Three-flavour and matter effects in neutrino oscillations

Evgeny Akhmedov

MPI-K, Heidelberg & Kurchatov Inst., Moscow

3 neutrino flavours exist: ν_e , ν_μ , ν_τ

<u>But</u>: 2f description – a good 1st approximation in many cases. Reasons:

- Hierarchy of Δm^2 : $\Delta m^2_{\rm sol} \ll \Delta m^2_{\rm atm}$
- Smalness of $|U_{e3}|$.

Exceptions: $P(\nu_{\mu} \leftrightarrow \nu_{\tau})$, $P(\nu_{\mu} \rightarrow \nu_{\mu})$ and $P(\nu_{\tau} \rightarrow \nu_{\tau})$ when oscillations due to the solar frequency ($\sim \Delta m_{sol}^2$) are not frozen.

In any case, coorections due to 3-flavorness can reach $\,\sim 10\%$

cannot be ignored at present

Also: a number of pure 3f effects exist \Rightarrow

 \diamond 3f analyses are a must !

I. "Trivial" effects

- Existence of new physical channels in addition to $\nu_e \leftrightarrow \nu_\mu$ there are $\nu_e \leftrightarrow \nu_\tau$ and $\nu_\mu \leftrightarrow \nu_\tau$; mutual influence of channels through unitarity (conservation of probability).
- New "parameter channels" for the same physical channel. E.g.: $\nu_e \leftrightarrow \nu_\mu$ oscill. can be governed by $(\Delta m_{21}^2, \theta_{12})$ and $(\Delta m_{31}^2, \theta_{13})$

Two types of 3f effects – contd.

II. Nontrivial effects

- Fundamental \mathcal{CP} and \mathcal{T}
- Matter-induced \mathcal{T}
- Interference of different "parameter channels" in $\nu_e \leftrightarrow \nu_{\mu,\tau}$ specific contributions to oscillation probabilities
- Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations

Nontrivial 3f effects (except the last one): disappear if at least one mixing angle is 0 or 90° , or at least one $\Delta m_{ij}^2 = 0$

3f neutrino mixing

Relates flavour eigenstates $\nu_f = (\nu_e, \nu_\mu, \nu_\tau)$ with mass eigenstates $\nu_m = (\nu_1, \nu_2, \nu_3)$:

$$\nu_f = \tilde{U}\nu_m$$

$$\tilde{U} = UK$$
, $K = \operatorname{diag}(1, e^{i\sigma_1}, e^{i\sigma_2})$

Majorana-type phases $\sigma_{1,2}$ do not affect neutrino oscillations. The relevant part of the mixing matrix:

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta_{\rm CP}} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta_{\rm CP}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$= O_{23} \left(\Gamma_{\delta} O_{13} \Gamma_{\delta}^{\dagger}\right) O_{12}, \qquad \Gamma_{\delta} \equiv \operatorname{diag}(1, \ 1, \ e^{i\delta_{\rm CP}})$$

Leptonic mixing – contd.

Normal hierarchy:

Inverted hierarchy:

3f and matter effects in ν **oscillations**

Genuine 3f effects

CP and T in ν oscillations in vacuum

•
$$CP : P(\nu_a \to \nu_b) \neq P(\bar{\nu}_a \to \bar{\nu}_b)$$

•
$$\mathscr{T}$$
 : $P(\nu_a \to \nu_b) \neq P(\nu_b \to \nu_a)$

CPT invariance: $\diamond P(\nu_a \rightarrow \nu_b) = P(\bar{\nu}_b \rightarrow \bar{\nu}_a)$

$$\mathcal{CP} \Leftrightarrow \mathcal{T}$$
 - consequence of CPT

Measures of CP and T – probability differences:

$$\Delta P_{ab}^{\rm CP} \equiv P(\nu_a \to \nu_b) - P(\bar{\nu}_a \to \bar{\nu}_b)$$

$$\Delta P_{ab}^{\mathrm{T}} \equiv P(\nu_a \to \nu_b) - P(\nu_b \to \nu_a)$$

From CPT:

$$\diamond \quad \Delta P_{ab}^{\rm CP} = \Delta P_{ab}^{\rm T}; \qquad \qquad \Delta P_{aa}^{\rm CP} = 0$$

