9 July 2011
 ISAPP 2011 - Heidelberg

Intro bo the

Marco Cirelli

 (CERN-TH \& CNRS IPhT Saclay)
Reviews on Dark Matter:

Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996
Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Einasto, 0901.0632
Reviews on Dark Energy:
Frieman, Turner, Huterer, Ann. Rev. Astron. Astrophys. 46 (2008) 385-432

9 July 2011
 ISAPP 2011 - Heidelberg

Intro bo the

Marco Cirelli

 (CERN-TH \& CNRS IPhT Saclay)
Reviews on Dark Matter:

Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996
Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Einasto, 0901.0632
Reviews on Dark Energy:
Frieman, Turner, Huterer, Ann. Rev. Astron. Astrophys. 46 (2008) 385-432

9 July 2011
 ISAPP 2011 - Heidelberg

Intir Matuel, Denck by enda neutrino sosmolog y

Marco Cirelli (CERN-TH \& CNRS IPhT Saclay)

in collaboration with:

A.Strumia (Pisa)

N.Fornengo (Torino)
M.Tamburini (Pisa)
R.Franceschini (Pisa)
M.Raidal (Tallin)
M.Kadastik (Tallin)

Gf.Bertone (IAP Paris)
M.Taoso (Padova)
C.Bräuninger (Saclay)
P.Panci (L'Aquila + Saclay + CERN)
F.Iocco (Saclay + IAP Paris)
P.Serpico (CERN)

Reviews on Dark Matter:

Jungman, Kamionkowski, Griest, Phys.Rept. 267, 195-373, 1996
Bertone, Hooper, Silk, Phys.Rept. 405, 279-390, 2005 Einasto, 0901.0632
Reviews on Dark Energy:
Frieman, Turner, Huterer, Ann. Rev. Astron. Astrophys. 46 (2008) 385-432 Bean, TASI 2009 Lectures, 1003.4468

Most of the Universe is Dark

$$
\left(\Omega_{x}=\frac{\rho_{x}}{\rho_{c}} ; \text { CMB first peak } \Rightarrow \Omega_{\text {tot }}=1 \text { (flat); HST } h=0.71 \pm 0.07\right)
$$

Most of the Universe is Dark

FAvgQ: what's the difference between DM and DE?

DM behaves like matter

- overall it dilutes as volume expands
- clusters gravitationally on small scales
- $w=P / \rho=0$ (NR matter)
(radiation has $w=-1 / 3$)

DE behaves like a constant

- it does not dilute
- does not cluster, it is prob homogeneous
- $w=P / \rho \simeq-1$
- pulls the acceleration, FRW eq. $\frac{\ddot{a}}{a}=-\frac{4 \pi G_{N}}{3}(1-3 w) \rho$

Most of the Universe is Dark

$$
\left(\Omega_{x}=\frac{\rho_{x}}{\rho_{c}} ; \text { CMB first peak } \Rightarrow \Omega_{\text {tot }}=1 \text { (flat); HST } h=0.71 \pm 0.07\right)
$$

At the time of CMB formation (380 Ky)

How do we know that

 Dark Matter is out there?1) galaxy rotation curves

$$
m \frac{v_{c}^{2}(r)}{r}=\frac{G_{N} m M(r)}{r^{2}}
$$

'centrifugal' 'centripetal'

$$
v_{c}(r)=\sqrt{\frac{G_{N} M(r)}{r}}
$$

with $M(r)=4 \pi \int \rho(r) r^{2} d r$

$$
v_{c}(r) \sim \text { const } \Rightarrow \rho_{M}(r) \sim \frac{1}{r^{2}}
$$

1) galaxy rotation curves

$$
m \frac{v_{c}^{2}(r)}{r}=\frac{G_{N} m M(r)}{r^{2}}
$$

'centrifugal' 'centripetal'

$$
v_{c}(r)=\sqrt{\frac{G_{N} M(r)}{r}}
$$

with $M(r)=4 \pi \int \rho(r) r^{2} d r$

$$
v_{c}(r) \sim \text { const } \Rightarrow \rho_{M}(r) \sim \frac{1}{r^{2}}
$$

$\Omega_{\mathrm{M}} \gtrsim 0.1$

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r

2) clusters of galaxies

- "rotation curves"
- gravitation lensing

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

"bullet cluster" - NASA astro-ph/060824r

2) clusters of galaxies

- "rotation curves"
- gravitation lensing
$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

