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I will only highlight some of these points



Dark matter candidates: two main possibilities

The “WIMP miracle”

very light & only gravitationally 
coupled (or with equivalently 

suppressed couplings) -> stable 
on cosmological scales

sizable (but not strong)  couplings to 
the SM  -> symmetry needed to 

guarantee stability

⇒ <σanni v>= 0.1 pb

σ ~ α2/m2   

 ⇒ m ~ 100 GeV

Thermal relic: Ω h2 ∝ 1/< σanni v> 

an alternative: superWIMPs (where most often the 
above calculation is still relevant since SuperWIMPs 

are produced from the WIMP decay)

Very general, does not depend on early universe 
cosmology, only requires the reheat temperature to be 

≥ m/25 (= weak requirement)

Production mechanism is 
model-dependent,

 depends on early-universe 
cosmology

Dependence on reheat temperature

ex: meV scalar with 1/MPl 
couplings (radion)

ex: gravitino, KK graviton

XX ↔ ff

XX ff

XX ff



[see discussion by T. Hambye in 
1012.4587 & his talk at PPC2011]

The lifetime of DM should be larger than the age of the 
universe τuniverse ~ 1018  s.

  Actually even larger,   τDM  ≥ 1026  s, not to overproduce e+ , p, γ fluxes

 To get an idea, consider stable particles in the Standard Model:

Can we use similar arguments for the dark matter particle?

The photon is stable because it is the massless gauge boson of the 
exact electromagnetic U(1)QED gauge symmetry

The electron is stable because it is the lightest particle charged 
under the U(1)QED gauge symmetry
The lightest neutrino is stable because of Lorentz invariance since 
it is the lightest fermion
The proton is stable because of the conservation of baryon 
number, which results accidentally from the SM gauge 
symmetries and the gauge charges assigned to the SM particles.

What is the origin of the WIMP stability?



18 H. Murayama

one can draw a Feynman diagram like one in Fig. 5. If the couplings are O(1),
and superparticles around TeV, one finds the proton lifetime as short as τp ∼
m4

s̃/m5
p ∼ 10−12 sec; a little too short!

s̃

u

d

u

u

ū

e+

Fig. 5. A possible Feynman diagram with supersymmetric particles that can lead to a too-rapid proton

decay p → e+π0.

Because of this embarrassment, we normally introduce a Z2 symmetry called

“R-parity” defined by

Rp = (−1)3B+L+2s = (−1)matterR2π (3.3)

where s is the spin. What it does is to flip the sign of all matter fields (quarks
and leptons) and perform 2π rotation of space at the same time. In effect, it
assigns even parity to all particles in the standard model, and odd parity to their

superpartners. Here is a quick check. For the quarks, B = 1/3, L = 0, and
s = 1/2, and we find Rp = +1, while for squarks the difference lies in s = 0
and hence Rp = −1. This symmetry forbids both of the bad vertices in Fig. 5.
Once the R-parity is imposed,8 there are no baryon- and lepton-number vi-

olating interaction you can write down in a renormalizable Lagrangian with the

standard model particle content. This way, the R-parity makes sure that pro-
ton is long lived. Then the lightest supersymmetric particle (LSP), with odd

R-parity, cannot decay because there are no other states with the same R-parity
with smaller mass it can decay into by definition. In most models it also turns out

to be electrically neutral. Then one can talk about the possibility that the LSP is

the dark matter of the universe.

3.2. Composite Higgs

Another way the hierarchy problem may be solved is by making the Higgs boson

to actually have a finite size. Then the correction in Eq. (2.9) does not require

tremendous fine-tuning as long as the physical size of the Higgs boson is about

8An obvious objection is that imposing R-parity appears ad hoc. Fortunately there are several
ways for it to emerge from a more fundamental theory. Because the R-parity is anomaly-free [15],
it may come out from string theory. Or Rp can arise as a subgroup of the SO(10) grand unified
gauge group because the matter belongs to the spinor representation and Higgs to vector, and hence

2π rotation in the gauge group leads precisely to (−1)matter . It may also be an accidental symmetry

due to other symmetries of the theory [16, 17] so that it is slightly broken and dark matter may

eventually decay.

 The lightest neutralino is stable due to R-parity, a symmetry distinguishing 
partners and super-partners, originally assumed to avoid proton decay

 Note that proton decay can be avoided by assuming either B or L conservation. 
This would allow R-parity breaking terms and thus the LSP  unstability.

 Anyhow,  R-parity can be justified, as it is connected to the superfield R-
symmetry, under which quark and lepton superfields are odd while the Higgs 
superfields are even. 

Rs = (−1)3(B−L)

Rp = Rs(−1)2s

 ->  Rs is a discrete Z2 remnant of U(1)B-L, thus of SO(10)

If U(1)B-L is only broken by scalar vacuum expectation values  that carry even integer 

values of 3(B-L), i.e. are even under Rs, then R-parity arises naturally.

The MSSM case

-> constraints on SO(10) GUT model building



This justification of DM stability goes beyond the supersymmetric context

[Kadastik et al’ 2010;  Frigerio- Hambye ‘2010]See recent studies:

U(1)B-L , SO(10)  broken by even (B-L) field vev

If SM fermions are in the 16 of SO(10) which is B-L odd and the SM Higgs  
doublet is in the 10 of SO(10) which is B-L even, then:

-> The lightest component of an extra B-L odd scalar SO(10) representation is stable

-> The lightest component of an extra B-L even fermion SO(10) representation is stable

U(1)B-L  justification of DM stability



Dark Matter as the lightest charged particle 
under a hidden unbroken gauged U(1)

-> DM is stable for the same reason the electron is stable 

DM stability        long range forces??

DM stable as for the     : lightest charged particle under a unbroken gauged U(1)e−

the simple adjunction of a new QED structure

L = LSM + LQED′

                     Ackerman, Buckley, Carroll, 

                                       Kamionkowski 08’; Feng, Tu, Yu 08’;
                          Feng, Kaplinghat, Tu, Yu 09’
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FIG. 1: Allowed regions in (mX ,αX) plane, where mX is the mass of the dark matter charged
under the unbroken hidden sector U(1)EM with fine-structure constant αX . Contours for fixed
dark matter cosmological relic density consistent with WMAP results, ΩXh2 = 0.11, are shown

for (tan θh
W , ξRH) = (

√

3/5, 0.8), (
√

3/5, 0.1), (10, 0.1) (dashed), from top to bottom, as indicated.
The shaded regions are disfavored by constraints from the Bullet Cluster observations on self-

interactions (dark red) and the observed ellipticity of galactic dark matter halos (light yellow).
The Bullet Cluster and ellipticity constraints are derived in Secs. VIII and VII, respectively.

of the parameter space of these models are excluded because the predicted minimum mass
halo is in conflict with observations.

In this section, we analyze the kinetic decoupling of hidden charged dark matter. One
notable difference between the WIMP and hidden charged dark matter is that the charged
dark matter interacts not only through weak interactions, but also through EM interactions.
For the case of τ̃h dark matter, this implies that the dark matter remains in kinetic contact
not only through the weak process τ̃hνh ↔ τ̃hνh, but also through the Compton scattering
process τ̃hγh ↔ τ̃hγh. As we will see, at low temperatures, the thermally-averaged weak cross
section is suppressed by T h 2/m2

X , but this suppression is absent for Compton scattering,
creating a large, qualitative difference between this case and the canonical WIMP scenario.
Note also that, in principle, in the case of charged dark matter, bound state formation also
impacts kinetic decoupling. As we will see in Sec. V, however, very few staus actually bind,
and so this effect is not significant and may be neglected in our analysis.

We follow Refs. [54, 55] to determine the temperature of kinetic decoupling for the dark
matter particle. In the hidden sector, the Boltzmann equation governing the evolution of
the dark matter particle’s phase space distribution is

df($p)

dt
= Γ(T h)(T hmX"!p + $p ·∇!p + 3)f($p) , (6)

6

long range force between DM particles

modifies galactic halo morphology + 
collisions in bullet cluster + damping 

of small scale structures
[Feng et al , 0905.3039]



Dark Matter as the lightest fermion of a 
secluded sector

On the stability of particle dark matter Thomas Hambye

has nevertheless to be small for the same reason as for κ . Unfortunately, simplicity doesn’t always
mean testability at colliders.

5. Remnant symmetry of a gauge group broken at low energy

In the above one has seen that DM stability could result from the existence of a remnant global
symmetry subgroup of a high energy gauge group. This requires that the gauge group is broken by
scalar fields which are even under the remnant group. This, actually, could hold at low energy too,
either by considering that U(1)B−L is broken at low energy, or independently of B−L. The simplest
possibility in the latter case is to consider an extra U(1)′ gauge group with 2 particles charged under
it, a scalar φ ′, which breaks it spontaneously, and a fermion ψ ′. The relevant lagrangian is

L = LSM +
1
4

FµνFµν + ψ̄ ′(i #D−mψ ′)ψ ′+Dµφ ′Dµφ ′†

−µ2
φ ′φ ′φ ′† −λφ ′(φ ′φ ′†)2 −λmφ ′φ ′†HH† +κFY

µνFµν , (5.1)

with H the SM Higgs doublet and with µ2
φ ′ < 0, so that φ ′ acquires a vev, 〈φ ′〉 ≡ vφ . After symmetry

breaking the model contains the DM fermion, a real scalar, η , and a massive Z′ gauge boson. Since
φ ′ has a vev, η is obviously not stable but ψ ′ remains stable even though U(1)′ is broken, simply
because all interactions involve it in pairs. Such a model has been considered in Ref. [15], in the
so-called "secluded" DM framework. Since the gauge group is broken, the U(1)′ gauge boson
is massive. Therefore all the constraints due to extra radiation in the QED’ model above are not
relevant anymore. The interactions connecting the hidden and visible sectors, kinetic mixing and
Higgs portal, can be much larger than for the unbroken QED’ model above. For instance κ can be
as large as few 10−3. The relic density can proceed from the purely hidden sector process involving
the Z′, in case it is "secluded" or, if the connectors are large, can result from the annihilation induced
by these connectors. Interestingly, through the exchange of a Z′, the kinetic mixing interaction κ
induces an interaction between a DM pair and a SM fermion pair, ψ̄ ′ψ−> Z′−> γ,Z → f̄SM fSM.
If the DM mass is of order 10 GeV, one can get [16] from this single diagram both the observed relic
density and a direct detection rate of order the ones indicated by the Dama and Cogent experiment
[17, 18]. This requires nevertheless a rather precise correlation between mDM and mZ′ : the mass of
the Z′ must be within a range close to twice the DM mass value, in order that the DM annihilation
is largely enhanced by a Z′ resonance.

6. Accidental stability setups

As said above there exists already in the SM an example of particle which is accidentally
stable, the proton. There is no reason why DM could not be stable in a similar way. Actually one
would expect in this case an interesting property to hold: decay induced fluxes of cosmic rays of
order the ones observed. If the stability is accidental, there is in particular no reason why DM
should be absolutely stable, unlike in the DM models considered above. Even if the pure low
energy renormalizable interactions with the SM particles do not allow DM to decay, in this case
there is no symmetry protecting DM from being destabilized by an interaction involving a higher
energy particle beyond the SM. On the contrary, if from the exchange of such a heavy particle, a

7

Consider a new U(1)’ spontaneously broken by Φ’ and a fermion Ψ’ charged under U(1)’. 

Ψ’ is stable since all interactions involve it in pairs.

