', ...
- \checkmark subgroups of SU(3): $\Delta(3n^2)$ and $\Delta(6n^2)$ with $n \in \mathbb{N}$, ...

 \rightarrow several models using these symmetries ...

Examples in the Literature

- S₃: Pakvasa et al. (1978), Derman (1979), ..., Ma (2000), Kubo et al. (2003), Chen et al. (2004), Grimus et al. (2005), Dermisek et al. (2005), Mohapatra et al. (2006), ... and many more ...
- S₄: Pakvasa et al. (1979), Derman et al. (1979), Lee et al. (1994), Mohapatra et al. (2004), Ma (2006), CH et al. (2006), Caravaglios et al. (2006), ...
- A₄: Wyler (1979), Ma et al. (2001), Babu et al. (2003), Altarelli et al. (2005,2006), He et al. (2006) ... and many more ...
- D_4 : Seidl (2003), Grimus et al. (2003,2004), Kobayashi et al. (2005), ...
- \square D_5 : Ma (2004), CH et al. (2006).
- $D_{n>5}$: Chen et al. (2005), Kajiyama et al. (2007), ...
- D'_n: Frampton et al. (1995,1996,2000), Frigerio et al. (2005), Babu et al. (2005), Kubo (2005), ...
- T': Frampton et al. (1994,2007), Aranda et al. (1999,2000), Feruglio et al. (2007).
- $\Delta(3n^2)$ and $\Delta(6n^2)$: Kaplan et al. (1994), Chou et al. (1997), de Medeiros Varzielas et al. (2005), ...

Group Theory of A_4 and T'

- The group A_4 is the symmetry group of a regular tetrahedron, group of even permutations of four objects
- Order of the group: 12
- **Solution** Four irreducible representations: 1, 1', 1'' and 3
- \blacksquare Generator relations for generators S and T:

$$S^2 = 1$$
, $T^3 = 1$, $(ST)^3 = 1$.

$$(\omega = e^{\frac{2\pi i}{3}})$$

Group Theory of A_4 and T' (II)

- The group T' is the double covering of the group A_4 .
 (Compare to SU(2) and SO(3))
- Order of the group: 24
- Irred. reps: 1, 1', 1'', 3 and 2, 2', 2''
- \blacksquare Generator relations for generators S and T:

$$S^2 = \mathbb{R} \ , \quad T^3 = \mathbb{1} \ , \quad (ST)^3 = \mathbb{1} \ , \quad \mathbb{R}^2 = \mathbb{1} .$$

rep.	S	T	
2	A_1	ωA_2	$A_1 = -\frac{1}{\sqrt{3}} \left(\begin{array}{cc} i & \sqrt{2}e^{i\pi/12} \\ -\sqrt{2}e^{-i\pi/12} & -i \end{array} \right),$
2'	A_1	$\omega^2 A_2$	$A_2 = \begin{pmatrix} \omega & 0 \\ 0 & 1 \end{pmatrix}$
2''	A_1	A_2	

T' **Model**

- \square T' broken at high energies
- Iow energy effective theory: MSSM
- Fermion generations transform according to A_4/T' reps.:

$$\begin{split} l_i &\sim 3 \;, \;\; e^c \sim 1 \;, \;\; \mu^c \sim 1'' \;, \;\; \tau^c \sim 1' \;, \quad (A_4 \text{ is enough}) \\ D_q, D_u^c, D_d^c \sim 2'' \;, \;\; q_3, t^c, b^c \sim 1 \;. \\ (D_q &= (q_1, q_2)^t, D_u^c = (u^c, c^c)^t, D_d^c = (d^c, s^c)^t) \\ \text{and Higgs fields } h_{u,d} \sim 1 \end{split}$$

- further fields: gauge singlet Higgs fields (flavons) with heavy masses which transform non-trivially under T'
- results :
 - TB mixing in the lepton sector at leading order
 - $m_{u,d,s,c} \ll m_{b,t}$, all data can be accommodated at subleading order in the quark sector

Particle Content of the T' **Model**

	LEPTONS					QUARKS					FLAVONS				
Field	l	e^{c}	μ^{c}	$ au^c$	D_q	D_u^c	D_d^c	q_3	t^c	b^c	φ_T	$arphi_S$	$\xi, ilde{\xi}$	η	$\xi^{\prime\prime}$
T'	3	1	1''	1′	2''	2''	2''	1	1	1	3	3	1	2'	1''
Z_3	ω	ω^2	ω^2	ω^2	ω	ω^2	ω^2	ω	ω^2	ω^2	1	ω	ω	1	1
$U(1)_{FN}$	0	2n	n	0	0	n	0	0	0	0	0	0	0	0	0

additionally needed:

 \square Z₃ symmetry to separate charged fermion and neutrino sector:

$$\{\varphi_T, \eta, \xi''\} \rightarrow m_l, m_u, m_d \text{ and } \{\varphi_S, \xi, \tilde{\xi}\} \rightarrow m_{\nu}$$

• $U(1)_{FN}$ for hierarchy $m_s \ll m_c$, $m_e \ll m_\mu \ll m_\tau$ (field θ : $Q(\theta) = -1$)

Superpotential

$$w = w_l + w_q + w_d$$

for leptons :

$$w_{l} = y_{e}e^{c}(\varphi_{T}l)h_{d}/\Lambda \left(\frac{\theta}{\Lambda}\right)^{2n} + y_{\mu}\mu^{c}(\varphi_{T}l)'h_{d}/\Lambda \left(\frac{\theta}{\Lambda}\right)^{n} + y_{\tau}\tau^{c}(\varphi_{T}l)''h_{d}/\Lambda + (x_{a}\xi + \tilde{x}_{a}\tilde{\xi})(ll)h_{u}h_{u}/\Lambda^{2} + x_{b}(\varphi_{S}ll)h_{u}h_{u}/\Lambda^{2}$$

for quarks :

$$w_{q} = y_{t} (t^{c}q_{3}) h_{u} + y_{b} (b^{c}q_{3}) h_{d} + y_{1} (\varphi_{T} D_{u}^{c} D_{q}) h_{u} / \Lambda \left(\frac{\theta}{\Lambda}\right)^{n} + y_{5} (\varphi_{T} D_{d}^{c} D_{q}) h_{d} / \Lambda + y_{2} \xi'' (D_{u}^{c} D_{q}) h_{u} / \Lambda \left(\frac{\theta}{\Lambda}\right)^{n} + y_{6} \xi'' (D_{d}^{c} D_{q}) h_{d} / \Lambda + \{y_{3} t^{c} (\eta D_{q}) + y_{4} (D_{u}^{c} \eta) q_{3} \left(\frac{\theta}{\Lambda}\right)^{n} \} h_{u} / \Lambda + \{y_{7} b^{c} (\eta D_{q}) + y_{8} (D_{d}^{c} \eta) q_{3} \} h_{d} / \Lambda$$

Higgs superpotential w_d : VEV structure:

$$G_S : \langle \varphi_S \rangle = (v_S, v_S, v_S) , \langle \xi \rangle = u , \langle \tilde{\xi} \rangle = 0 ,$$

$$G_T : \langle \varphi_T \rangle = (v_T, 0, 0) , \langle \eta \rangle = (v_1, 0) , \langle \xi'' \rangle = 0 .$$

Leading order

• charged leptons:
$$m_l = \frac{v_T}{\sqrt{2\Lambda}} v_d \operatorname{diag}(y_e \left(\frac{\langle \theta \rangle}{\Lambda}\right)^{2n}, y_\mu \left(\frac{\langle \theta \rangle}{\Lambda}\right)^n, y_\tau)$$

• neutrinos: $m_\nu = \frac{v_u^2}{\Lambda} \begin{pmatrix} a+2b/3 & -b/3 & -b/3 \\ -b/3 & 2b/3 & a-b/3 \\ -b/3 & a-b/3 & 2b/3 \end{pmatrix} \Rightarrow \boxed{\mathsf{TB mixing!}}$
with masses: $\frac{v_u^2}{\Lambda} \operatorname{diag}(a+b, a, -a+b)$ and $a = x_a \frac{u}{\Lambda}, b = x_b \frac{v_s}{\Lambda}$

up-type and down-type quarks:

$$m_{u} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{1}v_{\mathsf{T}}/\Lambda \left(\frac{\langle\theta\rangle}{\Lambda}\right)^{n} & y_{4}v_{1}/\Lambda \left(\frac{\langle\theta\rangle}{\Lambda}\right)^{n} \\ 0 & y_{3}v_{1}/\Lambda & y_{t} \end{pmatrix} v_{u} , \ m_{d} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & y_{5}v_{\mathsf{T}}/\Lambda & y_{8}v_{1}/\Lambda \\ 0 & y_{7}v_{1}/\Lambda & y_{b} \end{pmatrix} v_{d}$$

 $\Rightarrow m_b \text{ and } m_t \text{ large, } \frac{m_c}{m_t} \sim \mathcal{O}(\lambda^4), \frac{m_s}{m_b} \sim \mathcal{O}(\lambda^2), |V_{cb}| \sim \mathcal{O}(\lambda^2)$