Dark Matter Ring in $\mathrm{Cl} 0024+17(\mathrm{ZwCl} 0024+1652) \quad$ HST \cdot ACS/WFC

ring of Dark Matter (2007)

2) clusters of galaxies

- "rotation curves"
- gravitation lensing
$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$

Dark Matter Ring in Cl 0024+17 (ZwCl 0024+1652) HST•ACS/WFC

ring of Dark Matter (2007)

1) galaxy rotation curves

$\Omega_{\mathrm{M}} \gtrsim 0.1$

ฉ) clusters of galaxies

$\Omega_{\mathrm{M}} \sim 0.2 \div 0.4$
3) CMB+LSS (+SNIa:)

M.Girelli and A.Strumia, astro-ph/060r086
$210^{6} \mathrm{CDM}$ particles, 43 Mpc cubic box

210^{6} CDM particles, 43 Mpc cubic box

$$
Z=28.62
$$

Aquarius project of the VIRGO coll.: $1.510^{9} \mathrm{CDM}$ particles, single galactic halo

$\mathrm{DM} \mathbb{N}$

2dF: R.2 10^{5} galaxies SDSS: 10^{6} galaxies, 2 billion lyr

Springel, Frenk, White, Nature 440 (2006)

Millennium: 10^{10} particles, $500 \mathrm{~h}^{-1} \mathrm{Mpc}$

2dF: 2.2 10^{5} galaxies SDSS: 10^{6} galaxies, 2 billion lyr

V. Springel's lecture

ructure

CMB

LSS matter power spectrum

ructure

CMB

LSS matter power spectrum

LSS matter power spectrum

CMB spectrum

ISS

Instead of adding matter, modify Newton or GR.

$$
\begin{aligned}
& H=m a H=m a(a) \quad \text { with } \mu(a)=\left\{\begin{array}{rl}
1 & a>a_{0} \\
a / a_{0} & a \sim a_{0} \\
F=m \frac{a^{2}}{a_{0}}=\frac{G M m}{r^{2}} \Rightarrow a=\frac{\sqrt{G M a_{0}}}{r}=\frac{v^{2}}{r} \Rightarrow v=\left(G M a_{0}\right)^{1 / 4}=\operatorname{const} \\
\text { force balance }
\end{array} \Rightarrow \begin{array}{l}
a_{0}=1.2 \cdot 10^{-10} m / s^{2}
\end{array}\right. \\
& \begin{array}{l}
\text { tangential }
\end{array} \\
& \text { acceleration }
\end{aligned}
$$

fits rotation curves very well

can fit (bullet) cluster if adding 2 eV neutrinos...

How would the power spectra be in MOND/TeVeS, without DM?

(in particular: no $\mathrm{DM}=>$ no $3^{\text {rd }}$ peak!)

(here you can make it)

The
 1) galaxy rotation curves

DIM

$\Omega_{\mathrm{M}} \gtrsim 0.1$

2) clusters of galaxies

3) CMB+LSS (+SNIa:

WMAP-3yr ACbar
CBI

Boomerang
DASI
VSA
SDSS, 2dFRGS
LyA Forest Croft
LyA Forest SDSS

$\Omega_{\mathrm{M}} \approx 0.275 \pm 0.02$

$\Omega_{\mathrm{M}} \gtrsim 0.1$

2) clusters of galaxies

3) CMB+LSS(+SNIa:)

$$
\Omega_{\mathrm{M}} \approx 0.275 \pm 0.02
$$

What is the DM ??
It consists of a particle. Permeates galactic haloes.