Lightest fermion of a secluded sector (as for the   )

e.g. assume: - a new U(1) gauge interaction                           a massive

- a charged scalar     breaking it                          a Higgs boson

- a charged fermion     (vector)                          a massive fermion

- all SM fermions are neutral under U(1)

φ

ψ ψ
Z ′

stable because lightest 
         fermion of a secluded sector

                     Pospelov, Ritz, Voloshin 07’

communication with SM through Higgs portal and kinetic mixing

L ! −1

4
κFY

µν F
µν
QED′L !− λφ†φH†H

κ ! 10−(2−3)

4

one needs to find a point with mψ0
far away from the

pole (MZD
/2), and therefore lighter. This is a region

that XENON has difficulties to exclude: the sensitiv-
ity of a direct detection experiments decreases for light
dark matter candidate as their efficiencies are worst for
low-energy nuclear recoil. For instance, for MZD

= 20.6
GeV and δ1 = 10−4, WMAP is fulfilled for mψ0

= 10.5
GeV, which is a point lying exactly in the ZD−pole re-
gion. The spin independent elastic scaterring on the pro-
ton is in this case σp

SI = 7 × 10−40 cm2 which is al-
ready excluded by XENON and CDMS-Si. However, for
δ2 = 4 × 10−3, WMAP is fulfilled for mψ0

= 4.04 GeV,
quite avay from the ZD pole, generating a higher cross
section σp

SI = 10−38 cm2 (δ2 > δ1) but which is not yet
excluded by XENON whose sensitivity is 3.5×10−38 cm2

for such a light ψ0.

B. Signals from COGENT, CDMSII or DAMA?

The DAMA collaboration has provided strong evidence
for an annually modulated signal in the scintillation light
from sodium iodine detectors. The combined data from
DAMA/NaI [34] (7 annual cycles) and DAMA/LIBRA
[35] (4 annual cycles) with a total exposure of 0.82 ton
yrs shows a modulation signal with 8.2σ significance. The
phase of this modulation agrees with the assumption that
the signal is due to the scattering of a WIMP.

Moreover, recently, a series of analysis and comments
have been released concerning the effective value of the
XENON100 efficiency at low energy (Leff ). We will not
enter into all the technical details here, we therefore let
the reader makes his own opinion by reading [37–41]. The
main conclusion (until now) is that it is not yet clear if
the DAMA/LIBRA and CoGeNT regions are excluded
by XENON100. The main discussion concerns the ex-
trapolation of Leff and its interpretation in the detec-
tion of S1 light from low-energy nuclear recoil. To be
as conservative as possible, we explore in this section
the possibility to interpret these excesses with a dark
sector with a kinetic mixing portal. We show in Fig.4
the points respecting WMAP, and the DAMA/LIBRA
(with and without channeling) CoGENT and CRESST3

results at 99.73 % of CL. We see that for all experiments,
the regions are quite surprisingly near and correspond to
15 GeV <

∼ MZD

<
∼ 30 GeV and 10−4 <

∼ δ <
∼ 10−3, which

is in complete agreement with the measurement of elec-
troweak precision tests. Moreover, such values of δ are
typical of one loop-order corrections and can easily be
generated by heavy-fermions loops in the Z − ZD prop-
agator.

We show in Fig.5 the points respecting the accelera-

3 For the CRESST estimation, we use an extrapolation given by
T. Schwetz in a private communication.
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FIG. 4: Parameter space wihtin 99.73 % of confidence level for the
CoGENT signal (blue boxes), DAMA without chanelling (red cir-
cles), with chanelling (green circles) and CRESST (black crosses).
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FIG. 5: Points still allowed by electroweak, cosmological and direct
detection constraints in the plane (MZD

;σp
SI).

tor, cosmological, and the more severe direct detection
constraints in the plane (mψ0

;σp
SI) in comparison with

XENON100 and CDMS-Si sensitivity. We see that a
large region is still to be explored. It corresponds to
dark matter masses between 1 and 20 GeV, a range of
masses which could be difficult but far from impossible
to probe in a near future experiment.

V. CONCLUSION

We showed that the existence of a dark U(1)D gauge
sector which interacts with the Standard Model only
through its kinetic mixing possesses a valid dark matter
candidate respecting accelerator, cosmological and the
more recent direct detection constraints. Moreover, con-
sidering the latest results of DAMA/LIBRA, CoGENT
and CRESST, we demonstrated that a specific value of
the kinetic mixing (δ ∼ 10−3) can explain all these ex-
cesses for a dark boson mass MZD

∼ 20 GeV. Such a
value of kinetic mixing is intringuingly in agreement with
the value one can expect if the mixing is generated by
heavy hybrid-fermions loop corrections. We also showed
that the region of the parameter space still allowed by

                     Mambrini 10’
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Z’ phenomenology,  communication with SM 
through kinetic mixing and Higgs portal.

[Pospelov, Ritz, Voloshin’07]

[Gopalakrishna, Lee, Wells’08] ....
[Gopalakrishna, Jung, Wells’08]



[Cirelli, Fornengo, Strumia’ 2006]

DM stability from accidental symmetry: 
Minimal Dark Matter

-> DM is stable for the same reason the proton is stable 

No new gauge group in addition to 
the Standard Model. 

Only add  new large SU(2)L 
multiplet. 

-> fermion quintuplet and septuplet 
are stable by 

SU(2)L invariance (no 
renormalizable interaction 

leading to their decay)

weakly int., massive, neutral, stable
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hidden sector non-abelian group SU(2)HS broken by φthe renormalizable part of the Lagrangian reads:

L = LSM − 1

4
F µν · Fµν + (Dµφ)†(Dµφ)− λmφ†φH†H − µ2

φφ
†φ− λφ(φ

†φ)2 , (2.1)

where Dµ = ∂µφ− igφ

2 τ ·Aµ. If µ2
φ < 0, the hidden sector scalar field φ acquires a vacuum

expectation value, vφ, and the SU(2)HS symmetry is broken spontaneously. In the unitary

SU(2)HS gauge the Lagrangian of the theory is:

L = LSM −
1

4
Fµν · F µν +

1

8
(gφvφ)

2Aµ · Aµ +
1

8
g2

φAµ · Aµη′2 +
1

4
g2

φvφAµ · Aµη′

+
1

2
(∂µη

′)2 − λm

2
(η′ + vφ)

2H†H −
µ2

φ

2
(η′ + vφ)

2 − λφ

4
(η′ + vφ)

4 , (2.2)

where η′ is the hidden sector Higgs boson. This Lagrangian has only 4 independent

parameters, which can be taken as gφ, vφ, λφ and λm.

Once the electroweak sector is broken, the hidden sector η′ mixes with the standard

model Higgs boson h′ through the Higgs portal interaction λm

h′ = cos β h + sin β η ,

η′ = − sin β h + cos β η .
(2.3)

The complete Lagrangian in the h, η physical state basis can be found in Ref. [1] as a

function of gφ, vφ, λφ and λm, together with the corresponding expression for the mixing

angle β.

The Lagrangian in Eq. (2.2) has a remarkable property: it displays a SO(3) custo-

dial symmetry in the Aµ
i component space, which prevents any decay to SO(3) singlets

(such as Standard Model particles or η′). Consequently, if the model is described just

by the renormalizable Lagrangian, the three Aµ
i components are degenerate in mass and

are absolutely stable. Nevertheless, since this SO(3) global symmetry is accidental, one

expects the existence of non-renormalizable operators in the Lagrangian which break

the custodial symmetry. Indeed, the following dimension six operators lead, after the

spontaneous symmetry breaking of SU(2)HS and SU(2)L×U(1)Y to the breaking of the

SO(3) custodial symmetry:

(A)
1

Λ2
Dµφ

†φ DµH
†H (2.4)

(B)
1

Λ2
Dµφ

†φ H†DµH (2.5)

(C)
1

Λ2
Dµφ

†Dνφ F µνY (2.6)

(D)
1

Λ2
φ†F a

µν

τa

2
φF µνY (2.7)

In turn, the breaking of the custodial symmetry leads to the decay of the dark matter

hidden gauge bosons. Let us discuss for each case the dominant decay modes:
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Aµ
i : stable because of accidental custodial global SO(3)
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Figure 1: Predictions for case A, benchmark 1, with τDM = 1.7 × 1028 s (Λ = 2.9 ×
1015 GeV). The upper panels show the positron fraction (left) and the total electron +

positron flux (right) compared with experimental data. Dashed lines show the adopted

astrophysical background, solid lines are background + dark matter signal (which overlap

the background in this plot). The lower left panel shows the gamma-ray signal from dark

matter decay, whereas the lower right panel shows the p̄/p-ratio: background (dashed

line) and overall flux (solid lines, again identical with background).

Case D. This operator, see Eq. (2.7), is particularly interesting since it induces a kinetic

mixing between the U(1)Y of hypercharge and one of the hidden SU(2) gauge bosons.

As a result two-body decay modes into lepton and quark pairs are allowed, in contrast

to the other operators. This leads to interesting implications for the electron/positron

flux that will be discussed shortly below.

Here we firstly emphasize that again the operator also predicts two-body decay into

γh, which could be observable in different parts of the parameter space. The inverse

decay rate reads, for Mη "MA:

Γ(A→ γη)−1 = 2.4× 1028 s

(
Λ

7× 1015 GeV

)4 (
1 TeV

vφ

)2 (
300 GeV

MA

)3

, (3.5)

and shows that the line could be observed by Fermi LAT for scales of the custodial

symmetry breaking close to the GUT scale. For these large lifetimes around 1028 s con-

tributions to the anti-matter channel would be negligible. However, if the line lies above

around 300 GeV and out of reach of Fermi LAT, shorter lifetimes cannot be excluded
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Figure 4: Like Fig. 1, but for case C, benchmark 4, with τDM = 1.6 × 1027 s (Λ =

1.2× 1016 GeV).

Benchmark Zη Zh γη W+W− νν̄ e+e− uū dd̄

1 0.01 0.005 0.04 0.02 0.09 0.39 0.29 0.15

2 0.019 0.004 0.036 0.014 0.072 0.35 0.39 0.12

3 0.22 0.0002 0.73 0.0005 0.003 0.016 0.018 0.005

Table 4: Branching Ratios for Case D

Discussion. It is intriguing that the production of a γ-ray line is a generic prediction

for all possible operators that may mediate the decay of the SU(2)HS dark matter gauge

bosons. For values of the custodial symmetry breaking scale near to the GUT scale,

and for dark matter masses around 400 GeV and below, this line could be in reach of

sensitivity of the Fermi LAT gamma-ray line searches. On the other hand, a production of

an observable amount of electrons and positrons or anti-protons is very model dependent.

In most cases electrons and positrons are produced in the fragmentation of scalar or

vector bosons and lead to a very flat spectrum. An interesting exception occurs for

the operator case D which features two-body decay modes into lepton pairs. In this

case the produced positron spectrum can rise more steeply, but, when also taking other

observations into account, still not enough to explain the PAMELA observations alone.
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γh
γη

τDM = 1.7 1028 s Λ  (   = 2.9 1015 GeV)

➙ γh & γη lines :

(η:hidden sector scalar)

stability broken by non-
renormalizable operators:

late decay 
of DM 

the renormalizable part of the Lagrangian reads:

L = LSM − 1

4
F µν · Fµν + (Dµφ)†(Dµφ)− λmφ†φH†H − µ2

φφ
†φ− λφ(φ

†φ)2 , (2.1)

where Dµ = ∂µφ− igφ

2 τ ·Aµ. If µ2
φ < 0, the hidden sector scalar field φ acquires a vacuum

expectation value, vφ, and the SU(2)HS symmetry is broken spontaneously. In the unitary

SU(2)HS gauge the Lagrangian of the theory is:

L = LSM −
1

4
Fµν · F µν +

1

8
(gφvφ)

2Aµ · Aµ +
1

8
g2

φAµ · Aµη′2 +
1

4
g2

φvφAµ · Aµη′

+
1

2
(∂µη

′)2 − λm

2
(η′ + vφ)

2H†H −
µ2

φ

2
(η′ + vφ)

2 − λφ

4
(η′ + vφ)

4 , (2.2)

where η′ is the hidden sector Higgs boson. This Lagrangian has only 4 independent

parameters, which can be taken as gφ, vφ, λφ and λm.