Normal matter [(# of particles) \neq (# of anti-particles)]: The very presence of matter violates C, CP and CPT

⇒ Fake (extrinsic) CP. Exists even in 2f case. May complicate study of fundamental (intrinsic) CP

Normal matter [(# of particles) \neq (# of anti-particles)]: The very presence of matter violates C, CP and CPT

⇒ Fake (extrinsic) CP. Exists even in 2f case. May complicate study of fundamental (intrinsic) CP

Matter with density profile symmetric w.r.t. midpoint of neutrino trajectory does not induce any fake \mathscr{T} . Asymmetric profiles do, but only for $N \ge 3$ flavors – an interesting 3f effect.

Normal matter [(# of particles) \neq (# of anti-particles)]: The very presence of matter violates C, CP and CPT

⇒ Fake (extrinsic) CP. Exists even in 2f case. May complicate study of fundamental (intrinsic) CP

Matter with density profile symmetric w.r.t. midpoint of neutrino trajectory does not induce any fake \mathscr{T} . Asymmetric profiles do, but only for $N \ge 3$ flavors – an interesting 3f effect.

• May fake fundamental \mathscr{T} and complicate its study (extraction of $\delta_{\rm CP}$ from experiment)

Normal matter [(# of particles) \neq (# of anti-particles)]: The very presence of matter violates C, CP and CPT

⇒ Fake (extrinsic) CP. Exists even in 2f case. May complicate study of fundamental (intrinsic) CP

Matter with density profile symmetric w.r.t. midpoint of neutrino trajectory does not induce any fake \mathscr{T} . Asymmetric profiles do, but only for $N \geq 3$ flavors – an interesting 3f effect.

• May fake fundamental \mathscr{T} and complicate its study (extraction of $\delta_{\rm CP}$ from experiment)

Induced \mathscr{X} : absent when either $U_{e3} = 0$ or $\Delta m_{sol}^2 = 0$ (2f limits)

- \Rightarrow Doubly suppressed by both these small parameters
 - effects in terrestrial experiments are small

Matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations

In 2f approximation: no matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations $[V(\nu_{\mu}) = V(\nu_{\tau}) \text{ modulo tiny rad. corrections}].$ Not true in the full 3f framework! (E.A., 2002; Gandhi et al., 2004)

 $\Delta m_{31}^2 = 2.5 \times 10^{-3} \text{ eV}^2, \quad \sin^2 \theta_{13} = 0.026, \quad \theta_{23} = \pi/4, \quad \Delta m_{21}^2 = 0, L = 9400 \text{ km}$ Red curves – w/ matter effects, green curves – w/o matter effects on $P_{\mu\tau}$

Neutrino oscillations in matter

Coherent forward scattering on the particles in matter

$$V_e^{\rm CC} \equiv V = \sqrt{2} \, G_F \, N_e$$

2f neutrino evolution equation:

$$\diamondsuit \quad i\frac{d}{dt} \left(\begin{array}{c} \nu_e \\ \nu_\mu \end{array}\right) = \left(\begin{array}{c} -\frac{\Delta m^2}{4E}\cos 2\theta + V & \frac{\Delta m^2}{4E}\sin 2\theta \\ \frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{array}\right) \left(\begin{array}{c} \nu_e \\ \nu_\mu \end{array}\right)$$

$$\diamondsuit \quad \sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta}$$

$$\diamondsuit \quad \sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta}$$

Mikheyev - Smirnov - Wolfenstein (MSW) resonance:

$$\diamondsuit \qquad \sqrt{2}G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta$$

$$\diamondsuit \quad \sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta}$$

Mikheyev - Smirnov - Wolfenstein (MSW) resonance:

$$\diamondsuit \qquad \sqrt{2}G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta$$

At the resonance: $\theta_m = 45^\circ (\sin^2 2\theta_m = 1) - \text{maximal mixing}$

$$\diamondsuit \quad \sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta}$$

Mikheyev - Smirnov - Wolfenstein (MSW) resonance:

$$\sqrt{2}G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta$$

At the resonance: $\theta_m = 45^\circ (\sin^2 2\theta_m = 1) - \text{maximal mixing}$

$$|\nu_e\rangle = \cos\theta_m |\nu_{1m}\rangle + \sin\theta_m |\nu_{2m}\rangle$$

$$|\nu_{\mu}\rangle = -\sin\theta_{m} |\nu_{1m}\rangle + \cos\theta_{m} |\nu_{2m}\rangle$$