What do we know of the

 particle physics properties of Dark Matter?
an astro je ne sais pas quoi:

an astro je ne sais pas quoi:

- neutrons
- gas
- Black Holes
- brown dwarves

an astro je ne sais pas quoi:

- neiturons

- gas
- Black Holes
- brown dwarves

an astro je ne sais pas quoi:

- neitrons

- gis
- Black Holes
- brown dwarves

an astro je ne sais pas quoi:

- neitrons

- gris
- Black Holcs
- brown dwarves
strong lensing
an astro je ne sais pas quoi:
- nertrons
- gos
- Black Holcs
- brown dwarves

an astro je ne sais pas quoi:
- newtrons
- gos
- Blaek Holes
- brownin dwarves

a baryon ofthe SM:

- BBN computes the abundance of He in terms of primordial baryons: too much baryons => Universe full of Helium
- CMB says baryons are 4\% max
an astro je ne sais pas quoi:
- newtrons
- gos
- Blark Holcs
- brown dwarves

a baryon ofthe SM:

- BBN computes the abundance of He in terms of primordial baryons: too much baryons => Universe full of Helium
- CMB says baryons are 4\% max

neutrinos:

an astro je ne sais pas quoi:

- nerstrons
- gas
- Blarek Holcs
- brown dwarves

a baryon of the SM:

- BBN computes the abundance of He in terms of primordial baryons: too much baryons => Universe full of Helium
- CMB says baryons are 4% max

neutrinos:

 too light! $\quad m_{\nu} \lesssim 1 \mathrm{eV}$do not have enough mass to act as gravitational attractors in galaxy collapse

What are the theoretical 'beliefs'?

Likely a

weakly
 has the correct relic abundance today!

Likely a

Weakly init has the correct relic abundance today!
 we would have seen it!

Likely a

Weakly init has the correct relic abundance today!

we would have seen it!

stable

at least on cosmolog
time scales, i.e.
$\tau>t_{\text {universe }}$

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \mathrm{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$
(WIMP)

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \operatorname{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$
(WIMP)

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \mathrm{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$
(WIMP)

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}$

Weak cross section:
$\left\langle\sigma_{\mathrm{ann}} v\right\rangle \approx \frac{\alpha_{w}^{2}}{M^{2}} \approx \frac{\alpha_{w}^{2}}{1 \mathrm{TeV}^{2}} \Rightarrow \Omega_{X} \sim \mathcal{O}($ few 0.1$)$
(WIMP)

Boltzmann equation in the Early Universe:
$\Omega_{X} \approx \frac{610^{-27} \mathrm{~cm}^{3} \mathrm{~s}^{-1}}{\left\langle\sigma_{\mathrm{ann}} v\right\rangle}$
Relic $\Omega_{\mathrm{DM}} \simeq 0.23$ for $\left\langle\sigma_{\mathrm{ann}} v\right\rangle=3 \cdot 10^{-2}{ }^{2}$

T. Schwetz's lectures

DM does not exist
it is a SM particle

DM exists

DM does not exist

modified gravity, TeVeS... \neq many observations, difficult to modify GR consistently

```
it is a SM particle
neutrons, brown dwarves, BHs... \(/\) decay, strong lensing, BBN neutrinos \(\neq\) too light: can't make \(\Omega\), are hot and stream out
```

DM exists

DM does not exist

modified gravity, TeVeS... \neq many observations, difficult to modify GR consistently

```
it is a SM particle
neutrons, brown dwarves, BHis.. F/ decay, strong lensing, BBN
neutrinos /f too light: can't make S , are hot and stream out
```

DM exists $<\begin{aligned} & \text { e.m. interactions } \\ & \text { weak interactions } \\ & \text { other interactions }\end{aligned}$

DM does not exist

modified gravity, TeVeS... \neq many observations, difficult to modify GR consistently

```
it is a SM particle
neutrons, brown dwarves, BHs... F/ decay, strong lensing, BBN
neutrinos / too light: can't make S\Omega, are hot and stream out
```

DM exists

e.m. interactions

(Champs)
weak interactions
other interactions
(axions, gravitinos, axinos,
Dirac neutrinos, RH neutrinos,
MeV Dark Matter...)