Once the electroweak sector is broken, the hidden sector η′ mixes with the standard

model Higgs boson h′ through the Higgs portal interaction λm

h′ = cos β h + sin β η ,

η′ = − sin β h + cos β η .
(2.3)

The complete Lagrangian in the h, η physical state basis can be found in Ref. [1] as a

function of gφ, vφ, λφ and λm, together with the corresponding expression for the mixing

angle β.

The Lagrangian in Eq. (2.2) has a remarkable property: it displays a SO(3) custo-

dial symmetry in the Aµ
i component space, which prevents any decay to SO(3) singlets

(such as Standard Model particles or η′). Consequently, if the model is described just

by the renormalizable Lagrangian, the three Aµ
i components are degenerate in mass and

are absolutely stable. Nevertheless, since this SO(3) global symmetry is accidental, one

expects the existence of non-renormalizable operators in the Lagrangian which break

the custodial symmetry. Indeed, the following dimension six operators lead, after the

spontaneous symmetry breaking of SU(2)HS and SU(2)L×U(1)Y to the breaking of the

SO(3) custodial symmetry:

(A)
1

Λ2
Dµφ

†φ DµH
†H (2.4)

(B)
1

Λ2
Dµφ

†φ H†DµH (2.5)

(C)
1

Λ2
Dµφ

†Dνφ F µνY (2.6)

(D)
1

Λ2
φ†F a

µν

τa

2
φF µνY (2.7)

In turn, the breaking of the custodial symmetry leads to the decay of the dark matter

hidden gauge bosons. Let us discuss for each case the dominant decay modes:
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DM stability from accidental symmetry:
 Non-abelian Vector Dark Matter
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Some “h%to!cal ” overview



ICTP lectures on large extra dimensions.
Gregory Gabadadze : hep-ph/0308112

Some references. I- Set of lectures  

Cargese Lectures on Extra Dimensions.
R. Rattazzi: hep-ph/0607055

effective actions, ADD,RS,Goldberger-Wise 
stabilization, AdS/CFT, holography

TASI lectures on extra dimensions and branes.
Csaba Csaki : hep-ph/0404096

effectives theories, ADD, symmetry breaking in flat 
Xdim via orbifolds (EW,susy,GUTs), mediation of susy 
breaking, warped pheno 

Les Houches lectures on warped models and holography.
Tony Gherghetta  hep-ph/0601213

warped models, susy warped, warped GUTs, AdS/
CFT, holography

TASI lectures on electroweak symmetry breaking from extra 
dimensions. Csaba Csaki, Jay Hubisz, Patrick Meade  hep-ph/0510275

more detailed look at gauge theories             
in Xdim, higgsless models, fermions in       
Xdim, EW precision observables 

Large and infinite extra dimensions: An Introduction.
V.A. Rubakov : hep-ph/0104152

similar as above + localization of fermions and 
gauge fields + Cosm. Const. + modified gravity + 
lorentz violation

TASI 2004 lectures on the phenomenology of   
extra dimensions.  Graham D. Kribs.  hep-ph/0605325  

more phenomenological + Universal Extra Dimensions (UED)

Tasi 2004 lectures: To the fifth dimension and back.
Raman Sundrum  hep-th/0508134

KK theories, ADD, warped models + DGP model

effective theories, orbifolds and chirality, radion 
stabilisation, cosm. constant pb, warpeds models 

An Introduction to extra dimensions. 
Abdel Perez-Lorenzana  hep-ph/0503177

effective actions ... + neutrino mass models, split 
fermions, 6D models
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 II- Some original references

Comments on the holographic picture of the Randall-Sundrum model.
R. Rattazzi , A. Zaffaroni  hep-th/0012248

An Alternative to compactification.
Lisa Randall , Raman Sundrum hep-th/9906064

A Large mass hierarchy from a small extra dimension.
Lisa Randall, Raman Sundrum  
 hep-ph/9905221

Phenomenology, astrophysics and cosmology of theories with submillimeter dimensions and TeV scale quantum gravity.
Nima Arkani-Hamed, Savas Dimopoulos, G.R. Dvali  hep-ph/9807344

Holography and phenomenology.
Nima Arkani-Hamed, Massimo Porrati, Lisa Randall hep-th/0012148
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✗  Not only are extra dimensions allowed but they could also be useful to help us resolve 
the big  puzzles of 4D physics...

✗  D=3+1 is not a  prediction in Einstein’ s theory

✗  Only string theory predicts the number of dimensions i.e D=1+9(10).

We have to ‘hide’ extra "mensions

✗  Easy to hide extra dimensions if they are compact and tiny:

Why consider &eo!es wi& extra  "mensions?

Indeed ,        : only in 3 "mensions!F ∼

1

r2

F ∼

1

r2+n
for r < rc

F ∼
1

r2
for r ≥ rc



Which size for extra 

"mensions?



Experimental  constraints:

-If only gravity propagates in extra dimensions ➾ R < sub mm

- If Standard Model fields propagate in extra dimensions
➾ R < (TeV)   ~ 10    m-1 -19

R'ghly:



If we assume that ALL fields propagate in ALL extra dimensions ( which 
moreover have ALL the same size) :

R ∼

g
n+2

n

4

MPl

1

g2
4

∼ RnMn

∗

M
2
Pl
∼ R

n
M

n+2
∗ } i.e. R ∼ M

−1

Pl

Things change if, in particular, fields are LOCALIZED in extra dimensions.             

(Arkhani-Hamed, Dimopoulos, Dvali '98)and this brings us to the ADD idea:               

The Planck scale is no longer a fondamental scale but an effective scale:

M∗ ∼ TeVIf         is the fundamental scale and  M∗

R
−1

∼ meV ∼ mm
−1

n = 2then ➾



- “Large” flat extra dimensions(can be almost macroscopic in 
size) where only gravity propagates.

ADD models

 Gravity appears weak because it is ‘diluted’ in extra dimensions 

: no stark disagreement with experiments and  
observations.

R ~ meV
-1

~ mm

-  The Standard Model is localized in 3 dimensions.

Extra-dimensional gravitons look to us as a “tower” of massive gravitons with 
masses regularly-spaced in n/R



Signatures at colliders
Observing quantum gravity at ( LHC

Each graviton taken individually has a coupling suppressed in  1/Mpl and the 
production of a single graviton is totally negligible. 

Δm~meV -> continuum of states σ ∼

(ER)n

M2
Pl

∼

En

M
n+2
∗

However, the cross section to produce a collection of massive gravitons is 
amplified due to the vary large number of gravitons. 

The effective scale suppressing the coupling is in fact        and not    M∗
MPl



signature is monojet + missing energy
gravitons escape from the brane  ->invisible KK  graviton 

➾ Direct production of gravitons

➾virtual graviton exchange

➾black hole production

continuum of states: mass distribution is a continuun

g g → l+l−new reaction
+ deviations with respect to standard processes

(interference with the amplitude in the SM)

Signatures at colliders
Observing quantum gravity at ( LHC

For semi classical description becomes adequate as rs >> M
−1

∗

quantum-gravity effects are subleading with respect to classical gravitational 
effects 

When the impact parameter                we expect black hole formationb < rs

√

s >> M∗



Schwarzschild radius in 4+n dimensions: rH ∼

(

MBH

M∗

)
1

n+1 1

M∗

√
s ≥ M∗

Black hole production of mass                       if the impact parameter of the collision is 
smaller than the  Schwarzschild radius.   

                   

i.e geometrical approximation σ ∼ πr
2

H

)e LHC : a black hole factory
MBH =

√

s

 (transplanckian energies) 

σ ∼ πr
2

H ∼

1

M2
∗

(

MBH

M∗

)
2

n+1

∼ TeV
−2

(string balls)
Evaporation via Hawking radiation:

TH =
n + 1

4πrH

∈ [80-600] GeV for n=1...7

τ ∼

1

M∗

(

MBH

M∗

)

n+3
n+1

∼ 10
−26

sec

4+n generalization of ds2 = (1 −

GM

r
)dt2 −

dr2

1 − GM/r
+ r2d2Ω



T
>
∼ 1/RAt                   the number of KK modes which are kinematically accessible is (TR)n

σ ∼

(TR)n

M2
Pl

∼

Tn

M
n+2
∗

The cross section for graviton production from brane thermal processes is 

The mass gap is 1/R.  

For n=2 and        =1 TeV, this is meV. M∗

BBN energy is MeV and the number of KK gravitons which are
 kinematically accessible is more than 10^18! 

problem: Too much energy is released into KK gravitons.

ΓG = 〈nγσγγ→Gv〉 ∼
Tn+3

M
n+2
∗

no backward processes:
dnG

dt
∼ nγΓG

→ nG ∼ nγΓGH
−1

∼

Tn+4MPl

Mn+2

which can also be derived by demanding that the cooling of the universe due to evaporation of 
KK gravitons in extra dimensions be smaller than the cooling due to expansion:

dρ

dt
|evap ∼ −

Tn+7

Mn+2
∗

<
dρ

dt
|exp ∼ −3Hρ ∼ −3

T 6

MPl

nG

nγ
< 1 → T∗ <

(

Mn+2

MPl

)1/(n+1)

cooling bound



BBN bound 

ρG(T = MeV ) ∼ ρG(T )

(

MeV

T

)3

Once KK gravitons are produced, they behave as matter of mass T (the probability 
to interact with the thermal bath on the brane is very small) and their energy 

density                        redshifts as 1/R^3:ρG ∼ T × nG

➾
ρG

ργ
|BBN ∼

T

1 MeV

ρG

ργ
|T ∼

T

1 MeV

Tn+1
∗

MPl

Mn+2 ➾ T <

(

10−3Mn+2

MPl

)1/(n+2)

slightly stronger than the overcooling bound

The two previous bounds apply to  4D particles with 1/TeV coupling. Moreover, the 
specificity of our gravitons is that the probability that they interact with the SM wall 

is very tiny: the energy stored in them can easily overclose the universe.



The energy density stored in KK gravitons produced at temperature T,                                       
redshifts as 1/R^3 so                                                   and we require that  

ρG ∼

Tn+5MPl

Mn+2
ρG

T 3
∼

Tn+2MPl

Mn+2
= constant

ρc

T 3
0

∼ 3 × 10
−9

GeV
ρG

T 3
<

ρc

T 3
0

where 

T <

(

10−21Mn+2

MPl

)1/(n+2)

➾

 Overclosure bound

τ(T ) ∼ 1010yr ×

(

100MeV

T

)3

Γ ∼

(

Γnear wall ∼
Tn+3

M
n+2
∗

)

×

proba to be
near wall ∼

T 3

mPl

: Decay of a single graviton is 
indeed suppressed by 1/Mpl

∼

(

T−1

R

)n

Compton 
wavelength ~1/T



bound from diffuse photon background

τ(T ) ∼ 1010yr ×

(

100MeV

T

)3

The fraction of KK gravitons produced at temperature T, with lifetime                                                                                               
(

100MeV

T

)3

which have already decayed is

The resulting number density of photons is nγ from KK decays ∼ n0,G ×

(

T∗

100MeV

)3

Constraint from COMPTEL  data leads to T < (10−40
GeV

3
M

n+2)1/(n+5)

(Gamma ray observations 
in the MeV range)



Conclusion: Difficulty to implement leptogenesis/baryogenesis in this context. 
Cut off is TeV:

How to make inflation natural?