 $|\nu_{1m}\rangle$, $|\nu_{2m}\rangle$ – eigenstates of *H* in matter (matter eigenstates)

$$\diamondsuit \quad \sin^2 2\theta_m = \frac{\sin^2 2\theta \cdot (\frac{\Delta m^2}{2E})^2}{\left[\frac{\Delta m^2}{2E}\cos 2\theta - \sqrt{2}G_F N_e\right]^2 + (\frac{\Delta m^2}{2E})^2 \sin^2 2\theta}$$

Mikheyev - Smirnov - Wolfenstein (MSW) resonance:

$$\sqrt{2}G_F N_e = \frac{\Delta m^2}{2E} \cos 2\theta$$

At the resonance: $\theta_m = 45^\circ (\sin^2 2\theta_m = 1) - \text{maximal mixing}$

 $|\nu_e\rangle = \cos \theta_m |\nu_{1m}\rangle + \sin \theta_m |\nu_{2m}\rangle \qquad N_e \gg (N_e)_{\rm res}: \quad \theta_m \approx 90^\circ$ $|\nu_\mu\rangle = -\sin \theta_m |\nu_{1m}\rangle + \cos \theta_m |\nu_{2m}\rangle \qquad N_e = (N_e)_{\rm res}: \quad \theta_m = 45^\circ$ $N_e \ll (N_e)_{\rm res}: \quad \theta_m \approx \theta$

 $|\nu_{1m}\rangle$, $|\nu_{2m}\rangle$ – eigenstates of *H* in matter (matter eigenstates)

Adiabatic flavour conversion

Adiabaticity: slow density change along the neutrino path

 $\frac{\sin^2 2\theta}{\cos 2\theta} \frac{\Delta m^2}{2E} L_\rho \gg 1$

 L_{ρ} – electron density scale hight:

 $L_{\rho} = \left| \frac{1}{N_e} \frac{dN_e}{dx} \right|^{-1}$

Evidence for the MSW effect

 $V(x) \Rightarrow a_{MSW}V(x); a_{MSW} = 1$ strongly favoured (Fogli et al. 2003, 2004; Fogli & Lisi 2004)

3f and matter effects in ν **oscillations**

Another possible matter effect

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

Parametric resonance in oscillating systems with varying parameters: occurs when the rate of the parameter change is correlated in a certain way with the values of the parameters themselves

For small-ampl. osc.:

$$\Omega_{\rm res} = \frac{2\omega}{n}$$

n = 1, 2, 3...

Different from MSW eff. – no level crossing !

An example admitting an exact analytic solution – "castle wall" density profile (E.A., 1987, 1998):

Resonance condition:

 $X_3 \equiv -(\sin\phi_1 \cos\phi_2 \cos 2\theta_{1m} + \cos\phi_1 \sin\phi_2 \cos 2\theta_{2m}) = 0$

 $\phi_{1,2}$ – oscillation phases acquired in layers 1, 2

Evgeny Akhmedov

LAUNCH, MPI - K Heidelberg

March 21 - 23, 2007 – p. 20

Earth's density profile (PREM model) :

Earth's density profile (PREM model) :

Param. res. condition: $(l_{osc})_{matt} \simeq l_{density mod.}$

Fulfilled for $\nu_e \leftrightarrow \nu_{\mu,\tau}$ oscillations of core-crossing ν 's in the Earth for a wide range of energies and zenith angles !

Evgeny Akhmedov

LAUNCH, MPI - K Heidelberg

Parametric resonance of ν oscillations in the Earth: can be observed in future atmospheric or accelerator experiments if θ_{13} is not much below its current upper limit

Neutrino oscillations in the Earth

A coherent description in terms of different realizations of just 2 conditions

- amplitude and phase conditions

Matter with $N_e = const$:

- amplitude condition = MSW resonance condition
- phase condition: $\phi = \pi/2 + \pi n$

3 layers of constant densities (or the "castle wall" density profile):

- amplitude condition = parametric resonance condition $(X_3 = 0)$
- phase condition: $\Phi \equiv \arccos Y = \pi/2 + \pi n$

