Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Dark Matter at the LHC

Tilman Plehn

Universität Heidelberg

MPI-K, 7/2011

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Weak-scale masses

- typical model with weakly and gravitationally interacting DM (WIMP)
- some kind of R parity
- light weakly interacting sector
- heavy strongly interacting sector
- simplified models

Tilman Plehn

Spectrum

Production

- Jets Signature
- Masses
- Spins
- Boosted tops
- GUT?

SUSY cross sections

- hadron collider processes
- parton densities
- pair production via strong coupling (Feynman diagrams)
- cascade decays (Feynman diagrams)

Tilman Plehn

Spectrum

Production

- Jets Signature
- Masses
- Spins
- Boosted tops
- GUT?

SUSY cross sections

- hadron collider processes
- parton densities
- pair production via strong coupling (Feynman diagrams)
- cascade decays (Feynman diagrams)

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

SM cross sections

- ▶ compared to O(10 100) pb for SUSY
- triggers
- background rejection: DM particle, leptons

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Jets plus missing energy

- missing transverse energy (kinematics)
- SUSY as role model, but analysis inclusive
- typical short/long cascades (Feynman diagrams)
- constraints in squark-gluino mass plane (mSUGRA?)
- known from Tevatron

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Fake missing energy

- sources of physical missing energy (W, Z, and tt)
- sources of fake missing energy (list)
- 0.4% of the ATLAS calorimeter missing?

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Backgrounds

- W with jets from QCD (transverse mass)
- QED: Poisson scaling
- QCD: staircase scaling
- lepton veto against W+jets
- jet veto and lepton subtraction against top pairs
- mergers: Sherpa, Alpgen, Madevent

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Inclusive observables

- targeted at heavy stuff in general
- scalar momentum sums (define)
- background uncertainties huge

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Inclusive observables

- targeted at heavy stuff in general
- scalar momentum sums (define)
- background uncertainties huge

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Kinematic endpoints

- no invariant mass reconstruction
- no transverse mass
- thresholds and edges in cascade decays
- lepton-lepton edge and mass-squared differences (edge)

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

SPS1a measurements

- systematic errors
- theory errors and higher orders
- combinatorics
- mass differences vs masses

type of		nominal	stat.	LES	JES	theo.
measurement		value	error			
m _h		108.99	0.01	0.25		2.0
mt		171.40	0.01		1.0	
$m_{\tilde{l}_L} - m_{\chi_1^0}$		102.45	2.3	0.1		2.2
$m_{\tilde{g}} - m_{\chi_1^0}$		511.57	2.3		6.0	18.3
$m_{\tilde{q}_R} - m_{\chi_1^0}$		446.62	10.0		4.3	16.3
$m_{\tilde{g}} - m_{\tilde{b}_1}$		88.94	1.5		1.0	24.0
$m_{\tilde{g}} - m_{\tilde{b}_2}$		62.96	2.5		0.7	24.5
m max:	three-particle edge $(\chi^0_2, \tilde{l}_{R}, \chi^0_1)$	80.94	0.042	0.08		2.4
minax :	three-particle edge($\tilde{q}_L, \chi_2^0, \chi_1^0$)	449.32	1.4		4.3	15.2
mlow:	three-particle edge($\tilde{q}_L, \chi_2^0, \tilde{l}_R$)	326.72	1.3		3.0	13.2
$m_{ }^{\text{max}}(\chi_{4}^{0}):$	three-particle edge $(\chi_4^0, \tilde{l}_R, \chi_1^0)$	254.29	3.3	0.3		4.1
$m_{\tau,\tau}^{\max}$:	three-particle edge($\chi^0_2, \tilde{\tau}_1, \chi^0_1$)	83.27	5.0		0.8	2.1
m ^{high} :	four-particle edge($\tilde{q}_L, \chi^0_2, \tilde{l}_R, \chi^0_1$)	390.28	1.4		3.8	13.9
m ^{thres} :	threshold($\tilde{q}_L, \chi_2^0, \tilde{l}_R, \chi_1^0$)	216.22	2.3		2.0	8.7
mthres:	threshold($\tilde{b}_1, \chi^0_2, \tilde{l}_R, \chi^0_1$)	198.63	5.1		1.8	8.0

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

SPS1a measurements

- systematic errors
- theory errors and higher orders
- combinatorics
- mass differences vs masses

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Mass relations

- endpoints only using fraction of events
- mass relation methods (set of eqs)
- backgrounds and mismeasurements

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

MT2 magic

- construct stransverse mass with endpoint
- pair production and direct decay (Feynman diagrams)
- m_{T2} algorithm (formula)
- Lorentz invariance

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Squarks or KK quarks?

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Squarks or KK quarks?

- general approach impossible
- hypothesis test: SUSY (dashed) vs UED (solid) (cascades)
- hierarchical spectrum: SPS1a

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

- hadronic case: top tagging
- leptonic case: missing energy (neutrino) direction (Feynman diagram)
- testable in semileptonic tops

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

- hadronic case: top tagging
- leptonic case: missing energy (neutrino) direction (Feynman diagram)
- testable in semileptonic tops

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

- hadronic case: top tagging
- Ieptonic case: missing energy (neutrino) direction (Feynman diagram)
- testable in semileptonic tops

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

- hadronic case: top tagging
- Ieptonic case: missing energy (neutrino) direction (Feynman diagram)
- testable in semileptonic tops

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

- hadronic case: top tagging
- Ieptonic case: missing energy (neutrino) direction (Feynman diagram)
- testable in semileptonic tops

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Measuring unification

tools for parameter extraction: SFitter/Suspect, Fittino/Spheno

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?

Literature

- basic: Ian Aitchison's SUSY introduction (hep-ph/0505105)
- ▶ more advanced: Steve Martin's SUSY primer (hep-ph/9709356)
- review with David Morrissey and Tim Tait New Physics at the LHC (arXiv:0912.3259) [new version on my website]
- lecture notes on QCD and Higgs physics An LHC Lecture (arXiv:0910.4182) [new version on my website]
- many great TASI lectures...
- you'd be surprized how much of this talk happened in the last five years!

Tilman Plehn

Spectrum

Production

Jets Signature

Masses

Spins

Boosted tops

GUT?