1 2 3 4 5 6
n0.00001

0.001

0.1

10

Tmax !GeV "
M!10 TeV

1 2 3 4 5 6
n1.!10"6

0.0001

0.01

1

Tmax !GeV "
M#1 TeV

BBN
cooling

overclosure
photons

Summary of constraints



Very *rong con*raints from a*rophysics &cosmology

Note: These constraints are relaxed if compact extra dimensions are hyperbolic rather than toroidal 
                                                                                                                                                                       Kaloper et al  hep-ph/0002001

✗  Cooling of supernovae and red giants due to graviton 
emission.

(M∗ ≥ 30 TeV (n=2))

✗  Distorsion in CMB due to graviton decay 
(primary or secondary) (M∗ ≥ 110 TeV (n=2))

✗  heating of neutron stars due to KK graviton decay
(M∗ ≥ 1700 TeV (n=2))

✗  Overclosure of the universe by gravitons M∗ ≥ 8 TeV

✗  Reheating temperature of the universe has to be very low otherwise 
gravitons evaporate into the bulk 

TRH ≤ T∗ T∗ ∼

(

Mn+2
∗

MPl

)

1
n+1

n=2 ->T~0.7GeV
n=6 ->T~317 GeVM∗ = 1 TeV ➾

n=2 -> T~10 MeV
n=4 ->T~1 GeV
n=6 ->T~7 GeV

M∗ = 30 TeV ➾



problems related to the radion

The energy stored in radion oscillations overclose the universe 
(similar to axions)... 

M×r~O(1) for n≥40 ...

Explain                    ?r ∼

10−12

M∗

✳Stabil%ation:

✳Cosmology:

unless we compactify on a manifold with 
non trivial topology

Radion dark matter?



The Randall-Sundrum model

Non flat geometry but Anti de Sitter (non factorisable geometry: "warping")

Fondamental scale : MPl

(appearing in the 5D 
effective action) 

(k ∼ r
−1

∼ Λ5 ∼ MPl)

Natural stabilisation of radius
(à la Goldberger-Wise) :

MEW ∼ MPle
−kπr

kr =
4

π

k2

m2
ln

[

vh

vv

]

∼ 10

➾

−2k    |y|

Higgs or

alternative

dynamics for

breaking

TeV

brane

Planck

brane

4d graviton

 Gauge fields and fermions in the bulk

y = 

−

ds   = dx  + r  dy

EW symmetry

2

Slice of AdS

 5

y = 0
rπ

2 22

L R
SU(2)           SU(2)             U(1)

5

π
e

AdS space: the energy scale varies 
with position along 5th dimension

A complete  solution to ( hierarchy problem



✗  Each KK graviton couples as 1/TeV and  not 1/ MPl

Randall-Sun-um KK gravitons are very "fferent from ADD

✗  Discrete spectrum with KK states non regularly spaced ❨proportional to the zeros 

of Bessel functions❩  

✗  Δm~O(TeV) compared to Δm~O(meV) in ADD 

r
−1

∼ MPl MKK ∼ TeVRemark:                                but

qq, gg → G(n)
→ l+l−



)e ra"on of Randall-Sun-um % also
very "fferent from &at of ADD

✗  m ~ O(100) GeV

✗  strongly coupled radion } no cosmological pb 
associated wi& ( ra"on

(in 1/TeV and not 1/       )MPl

the coupling of the radion to matter is similar to the coupling of  Higgs to 
matter ➾ radion phenomenology = Higgs phenomenology

... and possibility of Higgs-Ra"on mixing  
 mo"fying Higgs phenomenology at LHC

∫
d4x

√
g R ξ H†H L ⊃ 6ξγh r❒

radion-higgs kinetic mixing 

After diagonalisation, modification of  the Higgs 
standard couplings

Induced operator on the TeV 
brane: ➾ 



3rd  class of models: 
(Flat) extra  dimensions at the  TeV

Solution to (  hierarchy problem?
Same status as in SUSY : The higgs mass is stabilized against radiative 

corrections                       but  it remains to explain why        ~TeV(mh ∼ R
−1) R

−1

same as in supersymmetry where we have to explain why               ~TeV                   MSUSY

2 sub-classes

only bosons
 in bulk

All SM fields in bulk 

R ~ TeV
-1

(flat) "Universal" Extra Dimensions (UED) 

of models



An important feature of the SM: Its fermions are chiral, i.e. the left and right-handed 
components of any Dirac fermion have different gauge quantum numbers. 

This imposes constraints on the compactification of extra dimensions 

The simplest compactification on a circle or a torus leads to non-chiral “vector-like” fermions.

The chirality of the 4D fermions has to be introduced by the boundary conditions at the end points of the 
interval.

 While 5D fermions are 4 component- spinors.



A little detour : orbifold projections

-If D=5, the gauge field contains a quadri-vector          and a scalar Vµ V5

-5D fermions are 4 component- spinors and lead to mirror fermions at low energy.

In order to eliminate unwanted degrees of freedom and get a chiral theory in 
4D, we apply an orbifold projection 

We fold the circle (= identify y and -y) ➾ we get a segment  (0 and πR are the 2 fixed points)

The orbifold projection consists in imposing  the following conditions

y → −y Aµ → Aµ

A5 → −A5

ΨL → ΨL

ΨR → −ΨR

Even fields have Neumann boundary conditions 

Odd fields have Dirichlet boundary conditions 

The zero mode of the odd field is projected out by the Z2

∂yΦ = 0

Φ = 0

At y= 0, πR :



Kal1a-Klein decomposition

Fields which are even          have a zero mode (Aµ,ΨL)

(A5,ΨR)Fields which are odd           do not have  a zero mode

 Standard Model 
particle

The "zero" mode fermions are chiral (and identified with the SM fermions). 
However, the other KK fermions are vector-like.

(a bit similar to supersymmetry where each SM particle is accompanied by partners)

a "*inct Kal1a-Klein tower
Each le2-handed (!ght-handed) SM fermion possesses 

 Fourier expansion 

for compactification 

on a circle



Orbifold projections are intensively 
used to break symmetries:

  ✗  Electroweak symetry
✗  Grand unification symmetry 

✗  Supersymmetry

One imposes different boundary conditions for the different 
components of a given multiplet 



ADD models

only gravity 
in bulk

R ~ meV
-1 (flat)

Warped geometries

(Randall-Sundrum)

H
ier

arc
hy 

pb 
sol

ved

R ~ M
-1

Pl M ~ TeV
KK

but

(AdS)

TeV X-dims
-1

gauge bosons
 in bulk

all SM fields
 in bulk

R ~ TeV
-1

(flat) "Universal" X-dims

- radion unstable 

if GUT in bulk - KK dark matter

WIMP!

- radion dark matter, m~meV 

- branon dark matter 

- KK graviton dark matter 
(both finely tuned) 

(not original ADD, hierarchy pbs remain) 

- radion dark matter 
m~meV; (fine-tuned)}} - KK dark matter

WIMP!

- KK graviton is unstable

or SuperWIMP



Translation Invariance along the 5th dimension ➾Conservation of the Kaluza-Klein number in 
interactions of the 4D effective theory.  

`Universal' Extra Dimensions
Assumption: All SM propagate in extra dimension(s).

 For instance:

 forbidden  allowed
Consequence: n=1 KK excitations can only be pair-produced 

 ➾Collider constraints are weak
 (~200 GeV)

This symmetry is broken by the orbifold but there remains a 
discrete symmetry  called Kaluza-Klein parity : (-1) n

 ➾Odd-n KK modes can only couple by pairs
 ➾The lightest KK mode (LKP) is stable

 The Kaluza-Klein photon: 
an excellent candidate for dark matter Phenomenology very similar to  

supersymmetry with conserved R-parity

Every KK particle eventually 
 decays into the LKP

Appelquist, Cheng & Dobrescu '01

and they do not contribute to EW precision observables 
at tree level:  this helps the little hierarchy pb



LKP: most likely a 1
B

Cheng,  Matchev & Schmaltz'02

1-loop spectrum of 1rst KK modes

assuming:1/R=500 GeV, ΛR = 20, mh = 120 GeV
and vanishing boundary terms at the cutoff Λ

Another intriguing possibility: LKP=KK graviton (superwimp, Feng & al.)

γ 1
(actually a     )



)

Relic density pre"ctions
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effect of 2nd level KK modes, "natural KK resonance"
hep-ph/0502059Kakizaki & al , 

full effect of coannihilations Kong-Matchev, hep-ph/0509119
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Fig. 9.1. Leading Feynman graphs for effective B1-quark scattering through
the exchange of a KK quark (both q1

L and q1
R) and through the exchange of a

zero-mode Higgs boson. The diagrams for a Z1 LKP are similar.

Fig. 9.2. (a) Theoretical predictions for spin-independent LKP-nucleon cross
sections for mh = 120 GeV and ∆ = (mq1 − mLKP)/mLKP between 1%, which
is the upper boundary of the respective shaded area, and 50%, which is the lower
boundary. Limits from CDMS and XENON10 as well as expected sensitivities from
future experiments are displayed. (b) The black solid line accounts for all the dark
matter in the Universe while the two black dotted lines show the bounds assuming
that the LKP would contribute only 1% or 10% to the total amount of dark matter.
The darker shaded region represents the preferred WMAP region. The paler shaded
region should be covered by the LHC. Both plots are from ref. [128].

detection does not appear the most promising way to probe B1 LKP dark
matter, as the sensitivity of near future experiments does not allow one to
probe realistic mass splittings. The situation is summarized in Fig. 9.2(b)
where all mass splittings below the respective limit curves are excluded.

Indirect detection through gamma-rays [183; 293; 294; 340; 533], neu-
trinos and synchrotron flux [340], positrons [533; 1123], antiprotons [221]
or antideuterons [162] has also been considered. The neutrino spectrum
from LKP annihilation in the Sun was investigated in [1123]. An interesting
feature of KK dark matter is, in constrast with the neutralino, that
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Direct detection



Summary of KK photon dark matter in 5D UED

✔ highly degenerate spectrum of KK states ⇒ coannihilation effects are important

✔ KK parity= a remnant of translational invariance along extra dimension

✔ No helicity-suppression of annihilation into fermions (in constrast to neutralino)

good for indirect detection ❨high energy neutrinos and positrons❩

Note: Another “heavy photon” DM candidate arises in Little Higgs theories ( where 
higgs is a goldstone boson arising from a global symmetry breaking)

Also: A heavy KK photon from a non-universal extra dimension
 Regis-Serone-Ullio’06;



)e 3inless photon
[Dobrescu, Hooper, Khong, Mahbubani ‘07]

Both direct and indirect detection of the spinless photon are very challenging

helicity suppression of annihilation and scattering cross section. Annihilates mainly into WW

relic density calculation predicts low mass (< 500 GeV)

Standard Model in 2 universal extra dimensions

[Burdman, Dobrescu, Ponton‘05]

2 towers of spin-0 fields, one is eaten by heavy spin-1 field, another one remains in the spectrum

The Lightest spin-0 field is stable by KK parity and a good DM candidate



[Dobrescu, Hooper, Khong, Mahbubani ‘07]



2.5. EXTRA-DIMENSION RADII FROM DARK MATTER CONSTRAINTS

OVERCLOSURE
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Figure 2.13: Relic density of LKP including only SU(2) × U(1) gauge boson coannihilation as a
function of mKK in the RPP model. The solid blue line is for the degenerate case where R5 = R6 = R
and where (1,0) and (0,1) are both Dark Matter candidates. The red dashed line is for the asymmetric
case where for instance R5 " R6 and where (1, 0) is the Dark Matter candidate. The light blue band
denotes the WMAP preferred region for the relic density: 0.095 < Ωdmh2 < 0.13.
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Figure 2.14: Relic density of LKP including SU(2)×U(1) gauge boson and lepton coannihilations as
a function of mKK in the RPP model. The solid blue line is for the degenerate case where R5 = R6 = R
and where (1,0) and (0,1) are both Dark Matter candidates. The red dashed line is for the asymmetric
case where for instance R5 " R6 and where (1, 0) is the Dark Matter candidate. The light blue band
denotes the WMAP preferred region for the relic density: 0.095 < Ωdmh2 < 0.13.