Evolution matrix: $\nu(t) = U(t, t_0) \nu(0)$. For 2 layers:

$$U^{(2)}(t, t_0) = \begin{pmatrix} Y - iX_3 & -i(X_1 - iX_2) \\ -i(X_1 + iX_2) & Y + iX_3 \end{pmatrix}, \qquad Y^2 + \mathbf{X}^2 = 1$$

The meaning of the amplitude condition

Alignment of the transitions amplitudes in different layers. Evolution matrices for individual layers:

$$U_{i}(t, t_{0}) = \begin{pmatrix} \alpha_{i} & \beta_{i} \\ -\beta_{i}^{*} & \alpha_{i}^{*} \end{pmatrix}, \qquad |\alpha_{i}|^{2} + |\beta_{i}|^{2} = 1, \qquad i = 1, 2, 3$$

For 2 layers: $U^{(2)} = U_2 U_1$,

$$\beta^{(2)} = \alpha_2 \beta_1 + \beta_2 \alpha_1^*$$

Alignment (collinearity) condition:

$$\arg(\alpha_2 \beta_1) = \arg(\beta_2 \alpha_1^*) \mod (\pi)$$

- potentially leads to maximal trans. probability. For 2 layers of const. densities: align. cond. $\Leftrightarrow s_1s_2X_3 = 0$ $U^{(3)} = U_3 U_2 U_1$. For the Earth, $U^{(3)} = U_1^T U_2 U_1$. Transition amplitude:

 $\beta^{(3)} = \alpha_1 \alpha_2 \beta_1 - \alpha_1^* \alpha_2^* \beta_1^* + |\alpha_1|^2 \beta_2 + |\beta_1|^2 \beta_2^*$

 \Rightarrow If the 2-layer align. cond. is satisfied, so is the 3-layer one !

A consequence of

- The symmetry of the core density profile
- The symmetry of the overall density profile of the Earth (3rd layer's profile is the reverse of the 1st layer's one)
- ⇒ The generalized amplitude condition is the alignment condition in the case of non-constant density layers

Generalized phase condition

For constant density matter: $\phi = \pi/2 + \pi n \iff \operatorname{Im} \alpha^{(1)} \beta^{(1)*} = 0.$

 \Rightarrow Generalize to an arbitrary density profile:

$$\operatorname{Im} \alpha \beta^* = 0 \quad \Leftrightarrow \quad \frac{dP_{\mathrm{tr}}}{dL} = 0$$

The whole complex oscillation pattern:

- MSW resonances
- parametric resonances
- saddle points
- Jocal maxima and minima
- absolute maxima and minima

can be understood in terms of the generalized amplitude and phase conditions ! (E.A., Maltoni & Smirnov, 2007)

Evgeny Akhmedov

LAUNCH, MPI - K Heidelberg

Neutrino oscillograms of the Earth

Contours of equal osc. probabilities in (Θ_{ν}, E_{ν}) plane

 Θ_{13} - dependense of $P_A \Rightarrow$

 P_A – effective 2f transition probability ($\Delta m_{\rm sol}^2 \rightarrow 0$)

$$P_{e\mu} = s_{23}^2 P_A$$

$$P_{e\tau} = c_{23}^2 P_A$$

 $\cos \Theta_{v}$

 $\cos \Theta_{v}$

0.6 0.4 0.2 0

1

0.995

0.97

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.03

0.005

О

 P_{A}

0.8

60° 75° 90° ⊖ March 21 - 23, 2007 – p. 30

45°

Evgeny Akhmedov

Fundamental \mathcal{CP} and \mathcal{T} ; dependence of P_{ab} on δ_{CP} (also in CP - and T - even terms) \Rightarrow parameter correlations and degeneracies (e.g. θ_{13} and δ_{CP})

Fundamental \mathcal{CP} and \mathcal{T} ; dependence of P_{ab} on δ_{CP} (also in CP - and T - even terms) \Rightarrow parameter correlations and degeneracies (e.g. θ_{13} and δ_{CP}) "Magic" baseline: $L \simeq 7300$ km - dependence on δ_{CP} , Δm_{sol}^2 disappears (Barger *et al.*, 2001; Huber & Winter, 2003; Huber *et al.*, 2006)