DM does not exist

modified gravity, TeVeS... \neq many observations, difficult to modify GR consistently
it is a SM particle
neutrons, brown dwarves, BHs... \neq decay, strong lensing, BBN
neutrinos $/$ too light: can't make Ω, are hot and stream out

DM exists

DM does not exist

modified gravity, TeVeS... $/$ many observations, difficult to modify GR consistently
it is a SM particle
neutrons, brown dwarves, BHs... $/$ decay, strong lensing, BBN
neutrinos / too light: can't make Ω, are hot and stream out

DM exists
e.m. interactions
(Champs)
other interactions
G. Raffelt's \& M. Shaposhnikov's lectures

SuperSymmetry ExtraDimensions Little Higgs inert Doublet Model

G. Servant's

 lecture

$m_{\mathrm{h}} \approx 150 \mathrm{GeV}$

$m_{\mathrm{h}} \approx 150 \mathrm{GeV}$

$\Delta m_{\mathrm{h}} \propto 10^{19} \mathrm{GeV}$

$m_{\mathrm{h}} \approx 150 \mathrm{GeV}$

$\Delta m_{\mathrm{h}} \propto 10^{19} \mathrm{GeV}$

$m_{\mathrm{h}} \approx 150 \mathrm{GeV}$

$\Delta m_{1} \propto 10^{19} \mathrm{GeV}$
\underline{h}

$$
R=+1
$$

$m_{\mathrm{h}} \approx 150 \mathrm{GeV}$

$\Delta m_{\mathrm{h}} \propto 10^{19} \mathrm{GeV}$

$R=-1$

$$
R=+1
$$

$\Delta m_{1} \propto 10^{19} \mathrm{GeV}$

$$
R=+1
$$

$m_{\mathrm{h}} \approx 150 \mathrm{GeV}$

$\Delta m_{1} \times 10^{19} \mathrm{GeV}$

$R=-1$

$$
R=+1
$$

$\Delta m_{1} \propto 10^{19} \mathrm{GeV}$

direct detection

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission

Fermi, HESS, radio telescopes
from annihil in galactic halo or center
PAMELA, ATIC, Fermi
from annihil in galactic halo or center
from annihil in galactic halo or center
ν, ν from annihil in massive bodies

direct detection

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission

Fermi, HESS, radio telescopes
from annihil in galactic hall or center
PAMELA, ATIC, Fermi
from annihil in galactic halo or center
from annihil in galactic halo or center
$\nu, \bar{\nu}$ from annihil in massive bodies
Icecube, Km3Net

direct detection

production at colliders

γ from annihil in galactic center or halo
and from synchrotron emission $\begin{gathered}\text { Fermi, HESS, ra }\end{gathered}$
indirect e^{+}from annihil in galactic halo or center $\begin{aligned} & \text { PAMEIA AMI }\end{aligned}$
γ from annihil in galactic center or halo
and from synchrotron emission
Fermi, HESS, ra
indirect e^{+}from annihil in galactic halo or center $\begin{aligned} & \text { PAMFIA ATI }\end{aligned}$
Fermi, HESS, radio telescoper
PAMELA, ATIC, Fermi
from annihil in galactic hall or center
from annihil in galactic halo or center
$\nu, \bar{\nu}$ from annihil in massive bodies
Icecube, Km3Net

direct detection

production at colliders

γ from annihil in galactic center or halo
and from synchrotron emission
Formi, HISSS,
from annihil in galactic halo or center
from annihil in galactic halo or center
ν, V from annihil in massive bodies
Icecube, Km3Net