87

6D UED (Real Projective Plane)
[Cacciapaglia, Deandrea, Llodra-Perez,
0907.4993]



Warped extra "mensions



Space-time is a slice of AdS5

ds2
= e−2kyηµνdxµdxν

− dy2

y = 0
y = πR

The effective 4D energy scale varies with position along 5th dimension

4D 
graviton

Planck 
brane

IR 
brane

M
2

Pl ∼

M3
5

k

 RS1 (has two branes)     versus   RS2 (only Planck brane)



Solution to the Planck/Weak scale hierarchy 
The Higgs (or any alternative EW breaking) is localized at y=πR, 

on the TeV (IR) brane

y = 0 y = πR

Planck 
brane

4D 
graviton

TeV 
brane

 EW

After canonical normalization of the Higgs:

kπR ∼ log(
MPl

TeV
)

Exponential hierarchy from O(10) hierarchy in the 5D theory

Radius stabilisation using bulk scalar (Goldberger-Wise mechanism)

veff = v0e
−kπR

parameter in the 5D lagrangian 

Warped hierarchies are radiatively stable as 
cutoff scales get warped down near the IR brane

One Fondamental scale : M5 ∼ MPl ∼ k ∼ Λ5/k ∼ r−1

kr =
4

π

k2

m2
ln

[

vh

vv

]

∼ 10



Particle physics model building in warped space

−2k    |y|

Higgs or

alternative

dynamics for

breaking

TeV

brane

Planck

brane

4d graviton

 Gauge fields and fermions in the bulk

y = 

−

ds   = dx  + r  dy

EW symmetry

2

Slice of AdS

 5

y = 0
rπ

2 22

L R
SU(2)           SU(2)             U(1)

5

π
e

✔ High scale unification

✔ hierarchy pb
✔ fermion masses

✔ FRW cosmology

Note:  No susy here

and many different realizations
light

fermions

heavy
fermions

[Grossman, Neubert ‘99]
[Gherghetta, Pomarol ‘00]

✔ Still active research on 
consistency with EW precision 

tests & little hierarchy pb

 MKK~few TeV      



Original RS1
[Randall, Sundrum ‘99]

[Agashe, Delgado, May, Sundrum ‘03]

[Agashe, Contino, Pomarol ‘04]

[Csaki Grojean, Pilo, Terning ‘03]

Higgsless models

Composite Higgs
 models

  No explanation 
for EW breaking

  ✔ EW breaking: 
Higgs as A5

  ✔ EW breaking: 
by boundary conditions

on gauge fields

  SM on TeV brane

RS1 with SM in bulk
& Higgs on TeV brane

 SU(2)LxSU(2)RxU(1)X 

  SM gauge fields 
& fermions in bulk

-> custodial symmetry

Model building in Warped Spacetime
“historical” overview

->Large FCNCs



RSI: A calculable model of technicolor 

The hierarchy problem is solved due to the compositeness of the Higgs

RSI 
An almost CFT that very slowly runs 

but suddenly becomes strongly 
interacting at the TeV scale, 

spontaneously breaks the conformal 
invariance and confines, thus 

producing the Higgs

bound state resonancesKK modes localized on TeV brane

A gauge symmetry in the bulk A global symmetry of the CFT
[Agashe, Delgado, May, Sundrum ‘03]

[Csaki, Grojean, Pilo, Terning ‘03]SU(2)R will protect the rho parameter 

UV matter Fundamental particles 
coupled to the CFT

Composite particles 
of the CFT

IR matter

AdS/CFT dictionnary [Maldacena ‘97]
[Arkani-Hamed, Porrati, Randall ‘01]

[Rattazzi, Zaffaroni ‘01]

Warped gravity with fermions 
and gauge field in the bulk 

and Higgs on the brane



  See Agashe et al, 0712.2455

For a slice of AdS5, the warp factor is clearly not symmetric 
under reflection about the midpoint of the extra dimension. 

To implement an analogue of KK parity of UED requires that 
2 physically distinct slices of AdS5 are glued and the 

symmetry interchanging the two AdS5 slices is imposed. 

-> warped KK parity

However, warped extra dimensions without KK parity  can 
exhibit dark matter candidates 



Mass spectrum of KK fermions

Depends on:

✔ type of boundary conditions on TeV and Planck branes

✔ c-parameter (=5D bulk mass)
(=localization of zero-mode wave function)

➾

For certain type of boundary conditions on fermions, 
there can be a hierarchy between the  mass of KK fermion 

and the mass of KK gauge bosons

Not a single KK scale
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hep-ph/0403143, 
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 Right-handed top quark has c ≈ -1/2 ➾  (-+) KK modes in its multiplet have 
mass of a few hundreds of GeV: Accessible at LHC!  

c= 5D fermion mass in 
Planck units

 Light KK fermions are expected as a 
consequence of the heaviness of the top quark

valueM
KK

10 TeV

5 TeV 
7 TeV

3 TeV



Agashe-Servant’04
Proton stability & Stable GUT partner in Warped GUTs 
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multiplet has B=1/3

DM is RH neutrino from 16 of SO(10)

stable under Z3 : Φ → Φ e2πi[B−α−α
3 ]

number of 
color indices

Has enhanced couplings to TeV KK modes (such as Z’) and top quark

SO(10) IRUV

tR
Higgs 
DMlight SM 

fermions

bulk fermion with (-+) BC -> light!

warping



Higgs profile

!

BulkUV
brane

IR
brane

!light" SM fields
 live here

SM sector Composite sector

UV brane Bulk + IR brane

ds2 = e−2kydxµdxνηµν − dy2

RH top 

is here

L = LSM − 1
4
F ′

µνF ′µν + M2
Z′Z ′

µZ ′µ + iν̄γµDµν + gt
Rt̄γµPRZ ′µt +

χ

2
F ′

µνFµν
Y

Dµ ≡ ∂µ − i (gν
RPR + gν

LPL) Z ′µ

A very simple effective theory
There is a new spontaneously broken U(1)’.

The only SM particle with a large coupling to the Z’ is the top quark

This model is inspired by the  
Randall-Sundrum setup (warped 

extra dimension):

More generally, in models of partial fermion compositeness, natural to expect that 
only the top couples sizably to a new strongly interacting sector.

TeV KK modes (such as Z’) 
have enhanced couplings to 

RH  top quark

DM

 Jackson, Servant, Shaughnessy,Tait, Taoso,’09 
Agashe-Servant ’04; Belanger-Pukhov-Servant ’07

(as well as Higgs and DM)

The WIMP is a Dirac fermion, ν, singlet under the SM, charged under U(1)’

There is no SM state the WIMP can 
decay into:  ν is stable.  
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Direct detection constraints
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EW precision tests
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as the Z’ coupling to top and ν increases, the prediction 
for MDM gets narrower -> MDM ~ 150 GeV

MDM ~ 150 GeV

Dark ma$er mass from relic density calculation

for gZ′

ν , gZ′
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Lines not suppressed compared to continuum continuum jumps due to 
opening of tt channel

-

 γ signal from ν annihilation

Note: no γγ line as dictated by 
Landau-Yang theorem 
(Z’ being the sole portal from the 
wimp sector to the SM)
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MDM < Mt  since the strong coupling to top would otherwise 
give a too low relic density (for O(1) couplings). 

DM mass is below kinematic threshold for top production in 
the zero velocity limit

DM almost decouples from light fermions while still having 
large couplings to top

To recap:

Virtual top close to threshold can significantly enhance loop 
processes producing monochromatic photons.



A simple 4d UV completion

the light mass eigen state identified with top quark 
is an admixture of t and T ~

in addition to ν, add T (vector-like) charged under U(1)’ with 
same gauge SM quantum numbers as tR

~

All SM fermions are uncharged under U(1)’

to realize coupling of top quark to Z’ and h:

yHQ3tR + µT̃LT̃R + Y ΦT̃LtR

higgs of U(1)’



Goldberger-Wise mechanism

Veff =

∫ z1

z0

dz
√

g[−(∂φ)2 − m2φ2]

Λ5 = −24M
3
k

2L =

∫
dx4dz

√
−g[2M3R− Λ5]Start with the bulk 5d theory

and the orbifold extends from z=z0=L (Planck brane) to z=z1 (TeV brane)

ds2 = (kz)−2(ηµνdxµdxν + dz2)The metric for RS1 is  where                   is the AdS curvaturek = L
−1

z = k
−1

e
ky= e−2kyηµνdxµdxν

+ dy2

Which mechanism naturally selects z1  >> z0 ? simply a bulk scalar field φ can do the job:
∫

d4xdz
(√

g[−(∂φ)2 − m2φ2] + δ(z − z0)
√

g0L0(φ(z)) + δ(z − z1)
√

g1L1(φ(z))
)

φ = Az4+ε
+ Bz−ε

φ has a bulk profile satisfying the 5d Klein-Gordon equation

ε =
√

4 + m2L2
− 2 ≈ m2L2/4where

Plug this solution into 

VGW = z−4

1

[

(4 + 2ε)

(

v1 − v0

(

z0

z1

)

ε
)2

− εv2
1

]

+ O(z4
0/z8

1)

z1 ≈ z0

(

v0

v1

)1/ε
~ scale invariant fn modulated by a slow 

evolution through the z-ε term

= z
−4

1
P (z−ε)1

similar to Coleman-Weinberg mechanism



[Creminelli, Nicolis, Rattazzi’01]

Cosmological phase transition 
associated with radion 

stabilisation (appearance of 
TeV brane)

strongly 1st order confining 
phase transition of SU(N) 

gauge theory (N>3)

Cosmology of the Randall-Sundrum model
At high T: AdS-Schwarzchild BH solution with event horizon shielding the TeV brane

At low T: usual RS solution with stabilized radion and TeV brane

Start with a black brane, nucleate “gaps” in the horizon which then 
grow until they take over the entire horizon. 



Goldberger-Wise potential for the radion is of the form

a temperature when

S3/T ≈ log
T 4

H4
≈ 140. (6)

In order to realize several e-folds of inflation, the onset of the phase transition and bubble
nucleation should happen at a temperature that is several orders smaller than the critical
temperature when the symmetric and broken phase are degenerate. Since S3 is of electroweak
scale and well-behaved as a function of T , its derivative ∂T S3/T is likewise of electroweak
scale ρ such that

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

≈
Tn

ρ
, (7)

what is small for Tn " ρ. The parameter β quantifies the inverse duration of the phase
transition and this implies that in average there is at most one bubble nucleated per Hubble
volume and percolation never happens.