Fundamental \mathcal{CP} and \mathcal{T} ; dependence of P_{ab} on δ_{CP} (also in CP - and T - even terms) \Rightarrow parameter correlations and degeneracies (e.g. θ_{13} and δ_{CP}) "Magic" baseline: $L \simeq 7300$ km - dependence on δ_{CP} , Δm_{sol}^2 disappears (Barger *et al.*, 2001; Huber & Winter, 2003; Huber *et al.*, 2006)

Physical interpretation (Smirnov, 2006):

$$\diamondsuit \qquad P_{e\mu} = |c_{23} A_S e^{i\delta_{\rm CP}} + s_{23} A_A|^2$$

Fundamental \mathcal{CP} and \mathcal{T} ; dependence of P_{ab} on δ_{CP} (also in CP - and T - even terms) \Rightarrow parameter correlations and degeneracies (e.g. θ_{13} and δ_{CP}) "Magic" baseline: $L \simeq 7300$ km - dependence on δ_{CP} , Δm_{sol}^2 disappears (Barger *et al.*, 2001; Huber & Winter, 2003; Huber *et al.*, 2006)

Physical interpretation (Smirnov, 2006):

$$\diamondsuit \qquad P_{e\mu} = |c_{23} A_S e^{i\delta_{\rm CP}} + s_{23} A_A|^2$$

Magic baseline: $A_S = 0$. For $N_e \simeq const$: $|A_S| \simeq \sin 2\theta_{12}^m \sin \phi$ $\Rightarrow L_{\text{magic}}: \phi = \pi n$

Fundamental \mathcal{CP} and \mathcal{T} ; dependence of P_{ab} on δ_{CP} (also in CP - and T - even terms) \Rightarrow parameter correlations and degeneracies (e.g. θ_{13} and δ_{CP}) "Magic" baseline: $L \simeq 7300$ km - dependence on δ_{CP} , Δm_{sol}^2 disappears (Barger *et al.*, 2001; Huber & Winter, 2003; Huber *et al.*, 2006)

Physical interpretation (Smirnov, 2006):

$$\diamondsuit \qquad P_{e\mu} = |c_{23} A_S e^{i\delta_{\rm CP}} + s_{23} A_A|^2$$

Magic baseline: $A_S = 0$. For $N_e \simeq const$: $|A_S| \simeq \sin 2\theta_{12}^m \sin \phi$ $\Rightarrow L_{\text{magic}}: \phi = \pi n$

At high energies:

$$VL = 2\pi n$$
 \Leftrightarrow $L = l_{\text{refr.}} n$

Including the effects of $\Delta m_{\rm sol}^2$: $(1 - P_{ee})$

Evgeny Akhmedov

LAUNCH, MPI - K Heidelberg

Producing the oscillograms

A. Smirnov, UCLA seminar

LAUNCH, MPI - K Heidelberg

Producing the oscillograms – contd.

Huge atmospheric neutrino detectors may be necessary! Would require :

- Very good energy and angle resolution
- Low threshold ($E_{\rm thr.} \sim 3 \; {\rm GeV}$)
- Charge discrimination (?)
- High statistics

Very ambitious, but the gain may be overwhelming \Rightarrow

It is worth studying the oscillograms with Huge Atmospheric Neutrino Detectors !

Conclusions

- 3f corrections to 2f oscillation probabilities can reach $\sim 10\%$ - at the level of current experimental sensitivity. Depend on $|U_{e3}| = \sin \theta_{13}$
- A number of interesting pure 3f effects exist fundamental CP and T-violation, matter - induced T violation, matter effects on $\nu_{\mu} \leftrightarrow \nu_{\tau}$ oscillations
- Matter can strongly affect ν oscillations inside the Earth through the MSW and parametric resonance effects
- Neutrino oscillograms of the Earth carry a wealth of information both on neutrinos and the Earth:

Conclusions

They:

- Depend strongly on the neutrino mass hierarchy and the value of $\,\theta_{13}\,$
- Depend sensitively on the \mathcal{CP} phase $\delta_{\rm CP}$ and on the Earth density profile
- Their specific structures (MSW resonances, parametric ridges, local and global extrema, saddle points) and their dependence on v parameters can by fully described in terms of the amplitude and phase conditions
- This can be used for looking for best strategies for future ν oscillations experiments