Indirect Detection: basics \bar{p} and e^{+}from DM annihilations in halo

Indirect Detection: basics \bar{p} and $e^{\text {from }} \mathrm{DM}$ annihilations in halo

Indirect Detection: basics \bar{p} and $e^{\text {from }} \mathrm{DM}$ annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

Indirect Detection: basics \bar{p} and from DM annihilations in halo

$\frac{\partial f^{\text {spectrum }}}{\partial t}-K(E) \cdot \nabla^{2} f-\frac{\partial}{\partial E}(b(E) f)+\frac{\partial}{\partial z}\left(V_{c} f\right)=Q_{\text {inj }}-2 h \delta(z) \Gamma_{\text {spall }} f$

Indirect Detection: basics \bar{p} and $e^{\text {from }} \mathrm{DM}$ annihilations in halo

What sets the overall expected flux? flux $\propto n^{2} \sigma_{\text {annihilation }}$

Indirect Detection: basics \bar{p} and from DM annihilations in halo

What sets the overall expected flux?
flux $\propto n^{2} \sigma_{\text {annihilation }}$
astro\& particle cosmo

Indirect Detection: basics \bar{p} and $e^{\text {from }} \mathrm{DM}$ annihilations in halo

What sets the overall expected flux?
flux $\propto n^{2} \sigma_{\text {annihilation }}$ astro\& particle reference cross section: cosmo

$$
\sigma v=3 \cdot 10^{-26} \mathrm{~cm}^{3} / \mathrm{sec}
$$

From N-body numerical simulations:

$$
\rho(r)=\rho_{\odot}\left[\frac{r_{\odot}}{r}\right]^{\gamma}\left[\frac{1+\left(r_{\odot} / r_{s}\right)^{\alpha}}{1+\left(r / r_{s}\right)^{\alpha}}\right]^{(\beta-\gamma) / \alpha}
$$

At small $\mathrm{r}: ~ \rho(r) \propto 1 / r^{\gamma}$

$$
\rho(r)=\rho_{s} \cdot \exp \left[-\frac{2}{\alpha}\left(\left(\frac{r}{r_{s}}\right)^{\alpha}-1\right)\right]
$$

cuspy: NFWW, Moore mild: Binasto smooth: isothermal

Halo model	α	β	γ	r_{s} in kpc
Cored isothermal	2	2	0	5
Navarro, Frenk, White	1	3	1	20
Moore	1	3	1.16	30

Einasto $\quad \alpha=0.17 \quad r_{s}=20 \mathrm{kpc} \quad \rho_{s}=0.06 \mathrm{GeV} / \mathrm{cm}^{3}$

Boost Factor: local clumps in the DM halo enhance the density, boost the flux from annihilations. Typically: $B \simeq 1 \rightarrow 20$
For illustration:

Boost Factor: local clumps in the DM halo enhance the density, boost the flux from annihilations. Typically: $B \simeq 1 \rightarrow 20$
For illustration:

direct detection

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission

Fermi, HESS, radio telescopes
from annihil in galactic hall or center PAMILLA, ATIC, Fermi
from annihil in galactic halo or center
d from annihil in galanctic hall or center
ν, ν from annihil in massive bodies

Indirect Detection: constraints γ from DM annihilations in galactic center

Indirect Detection: constraints

 a.) γ from DM annihilations in galactic center
$D M$
$-W^{+}, Z, \bar{b}, \tau^{+}, \bar{t}, h \ldots \rightsquigarrow e^{ \pm}, \stackrel{(-)}{p},(-)$
$D$$\ldots$ and γ

Indirect Detection: constraints

 a.) γ from DM annihilations in galactic center
$D M$
$\bullet W^{+}, Z, \bar{b}, \tau^{+}, \bar{t}, h \ldots \rightsquigarrow e^{ \pm}, \stackrel{(-)}{p},(-)$
D, and γ