In the following we will discuss how the conformal phase transition in a five-dimensional
brane setup can indeed lead to several e-folds of inflation. In the 5D picture the radion is
stabilized by a bulk scalar with a relatively small mass. In the 4D picture this corresponds
to a balance between a marginal and a slightly irrelevant deformation of the gluon sector of
the CFT. The resulting effective potential of the radion is of the form

V (µ) = µ4P ((µ/µ0)
ε). (8)

The field µ is a reparametrization of the brane separation r

µ = l−1e−r/l (9)

with a standard kinetic term and l is related to the 5D curvature and is of Planck scale.
The function P is roughly polynomial and parametrizes the extrema of the potential. The
position of the extrema µ± of V depend on the specific parameters but are given by

µε
+ ! µε

− ! 1. (10)

The smallness of ε (of O(1/10)) is then used to generate the hierarchy between the Planck
and the electroweak scale, µ− " l−1, but also implies µ+ " µ− and the potential is nearly
conformal between those widely spread values.

This construction leads to a tunnel action that is rather well-behaved as a function of µε

and not of µ. This way it is possible to achieve a small nucleation temperature in combination
with percolation and a rather small duration of the phase transition

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

" 1. (11)

An example is given in Fig. 1 where the tunnel action is plotted for a specific Goldberger-
Wise potential (taken from ref. [32]) in comparison with an action as it e.g. occurs in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us be a little bit more quantitative. The tunnel action can be calculated by deter-
mining the bounce solution [43, 44] in the potential (8). An accurate approximation can be

5

a scale invariant function modulated by a slow evolution 
through the        termµε

similar to Coleman-Weinberg mechanism where a slow RG evolution 
of potential parameters can generate widely separated scales

tunneling point is of the same order as the value of the field at the minimum of the potential.
For a nearly conformal potential, the two extrema are widely separated and as we will show,
the release point can be as low as µr !

√
µ+µ− " µ−. Since the nucleation temperature

Tn ∝ µr, we can get a very small Tn compared to the vacuum expectation value of the scalar
field µ− and therefore several efolds of inflation.

Typically, an extended phase of inflation (at least several efolds) cannot be ended by a
first-order phase transition. This is the well-known graceful exit problem of old inflation
which results from the following argument: for a generic free energy V (φ, T ) the tunnel
action S3/T is a “well-behaved” (meaning roughly polynomial) function of the temperature
T . The first nucleated bubbles appear when the temperature satisfies, in terms of the Hubble
constant H ,

S3/T ≈ log
T 4

H4
. (2)

At the weak scale, this corresponds to S3/T ≈ 140. In order to realize several efolds of infla-
tion, the onset of the phase transition and bubble nucleation should happen at a temperature
Tn that is several orders of magnitude smaller than the critical temperature Tc defined as
the temperature at which the symmetric and broken phase are degenerate.

If S3 is a well-behaved function of T , characterized by the energy scale µ0 ∼ Tc, its
derivative ∂T (S3/T ) is likewise and the parameter β which quantifies the inverse duration of
the phase transition satisfies

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

∼
Tn

µ0

S3

T

∣

∣

∣

∣

Tn

. (3)

An extended phase of inflation (for example, Nefolds ∼ log Tc/Tn ∼ 10 → Tn/Tc ∼ 10−4)
corresponds to Tn " µ0 then β/H " 1, which implies that bubbles never percolate and the
phase transition cannot complete and reheating never occurs.

In contrast, the potential (1) leads to a tunneling action that is well-behaved as a function
of µε rather than µ. This way it is possible to achieve a small nucleation temperature together
with bubble percolation and a rather long but finite duration of the phase transition for
ε ∼ O(1/10)

β/H = T
d

dT

S3

T

∣

∣

∣

∣

Tn

∼ ε
S3

T

∣

∣

∣

∣

Tn

! 1. (4)

An example is given in Fig. 2 where the tunneling action is plotted for a specific Goldberger-
Wise potential [15] (taken from Ref. [11]) in comparison with an action occurring e.g. in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us explain this more quantitatively. The conformal phase transition can be studied
by working in a five-dimensional Anti de Sitter (AdS) space in which the radion is stabilized
by a bulk scalar with a relatively small mass [8–11]. In the 4D picture, this corresponds to a
balance between a marginal and a slightly irrelevant deformation of the gluon sector of the
CFT. At high temperature, the system is in an AdS-Schwarzschild (AdS-S) phase involving
a single ultraviolet (Planck) brane, providing the UV cutoff of the theory. The free energy
of the AdS-S phase is given by

FAdS−S = −4π4(Ml)3T 4, (5)

4

possible to achieve several efolds of inflation and still complete the 
phase transition if ε~O(1/10) 

e.g. Rattazzi, Zaffaroni ‘00

for   |ε|<<1

# of bubbles  per 
horizon volume

tunneling point is of the same order as the value of the field at the minimum of the potential.
For a nearly conformal potential, the two extrema are widely separated and as we will show,
the release point can be as low as µr !

√
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Tn ∝ µr, we can get a very small Tn compared to the vacuum expectation value of the scalar
field µ− and therefore several efolds of inflation.
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first-order phase transition. This is the well-known graceful exit problem of old inflation
which results from the following argument: for a generic free energy V (φ, T ) the tunnel
action S3/T is a “well-behaved” (meaning roughly polynomial) function of the temperature
T . The first nucleated bubbles appear when the temperature satisfies, in terms of the Hubble
constant H ,

S3/T ≈ log
T 4

H4
. (2)

At the weak scale, this corresponds to S3/T ≈ 140. In order to realize several efolds of infla-
tion, the onset of the phase transition and bubble nucleation should happen at a temperature
Tn that is several orders of magnitude smaller than the critical temperature Tc defined as
the temperature at which the symmetric and broken phase are degenerate.

If S3 is a well-behaved function of T , characterized by the energy scale µ0 ∼ Tc, its
derivative ∂T (S3/T ) is likewise and the parameter β which quantifies the inverse duration of
the phase transition satisfies

β/H = T
d

dT
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∣

∣

∣

∣
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∼
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An extended phase of inflation (for example, Nefolds ∼ log Tc/Tn ∼ 10 → Tn/Tc ∼ 10−4)
corresponds to Tn " µ0 then β/H " 1, which implies that bubbles never percolate and the
phase transition cannot complete and reheating never occurs.

In contrast, the potential (1) leads to a tunneling action that is well-behaved as a function
of µε rather than µ. This way it is possible to achieve a small nucleation temperature together
with bubble percolation and a rather long but finite duration of the phase transition for
ε ∼ O(1/10)
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d
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∣
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An example is given in Fig. 2 where the tunneling action is plotted for a specific Goldberger-
Wise potential [15] (taken from Ref. [11]) in comparison with an action occurring e.g. in the
electroweak phase transition in supersymmetric extensions of the SM.

Let us explain this more quantitatively. The conformal phase transition can be studied
by working in a five-dimensional Anti de Sitter (AdS) space in which the radion is stabilized
by a bulk scalar with a relatively small mass [8–11]. In the 4D picture, this corresponds to a
balance between a marginal and a slightly irrelevant deformation of the gluon sector of the
CFT. At high temperature, the system is in an AdS-Schwarzschild (AdS-S) phase involving
a single ultraviolet (Planck) brane, providing the UV cutoff of the theory. The free energy
of the AdS-S phase is given by

FAdS−S = −4π4(Ml)3T 4, (5)

4

~ 140

Servant-Konstandin ‘11

known as cold baryogenesis [18–28] and show that it is theoretically well-motivated and only
relies on the existence of a nearly conformal sector at the TeV scale, something which will
be tested at the LHC. Our conclusions will be general and model-independent. One major
advantage of cold baryogenesis is that it does not depend on the details of the new sources of
CP violation, which can be described by dimension-six effective operators which are totally
unconstrained by EDMs.

The cold baryogenesis mechanism is interesting in that it also only invokes Standard
Model baryon number violation and beautifully makes use of the global texture of the SU(2)
electroweak theory. Nevertheless, so far, it has not received too much acclaim because it
relies on a somewhat unnatural assumption: a period of low-scale (EW scale) hybrid inflation
with the Higgs as the waterfall field. The end of inflation is triggered when the Higgs mass
turns negative and a spinodal instability gives rise to an exponential growth of soft Higgs
modes. At this stage, all particles present before low scale inflation have been inflated
away and the universe is cold and empty. Subsequently, the vacuum energy stored in the
Higgs and inflaton fields reheats the plasma. This energy transfer happens far away from
equilibrium, which makes baryogenesis during this period feasible. One of the weaknesses of
this scenario is that low scale inflation requires a significant amount of tuning in the inflaton
sector [20, 25, 28]. Besides, like for the Higgs, a fundamental light scalar inflaton implies a
hierarchy problem.

The purpose of the present paper is to demonstrate that the conformal phase transition in
some models of strongly coupled electroweak symmetry breaking can lead quite generically to
a situation in which cold electroweak baryogenesis is feasible. We want to keep the discussion
as model-independent as possible. In addition to a nearly conformal potential for the dilaton,
we only need to assume a sizable coupling between the dilaton and the Higgs as well as a
slightly larger potential energy associated with the dilaton. Let us for instance consider a
scalar potential of the type

V (µ, φ) = µ4 ×
(

P ((µ/µ0)
ε) + V(φ)/µ4

0

)

, (1)

where µ is the canonical radion (dilaton) field which acquires a vev µ0 ∼ O(1 TeV). At
the confining scale µ0, an approximate conformal symmetry governs the dynamics. |ε|
parametrizes the explicit breaking of conformal invariance and we are working in the limit
|ε| # 1 leading to a very shallow potential P ((µ/µ0)ε) with widely separate extrema. The
Randall–Sundrum model [29] with Goldberger–Wise stabilization [30] is an explicit realiza-
tion of this scenario where the stabilization of a warped extra dimension solves the hierarchy
problem. It is dual, via the AdS/CFT correspondence, to a 4D theory where confinement
is induced by an interplay of weakly coupled operators perturbing a CFT [31, 32]. As well-
known from lattice studies, confining phase transitions are first-order for the rank of the
SU(N) gauge group N ! 3 (the exact bound depends on the matter content) and growing
more strongly first-order as N increases.

For our discussion, we do not need to specify the form of the Higgs potential V(φ), which
can be Standard-Model like. The cosmological properties of the potential (1) are reviewed
in a companion article [33]. The radion acts in this context similar to an inflaton and the
conformal symmetry protects the Higgs as well as the radion mass thus solving the hierarchy
problem. For example, let us consider the Randall-Sundrum scenario with the 5D warped
metric ds2 = e−2r/lηρσdxρdxσ + dr2 (the radion field is then defined as µ = l−1e−r/l where
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[where                           , l being the AdS curvature ]
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Figure 4: 3D plot corresponding to the bottom right plot of Fig. 3.

and we choose the wall thickness to be the value obtained in the thin wall approximation
(l−1

w =
√
2λv). The parameter η quantifies the level of degeneracy of the two minima. We

show results for the two values η = 0.2 and η = 0.6. In the rather symmetric case (η = 0.2),
the walls bounce back to the symmetric phase. In the asymmetric case (η = 0.6), the field
stays in the basin of attraction of the broken phase and starts oscillating around it after a
short while of slow roll behavior close to the maximum. Notice that in both cases bubble
walls are present after the collision and store the predominant fraction of the vacuum energy.
In the asymmetric case, the reflected walls do not loose their energy while expanding into
the broken phase and they expand until they meet another reflected wall and thermalize by
scattering. We have checked that we obtain similar results for a nearly conformal potential
of type (1). The 3D representation of the collision corresponding to the bottom right plot
of Fig. 3 is shown in Fig. 4.