Higgs superpotential

$$w_{d} = M(\varphi_{T}^{0}\varphi_{T}) + g(\varphi_{T}^{0}\varphi_{T}\varphi_{T}) + g_{1}(\varphi_{S}^{0}\varphi_{S}\varphi_{S}) + g_{2}\tilde{\xi}(\varphi_{S}^{0}\varphi_{S}) + g_{3}\xi^{0}(\varphi_{S}\varphi_{S}) + g_{4}\xi^{0}\xi^{2} + g_{5}\xi^{0}\xi\tilde{\xi} + g_{6}\xi^{0}\tilde{\xi}^{2} + M_{\eta}(\eta\eta^{0}) + M_{\xi}\xi''\xi'^{0} + g_{7}\xi''(\varphi_{T}^{0}\varphi_{T})' + g_{8}(\varphi_{T}^{0}\eta\eta) + g_{9}(\varphi_{T}\eta\eta^{0}) + g_{10}\xi'^{0}(\varphi_{T}\varphi_{T})''$$

- In the fields needed: "driving fields" $\varphi_T^0 \sim (3,1)$, $\varphi_S^0 \sim (3,\omega)$, $\xi^0 \sim (1,\omega)$, $\eta^0 \sim (2'',1)$, $\xi'^0 \sim (1',1)$ under (T', Z₃)
- Introduce $U(1)_R$ to construct Higgs potential:

Q(matter) = +1, Q(Higgs) = 0, Q(driving field) = +2

 $\rightarrow w_d$ linear in driving fields (Yukawa couplings are $U(1)_R$ invariant)

Subleading order

- a.) take all terms up to $O(\frac{1}{\Lambda^2})$ for charged fermions and all terms up to $O(\frac{1}{\Lambda^3})$ for neutrinos
- b.) take all terms up to $\mathcal{O}(\frac{1}{\Lambda})$ in Higgs sector \rightarrow induce VEV shifts: $\frac{\delta \text{VEV}}{\Lambda} \approx \left(\frac{\text{VEV}}{\Lambda}\right)^2 \approx \lambda^4$

results:

- \blacksquare important corrections to charged fermions are due to b.)
- **contributions from** a.) and b.) correct TB mixing

■ corrections should be $\lesssim \lambda^2$ for TB mixing and at the same time
 reproduce $\theta_C \approx \lambda$ in the quark sector

ightarrow careful check needed $~\sqrt{}$

(not possible in A_4 models considered before)

Subleading order (II)

orders of mass matrix elements:

$$m_{u} = \begin{pmatrix} \lambda^{8} & \lambda^{6} & \lambda^{6} \\ \lambda^{6} & \lambda^{4} & \lambda^{4} \\ \lambda^{4} & \lambda^{2} & 1 \end{pmatrix} v_{u} , \quad m_{d} = \begin{pmatrix} \lambda^{6} & \lambda^{3} & \lambda^{4} \\ \lambda^{3} & \lambda^{2} & \lambda^{2} \\ \lambda^{4} & \lambda^{2} & 1 \end{pmatrix} v_{d} .$$

two predictions:

$$\sqrt{\frac{m_d}{m_s}} = |V_{us}| + \mathcal{O}(\lambda^2)$$

and $\sqrt{\frac{m_d}{m_s}} = \left|\frac{V_{td}}{V_{ts}}\right| + \mathcal{O}(\lambda^2)$ (due to $|V_{ub}| \sim \mathcal{O}(\lambda^4)$)

furthermore:

$$\frac{m_u}{m_c} \sim \mathcal{O}(\lambda^4) , \quad \frac{m_d}{m_s} \sim \mathcal{O}(\lambda^2) , \quad |V_{ud}| \approx |V_{cs}| \approx 1 + \mathcal{O}(\lambda^2) , \quad |V_{tb}| \approx 1 ,$$
$$|V_{us}| \approx |V_{cd}| \sim \mathcal{O}(\lambda) , \quad |V_{cb}| \approx |V_{ts}| \sim \mathcal{O}(\lambda^2) , \quad |V_{td}| \sim \mathcal{O}(\lambda^3) .$$

Outlook

- combine idea of flavor symmetry with GUT ? ... till now: no predictive and simple model
- origin of flavor symmetry ?
 ... till now: only postulated
- anomalies of flavor symmetries ? ... till now: not used as guideline for model building
- mechanism of VEV alignment ... till now: in most cases very complicated, simpler version ?
- breaking to non-trivial subgroup of flavor symmetry by VEV alignment ... till now: only used in A₄/T' model, but maybe key to produce TB mixing, MTS and generally large and small mixings at same time
- group theory reason for success of A_4/T' ... other symmetries ?
 ... till now: not explored

Thank you.