Indirect Detection: constraints

 a.) γ from DM annihilations in galactic center
typically sub-TeV energies

Indirect Detection: constraints

b. γ from DM annihilations in Sagittarius Dwarf

$D M$
$\bullet W^{+}, Z, \bar{b}, \tau^{+}, \bar{t}, h \ldots \rightsquigarrow e^{ \pm}, \stackrel{(-)}{p},(-)$
D, and γ

Indirect Detection: constraints c. radio-waves from synchro radiation of $e^{ \pm}$in GC

Indirect Detection: constraints

 c. radio-waves from synchro radiation of $e^{ \pm}$in GC
Indirect Detection: constraints

 d. γ from Inverse Compton on $e^{ \pm}$in halo

- upscatter of CMB, infrared and starlight photons on energetic $e^{ \pm}$
- probes regions outside of Galactic Center

Indirect Detection: constraints e. γ from outside the Galaxy

Indirect Detection: constraints e.) γ from outside the Galaxy

Indirect Detection: constraints e.) γ from outside the Galaxy

Indirect Detection: constraints e. γ from outside the Galaxy

Indirect Detection: constraints

 (e.) γ from outside the Galaxy
$\sim m$

ξ

Indirect Detection: constraints

 e.) γ from outside the Galaxy

.

.

- isotropic flux of prompt and ICS gamma rays, integrated over z and r
- depends strongly on halo formation details and history

direct detection

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission

Fermi, HESS, radio telescopes
indirect from annihil in galactic hall or center PAMBLAA, ATIC, Fermi
from annihil in galactic halo or center
\bar{d} from annihil in galactic halo or center
V, V from annihil in galactic center

Indirect Detection \bar{d} from DM annihilations in halo

Indirect Detection d from DM annihilations in halo

Indirect Detection \bar{d} from DM annihilations in halo

Indirect Detection \bar{d} from DM annihilations in halo

$$
\frac{\partial f}{\partial t}-K(E) \cdot \nabla^{2} f-\frac{\partial}{\partial E}(b(E) f)+\frac{\partial}{\partial z}\left(V_{c} f\right)=Q_{\text {inj }}-2 h \delta(z) \Gamma_{\text {spall }} f
$$

direct detection

production at colliders

Indirect Detection ν from DM annihilations in galactic center

Neutrinos om in the Sun

Sun

oscillations + interactions

oscillations + interactions

Sun

oscillations + interactions

Sun

oscillations + interactions

$\Phi_{\nu_{\mu}}$

density matrix

$$
\boldsymbol{\rho}=\left(\begin{array}{lll}
\rho_{e e} & \rho_{e \mu} & \rho_{e \tau} \\
\rho_{\mu e} & \rho_{\mu \mu} & \rho_{\mu \tau} \\
\rho_{\tau e} & \rho_{\tau \mu} & \rho_{\tau \tau}
\end{array}\right)
$$

full evolution equation:

$$
\frac{d \boldsymbol{\rho}}{d r}=-i[\boldsymbol{H}, \boldsymbol{\rho}]+\left.\frac{d \boldsymbol{\rho}}{d r}\right|_{\mathrm{CC}}+\left.\frac{d \rho}{d r}\right|_{\mathrm{NC}}+\left.\frac{d \boldsymbol{\rho}}{d r}\right|_{\mathrm{in}}
$$

$$
\frac{d \boldsymbol{\rho}}{d r}=-i[\boldsymbol{H}, \boldsymbol{\rho}]+\left.\frac{d \rho}{d r}\right|_{\mathrm{CC}}
$$