In the bottom plots of Fig. 3, we show the fraction of the energy stored in gradient
and kinetic energy of the scalar field, since this is the relevant quantity determining the
production of winding configurations. What we call “kinetic” is the sum of the gradient
plus kinetic energy in the broken phase excluding the wall. Note that the total energy in
the asymmetric case is about a factor 3 larger than in the symmetric case (due to the larger
difference in the potential minima). Note also that most of the “kinetic” energy in the
symmetric case actually results from the wall: When the bubble wall changes direction, the
wall becomes thicker and reaches into the region that we attribute to the broken phase (see
Fig. 2). From these plots, it is clear that for nearly degenerate minima, there is little energy
transferred in kinetic energy of the scalar field whereas for an asymmetric potential (c), a
large fraction of the energy ends up in gradient and kinetic energy of the Higgs.

We conclude that bubble collisions in an empty universe as arising in a nearly conformal
phase transition lead to a situation that closely resembles the situation after low-scale hybrid
inflation: First, bubbles nucleate and expand. Then, the walls are reflected and sweep space
a second time. After the bubble wall has passed a second time, the scalar vev is arranged
close to the symmetric phase but beyond the potential barrier of the asymmetric potential (in
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Efficient Out-of-equilibrium production 
of massive particles during bubble collisions

Watkins & Widrow ‘92

Konstandin-Servant’11

Some potentially interesting DM candidate in this context:  
“Stable Skyrmions from Extra Dimensions”, 0712.3276

Pomarol & Wulzer



Important to keep in mind non-standard production 
mechanisms as well as non-standard cosmologies. 

Usual assumptions:
- Radiation domination before and during the epoch of DM 
production
- conservation of entropy since then

Alternative possibilities:
- A different  expansion rate H
- Late entropy production due to a scalar field decay
- Low reheat temperature

4 G. Gelmini, P. Gondolo

restrict our discussion to this case. We refer the reader interested in cos-
mological WIMP-antiWIMP asymmetries, as might apply for example to a
Dirac neutrino, to [10].
The current density of WIMPs can be computed by means of the rate

equation for the WIMP number density n and the law of entropy conserva-
tion:

dn

dt
= −3Hn− 〈σannv〉 (n2 − n2

eq) , (7.4)

ds

dt
= −3Hs . (7.5)

Here t is time, s is the entropy density, H is the Hubble parameter, and as
before neq and 〈σannv〉 are the WIMP equilibrium number density and the
thermally averaged total annihilation cross section. The first and the second
term on the right hand side of Eq. 7.4 take into account the expansion of the
Universe and the change in number density due to annihilations and inverse
annihilations, respectively.
It is customary (see e.g. [9, 11, 20, 27]) to combine Eqs. (7.4) and (7.5)

into a single one for Y = n/s, and to use x = m/T , with T the photon
temperature, as the independent variable instead of time. This gives:

dY

dx
=

1

3H

ds

dx
〈σv〉 (Y 2 − Y 2

eq) . (7.6)

Here and in the rest of the Chapter we will simply write 〈σv〉 for 〈σannv〉
when no ambiguity can arise.
According to the Friedman equation, the Hubble parameter is determined

by the mass-energy density ρ as

H2 =
8π

3M2
P

ρ , (7.7)

where MP = 1.22 × 1019 GeV is the Planck mass. The energy and entropy
densities are related to the photon temperature by the equations

ρ =
π2

30
geff(T )T

4 , s =
2π2

45
heff(T )T

3, (7.8)

where geff(T ) and heff (T ) are effective degrees of freedom for the energy
density and entropy density respectively. Recent computations of geff(T )
and heff(T ) that include QCD effects can be found in Ref. [57]. If the

degrees of freedom parameter g1/2∗ is defined as

g1/2∗ =
heff

g1/2eff

(

1 +
1

3

T

heff

dheff
dT

)

, (7.9)
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then Eq. (7.6) can be written in the following way,

dY

dx
= −

(

45

πM2
P

)−1/2 g1/2∗ m

x2
〈σv〉 (Y 2 − Y 2

eq) . (7.10)

This single equation is then numerically solved with the initial condition
Y = Yeq at x $ 1 to obtain the present WIMP abundance Y0. From it, the
WIMP relic density can be computed as

Ωχh
2 =

ρ0χh
2

ρ0c
=

mχs0Y0h2

ρ0c
= 2.755 × 108 Y0mχ/GeV , (7.11)

where ρ0c and s0 are the present critical density and entropy density respec-
tively. In obtaining the numerical value in Eq. (7.11) we used T0 = 2.726K
for the present background radiation temperature and heff(T0) = 3.91 cor-
responding to photons and three species of neutrinos.
The numerical solution of Eq. (7.10), see Fig. 7.1 for an illustration, shows

that at high temperatures Y closely tracks its equilibrium value Yeq. In fact,
the interaction rate of WIMPs is strong enough to keep them in thermal and
chemical equilibrium with the plasma. But as the temperature decreases,

Fig. 7.1. Typical evolution of the WIMP number density in the early universe
during the epoch of WIMP chemical decoupling (freeze-out).

in terms of Y=n/s and x=m/T

[e.g. see Watson et al]

[e.g. Gelmini-Gondolo]
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7.4.1 Low temperature reheating (LTR) models

Let us consider a late decaying scalar field φ of mass mφ and decay width
Γφ which dominates the energy density of the Universe while oscillating
about the minimum of its potential and decays reheating the Universe to
a low reheating temperature TRH, with 5 MeV <∼ TRH <∼ Tf.o. for TRH,
so BBN is not affected. The usual choice for the parameter TRH is the
temperature the Universe would attain under the assumption that the φ
decay and subsequent thermalization are instantaneous,

Γφ = Hdecay =

√

(

8π

3

)

ρR =

√

8

90
π3g"

T 2
RH

MP
. (7.27)

Here, Γφ is the decay width of the φ field, Γφ " m3
φ/Λ

2
eff . If φ has non-

suppressed gravitational couplings, as is usually the case for moduli fields,
the effective energy scale Λeff " MP (but Λeff could be smaller [45]). Thus,
with g" " 10,

TRH " 10 MeV
( mφ

100 TeV

)3/2
(

MP

Λeff

)

. (7.28)

Numerical calculations in which the approximation of instantaneous decay
is not made show that the parameter TRH provides a good estimate of the
first temperature of the radiations dominated epoch (see Fig. 7.5).

Both thermal and non thermal production mechanisms in LTR modesl
have been discussed [22, 18, 24, 25, 31, 36, 39, 42, 43, 45, 48, 56, 63, 61, 59,
60, 66], mostly in supersymmetric models where the WIMP is the neutralino.
The decay of φ into radiation increases the entropy, diluting the WIMP
number density. The decay of φ into WIMPs increases the WIMP number
density. In supersymmetric models φ decays into supersymmetric particles,
which eventually decay into the lightest such particles (the LSP, typically a
neutralino). Call b the net number of WIMPs produced on average per φ
decay, which is a highly model dependent parameter [36, 42, 43, 63].

A combination of TRH and the ratio b/mφ can bring the relic WIMP
density to the desired value Ωcdm [63]. The equations which describe the
evolution of the Universe depend only on the combination b/mφ and not on

Consider late decaying scalar field which dominates the energy density of the 
universe while oscillating, and eventually decays with                        .                    
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b and mφ separately. They are

ρ̇ = −3H(ρ+ p) + Γφρφ (7.29)

ṅχ = −3Hnχ − 〈σv〉
(

n2
χ − n2

χ,eq

)

+
b

mφ
Γφρφ (7.30)

ρ̇φ = −3Hρφ − Γφρφ (7.31)

H2 =
8π

3M2
P

(ρ+ ρφ). (7.32)

In Eqs. (7.29-7.32), a dot indicates a time derivative, ρφ is the energy density
in the φ field, which is assumed to behave like non-relativistic matter; ρ
and p are the total energy density and pressure of matter and radiation at
temperature T ; nχ is the number density of WIMPs (which are assumed
to be in kinetic but not necessarily chemical equilibrium) and nχ,eq is its
value in chemical equilibrium; finally, H = ȧ/a is the Hubble parameter,
with a the scale factor. The first principle of thermodynamics in the form
d(ρa3) + d(ρφa3) + pda3 = Td(sa3) can be used to rewrite Eq. (7.29) as

ṡ = −3Hs+
Γφρφ
T

. (7.33)

where s = (ρ + p − mχnχ)/T is the entropy density of the matter and
radiation. For ρφ → 0 these equation reduce to the standard scenario.
During the φ-oscillation-dominated epoch, H ∝ T 4 [22]. This can be seen

using Eq. (7.29) while the matter content is negligible. In Eq. (7.29) with
p = ρ/3) substitute ρ & T 4 and ρφ & M2

PH
2. Then use H ∼ t−1, write

T ∝ tα, where α is a constant, match the powers of t in all terms, and
determine that α = −(1/4). Hence, H ∝ t−1 ∝ T 4 (and ρφ ∝ H2 ∝ T 8).
Since H equals T 2

RH/MP at T = TRH, it is H & T 4/(T 2
RHMP ).

The initial conditions are specified through the value HI of the Hubble
parameter at the beginning of the φ-oscillations dominated epoch. This
amounts to giving the initial energy density ρφ,I in the φ field at the be-
ginning of the reheating phase, or equivalently the maximum temperature
of the radiation TMAX. Indeed, one has HI & ρ1/2φ,I /MP & T 4

MAX/(T
2
RHMP ).

The latter relation can be derived from ρφ & T 8/T 4
RH and the consideration

that the maximum energy in the radiation equals the initial (maximum)
energy ρφ,I . As the φ begins to decay, the temperature of the radiation bath
rises sharply to TMAX [31], decreases slowly as function of the scale factor
a during the φ-oscillating dominated phase, as T ∼ a−3/8 until it reaches
TRH, when the radiation dominated phase starts and T ∼ a−1.
Fig. 7.5a shows how the WIMP density Ωχh2 depends on TRH for illustra-

tive values of the parameter η = b(100TeV/mφ), both for WIMPs which are
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Low temperature reheating models

[Gelmini-Gondolo, 1009.3690]
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Fig. 7.5. a. (top) WIMP density Ωχh2 as function of the reheating temperature TRH

for illustrative values of the ratio η = b(100TeV/mφ) [63]. b. (middle) Evolution of
the neutralino χ abundance for different values of TRH and η = 0 in an mSUGRA
model with M1/2 = m0 = 600GeV, A0 = 0, tanβ = 10, µ > 0, mχ = 246GeV and
standard relic density Ωstdh2 ! 3.6 [61]. The short vertical lines indicate TRH . [61].
c. (bottom) Same as b. but for TRH = 1GeV and several values of η.
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An alternative production mechanism in standard 
cosmology: -> DM from decays
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7.3.2 Decays

Dark matter may be produced in the decay of other particles. If the DM
particles are non-interacting when the decay occurs, they inherit (except for
some entropy dilution factor) the density of the parent particle P

ΩDM h2 !
mDM

mP
ΩP h2 . (7.26)

This is the case of superWIMPs (see the chapter J. Feng in this book),
extremely weakly interacting particles produced in the late decays of WIMPs
(e.g. axinos or gravitinos from the decay of neutralinos or sleptons) which
practically only interact gravitationally and cannot be directly detected. In
some models the superWIMP may produce WIMPs through its decay. This
is the case, for example, of gravitinos producing Winos (which otherwise
would have a very low thermal relic density) with the right DM abundance
through their decay [12, 34].