and tau regeneration

(re)generation

$$
\left|\frac{d \boldsymbol{\rho}}{d r}\right|_{\mathrm{CC}}=-\frac{\left\{\boldsymbol{\Gamma}_{\mathrm{CC}}, \boldsymbol{\rho}\right\}}{2}+\int \frac{d E_{\nu}^{\mathrm{in}}}{E_{\nu}^{\mathrm{in}}}\left[\boldsymbol{\Pi}_{\tau} \rho_{\tau \tau}\left(E_{\nu}^{\mathrm{in}}\right) \Gamma_{\mathrm{CC}}^{\tau}\left(E_{\nu}^{\mathrm{in}}\right) f_{\tau \rightarrow \tau}\left(E_{\nu}^{\mathrm{in}}, E_{\nu}\right)\right.
$$

$$
\left.+\Pi_{e, \mu} \bar{\rho}_{\tau \tau}\left(E_{\nu}^{\mathrm{in}}\right) \bar{\Gamma}_{\mathrm{CC}}^{\tau}\left(E_{\nu}^{\mathrm{in}}\right) f_{\bar{\tau} \rightarrow e, \mu}\left(E_{\nu}^{\mathrm{in}}, E_{\nu}\right)\right]
$$

Effects of oscillations and interactions:

- reshuffle of the 3 flavors
(oscillations and regeneration)
- attenuation of the fluxes
- degradation of energy (distortion of spectra)

direct detection

production at colliders

γ from annihil in galactic center or halo and from synchrotron emission

Fermi, HBSS, radio telescopes
from annihil in galactic halo or center
pambla, ATtC, Fermi
from annihil in galactic halo or center
from annihil in galactic halo or center
ν, ν from annihil in massive bodies

C. de los Heros's lecture

direct detection

Xenon, CDMS (Dama/Libra?)
production at colliders
γ from annihil in galactic center or halo and from synchrotron emission

Fermi, HESS, radio telescopes
indirect e from annihil in galactic hall or center PAMELA, ATIC, Fermi
from annihil in galactic hall or center
from annihil in galactic hall or center
V, V from annihil in massive bodies

Direc ectio basics

Direc

Direc

recoil energy $\quad E_{R}=\frac{\mu_{\chi}^{2} v^{2}}{m_{N}}(1-\cos \theta)$

$$
\mu_{\chi}=\frac{m_{\chi} m_{N}}{m_{\chi}+m_{N}} \rightarrow\left\{\begin{array}{l}
m_{\chi} \text { for small } m_{\chi} \\
m_{N} \text { for large } m_{\chi}
\end{array}\right.
$$

recoil energy spectrum

$\frac{d R}{d E_{R}}=\frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^{2}} \int_{v_{\min }\left(E_{R}\right)}^{v_{\text {esc }}} \frac{1}{v} f(\vec{v}) \mathrm{d} \vec{v}$
with $\quad f(\vec{v}) \propto e^{-v^{2} / V_{c}^{2}}+$ motion of Barth in (static?)halo
$\sigma \approx \sigma_{n}^{\mathrm{SI}} A^{4} \quad \times$ nuclear form factors

number of events

$N=\mathcal{E} \mathcal{T} \int_{E_{\text {thres }}}^{E_{\max }} \frac{d R}{d E_{R}} d E_{R}$
recoil energy $\quad E_{R}=\frac{\mu_{\chi}^{2} v^{2}}{m_{N}}(1-\cos \theta)$

$$
\mu_{\chi}=\frac{m_{\chi} m_{N}}{m_{\chi}+m_{N}} \rightarrow\left\{\begin{array}{l}
m_{\chi} \text { for small } m_{\chi} \\
m_{N} \text { for large } m_{\chi}
\end{array}\right.
$$

recoil energy spectrum

$$
\frac{d R}{d E_{R}}=\frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^{2}} \int_{v_{\min }\left(E_{R}\right)}^{v_{\text {erc }}} \frac{1}{v} f(\vec{v}) \mathrm{d} \vec{v}
$$

with $f(\vec{v}) \propto e^{-v^{2} / V_{c}^{2}}+$ motion of Earth in (static?)halo
$\sigma \approx \sigma_{n}^{\mathrm{SI}} A^{4} \quad \times$ nuclear form factors

number of events

$$
N=\mathcal{E} \mathcal{T} \int_{E_{\text {thres }}}^{E_{\max }} \frac{d R}{d E_{R}} d E_{R}
$$