7.4 Thermal and non-thermal production in non-standard

cosmologies

The relic density (and also the velocity distribution before structure forma-
tion) of WIMPs and other DM candidates such as heavy sterile neutrinos
and axions, depends on the characteristics of the Universe (expansion rate,
composition, etc.) immediately before BBN, i.e. at temperatures T >∼ 4
MeV [55]. The standard computation of relic densities relies on the assump-
tion that radiation domination began before the main epoch of production
of the relics and that the entropy of matter and radiation has been con-
served during and after this epoch. Any modification of these assumptions
would lead to different relic density values. Any extra contribution to the
energy density of the Universe would increase the Hubble expansion rate
H and lead to larger relic densities (since the decreasing interaction rate Γ
becomes smaller than H earlier, when densities are larger). This can happen
in the Brans-Dicke-Jordan [18] cosmological model, models with anisotropic
expansion [7, 18, 49], scalar-tensor [30, 33, 51, 71] or kination [50, 49] mod-
els and other models [58, 64, 70] In some scalar-tensor models H may be
decreased, leading to smaller relic densities [71]. These models alter the
thermal evolution of the Universe without an extra entropy production.
Not only the value of H but the dependence of the temperature T on

the scale factor of the Universe could be different, if entropy in matter
and radiation is produced. This is the case if a scalar field φ oscillating
around its true minimum while decaying is the dominant component of

If DM is non-interacting when the decays occur, it 
inherits the density of the parent particle:

case of superWIMPs, produced in late decays of WIMPS
[Feng et al]

e.g axinos, gravitinos produced from the decay of 
neutralinos or sleptons
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FIG. 1: The ratio of dark matter energy density ρDM to baryon energy density ρB as a function of dark matter mass mX in
units of the temperature at which the B −X transfer decouples TD, for labeled values of TD. As light solution (corresponding
to mX/TD ∼ 0 is not shown. See Section II and Eq. (6) for detailed explanation. The observed ratio of ρDM/ρB is 5.86 [21].

These mechanisms have been successfully applied to generate the relevant energy densities in the context of an
existing baryon asymmetry being transferred to light dark matter, though mechanisms named darkogenesis [17] and
hylogenesis [18] have also been suggested which transfer the asymmetry in the opposite direction. If, on the other
hand, dark matter is not relativistic at the temperature TD at which the X-transfer operators decouple, then the
number density of dark matter is suppressed. In general, we find when the ratio mX/TD is about 10, we get the
required density of dark matter compared to baryons in the Universe. This thermal suppression is a generic feature,
allowing heavy dark matter in many scenarios of Xogenesis.

We also discuss two other reasons that dark matter number density might be suppressed relative to baryon number
so that dark matter can naturally be weak scale in mass.. In the first, the SU(2)L sphaleron transfer is only active for
a bounded temperature range between the masses of two doublets whose net number density would cancel if they were
degenerate [22]. In the second, excess X-number is bled off into leptons. That is, even after the baryon asymmetry
is established (possibly at the sphaleron temperature where a lepton asymmetry gets transferred into an asymmetry
in the baryon sector), X- and lepton-number violating operators are still in thermal equilibrium allowing X number
density to be reduced while lepton number density is increased. Both these mechanisms cause the transfer to baryons
to not be active for the entire temperature range down to TD when the X-number violating operators decouple.

Xogenesis models must also remove the symmetric thermally produced dark matter component, so that the asym-
metric component dominates. When the transfer mechanism is due to higher order operators, the operators necessary
to transfer the asymmetry may also lead to the annihilation of this component. In other examples, new interactions
are assumed, which in some cases also lead to detectable signatures. A new non-abelian W ′ with masses much below
mW allows the dark matter to annihilate into dark gauge bosons, but with few – if any – direct detection constraints
and probably no visible signatures in the near future. Annihilation via a light Z ′ that mixes with the photon allows
the chance for direct detection, depending on the size of the mixing parameter. While not strictly necessary, the
photon-Z ′ mixing is a generic property, and may be accessible in beam experiments [23].

We also note one additional constraint that applies to supersymmetric models in which higher dimension operators
link X to L or B via the lepton or baryon superpartners. In these cases, the neutralinos that come from the
superpartner decay must also be eliminated via self-annihilation. This generally implies that the neutralino should
be primarily wino so that the annihilation cross section is sufficiently large to make the neutralino component of dark
matter a small percentage of the total.

Buckley-Randall’10

possible to have a much heavier mass (~ O(100 GeV)) if the decoupling 
temperature of the transfer operator is smaller than the DM mass
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Figure 1. Evolution of Y ±(x) illustrating the effect of the asymmetry η. After freeze-out both Y −

and Y + continue to evolve as the anti-particles find the particles and annihilate. The Y ±
η=0 curve

shows the abundance for η = 0, a mass m = 10 GeV and annihilation cross-section σ0 = 2 pb. In
contrast, with a non-zero asymmetry η = ηB = 0.88× 10−10 and same mass and cross-section, the
more abundant species (here Y +) is depleted less than when η = 0. Also shown is the equilibrium
solution Yeq(x).

In the above we have also defined req ≡ e−2ξ(x), where ξ is determined by

2 sinh ξ =
η

Yeq
. (2.13)

Notice from (2.12) that we have taken into account the temperature dependence in

heff and geff. Because geff is monotonically increasing with T , we see that the parentheses

in the definition of g1/2∗ is positive definite. In the numerical results that follow we use the

data table from DarkSUSY [37] for the temperature dependence of g∗(T ) and heff(T ).
6

Eq. (2.10) reproduces the well known case η = 0 for which one finds that r = 1 for

any x. We will instead focus on scenarios with η #= 0 in the following. As shown in Fig. 1,

the effect of nonzero η is to deplete the less abundant species more efficiently compared to

η = 0 for the same annihilation cross section and mass.

2.2 The relic abundance of asymmetric species

Equation (2.10) can be solved by numerical methods and imposing an appropriate initial

condition at a scale x = xi ≥ 10, where the non-relativistic approximation works very well.

Although we have chosen xi = 10, we have checked that larger values (10 < xi < xf , where

xf is defined below) do not alter the final result. From (2.10) one sees that in the early

6Note that we use the notation of DarkSUSY for the massless degrees of freedom parameters. To

translate our notation to that of Kolb and Turner [38] one should make the substitutions geff → g∗ and

heff → g∗S .

– 6 –

Asymmetric Freese-out

a large abundance of symmetric DM should be annihilated away

Graesser-Shoemaker-Vecchi’11

less depletion-> larger annihilation rate needed (by factor 2-3)

a typical difficulty in these models : no naturally large annihilations
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Figure 2. Here we plot the annihilation cross section σ0 required to reproduce the correct DM
abundance ΩDM via a s-wave process n = 0 (above plot) and p-wave n = 1 (bottom plot) for a given
dark matter mass m, and for various values of the primordial asymmetry η = εηB . The line for
ε = 0 corresponds to the usual thermal WIMP scenario. Notice that the fractional asymmetry runs
from r∞ = 0 in the upper part of the curves to r∞ = 1 when the lines converge on the standard
thermal WIMP curve. The effect of the QCD phase transition appears as a bump at m ! 20
GeV, as anticipated in the text. Note that the bottom plot is basically enhanced by a factor
Φn=0/Φn=1 ∼ (n + 1)xf compared to the former. As a reference, recall that 1 pb " 2.6 × 10−9

GeV−2.
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Graesser-Shoemaker-Vecchi’11

annihilation cross section required  
to reproduce the correct DM 

abundance (via s-wave process)



Sakharov’s conditions for baryogenesis (1967)

Γ(∆B > 0) > Γ(∆B < 0)

1) Baryon number violation 

2) C (charge conjugation) and CP (charge conjugation ×Parity) violation

3) Loss of thermal equilibrium

(we need a process which can turn antimatter into matter)

(we need to prefer matter over antimatter)

(we need an irreversible process since in thermal equilibrium, the 
particle density depends only on the mass of the particle  and on 

temperature --particles & antiparticles have the same mass , so no 
asymmetry can develop)

In thermal equilibrium, any reaction which destroys baryon number  will be exactly 
counterbalanced by the inverse reaction which creates it. Thus no asymmetry may 
develop, even if CP is violated. And any preexisting asymmetry will be erased by 

interactions



Baryogenesis without B nor L nor CPT

Possible if dark matter carries baryon number 

Farrar-Zaharijas hep-ph/0406281
Agashe-Servant hep-ph/0411254

In a universe where baryon  number is a good symmetry, Dark matter would store 
the overall negative baryonic charge which is missing in the visible quark  sector

Davoudiasl et al 1008.2399



Quniverse  =  0  =    Q   +   (-Q)}}

carried by 
baryons

carried by 
antimatter

X
DM

b

Assume an asymmetry between b and      is created via the 
out-of-equilibrium and CP-violating decay :

b

Charge conservation leads to

QDM(n
DM

− nDM) = Qb(nb − n
b
)

 Kitano & Low, hep-ph/0411133 

If efficient annihilation between         and      , and     and      DM bDM b

ρDM = mDMn
DM

≈ 6ρb → mDM ≈ 6
QDM

Qb

GeV

Farrar-Zaharijas hep-ph/0406281
Agashe-Servant hep-ph/0411254

Davoudiasl et al 1008.2399
(DM carries B number)

(X and DM carry Z2 charge)
West, hep-ph/0610370

}

:

Generalization:  DM & baryon 
sectors share a quantum 

number (not necessarily B)



X
DM

b
out-of equilibrium and CP violating decay of X 
sequesters the anti baryon number in the dark sector, 
thus leaving a baryon excess in the visible sector

Ωb ≈

1

6
ΩmA unified explanation for DM and baryogenesis 

QDM(n
DM

− nDM) = Qb(nb − n
b
)

If efficient annihilation between         and      , and     and      DM bDM b

ρDM = mDMn
DM

≈ 6ρb → mDM ≈ 6
QDM

Qb

GeV

asymmetry between b and b is created via the 
out-of-equilibrium and CP-violating decay :

GUT baryogenesis at the TeV scale !

turns out to be quite natural in warped GUT models...

Agashe-Servant-Tulin in progress

-



Z3  symmetry in the SM:   symmetry

SM not charged, GUT partners are... 

lightest   -charged particle (LZP) stable

Φ→ Φ e
2πi

[
B− (α−ᾱ)

3

]

Z3

number of color indices

Z3

Agashe-Servant’04

any non-colored particle that carries 
baryon number will be charged under Z3 

e.g  warped GUTs

conserved in any theory where baryon number is a good symmetry



Z2  versus  Z3  Dark Matter
Agashe et al, 1003.0899 

T
t

DM

Z2 Z3

DM
b

T
b

DM
DM

t
T

Many Dark Matter models rely on a Z2  symmetry. However, other symmetries can 
stabilize dark matter. Can the nature of the underlying symmetry be tested?

(+1=-2)

+1
+1

+1 -1
-1



The determination of the WIMP relic density depends on the 
history of the Universe before Big Bang Nucleosynthesis, an epoch 

from which we have no data.

WIMPs have their number fixed at T ~ m/20 so with M> 100 =MeV, 
they freese out before BBN and thus would be the earliest remnants.

 If discovered they would for the first time give information of the pre 
BBN phase of the universe.

To conclude

Exploration beyond the standard WIMP paradigm has received a boost of 
interest lately. 

Plethora of DM candidates.  
The LHC, direct & indirect detection experiments will enable us to reduce 

significantly the parameter space.

For instance, the dark sector may turn out to be non-minimal and involve 
inter-WIMP dynamics i.e. be as complicated as the visible sector...

There is still a lot of theory to be worked out while experiments are running.