P.Salati, proceedings of Cargèse 200 r
recoil energy $\quad E_{R}=\frac{\mu_{\chi}^{2} v^{2}}{m_{N}}(1-\cos \theta)$

$$
\mu_{\chi}=\frac{m_{\chi} m_{N}}{m_{\chi}+m_{N}} \rightarrow\left\{\begin{array}{l}
m_{\chi} \text { for small } m_{\chi} \\
m_{N} \text { for large } m_{\chi}
\end{array}\right.
$$

recoil energy spectrum

$$
\frac{d R}{d E_{R}}=\frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^{2}} \int_{v_{\min }\left(E_{R}\right)}^{v_{\text {erc }}} \frac{1}{v} f(\vec{v}) \mathrm{d} \vec{v}
$$

with $f(\vec{v}) \propto e^{-v^{2} / V_{c}^{2}}+$ motion of Earth in (static?)halo
$\sigma \approx \sigma_{n}^{\mathrm{SI}} A^{4} \quad \times$ nuclear form factors

number of events

$$
N=\mathcal{E} \mathcal{T} \int_{E_{\text {thres }}}^{E_{\max }} \frac{d R}{d E_{R}} d E_{R}
$$

P.Salati, proceedings of Cargèse 2007
recoil energy $\quad E_{R}=\frac{\mu_{\chi}^{2} v^{2}}{m_{N}}(1-\cos \theta)$

$$
\mu_{\chi}=\frac{m_{\chi} m_{N}}{m_{\chi}+m_{N}} \rightarrow\left\{\begin{array}{l}
m_{\chi} \text { for small } m_{\chi} \\
m_{N} \text { for large } m_{\chi}
\end{array}\right.
$$

recoil energy spectrum

$$
\frac{d R}{d E_{R}}=\frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^{2}} \int_{v_{\min }\left(E_{R}\right)}^{v_{\text {erc }}} \frac{1}{v} f(\vec{v}) \mathrm{d} \vec{v}
$$

with $f(\vec{v}) \propto e^{-v^{2} / V_{c}^{2}}+$ motion of Earth in (static?)halo
$\sigma \approx \sigma_{n}^{\mathrm{SI}} A^{4} \quad \times$ nuclear form factors

number of events

$$
N=\mathcal{E} \mathcal{T} \int_{E_{\text {thres }}}^{E_{\text {max }}} \frac{d R}{d E_{R}} d E_{R}
$$

P.Salati, proceedings of Cargèse 2007
recoil energy $\quad E_{R}=\frac{\mu_{\chi}^{2} v^{2}}{m_{N}}(1-\cos \theta)$

$$
\mu_{\chi}=\frac{m_{\chi} m_{N}}{m_{\chi}+m_{N}} \rightarrow\left\{\begin{array}{l}
m_{\chi} \text { for small } m_{\chi} \\
m_{N} \text { for large } m_{\chi}
\end{array}\right.
$$

recoil energy spectrum

$$
\frac{d R}{d E_{R}}=\frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^{2}} \int_{v_{\min }\left(E_{R}\right)}^{v_{\text {erc }}} \frac{1}{v} f(\vec{v}) \mathrm{d} \vec{v}
$$

with $f(\vec{v}) \propto e^{-v^{2} / V_{c}^{2}}+$ motion of Earth in (static?)halo
$\sigma \approx \sigma_{n}^{\mathrm{SI}} A^{4} \quad \times$ nuclear form factors

number of events

$$
N=\mathcal{E} \mathcal{T} \int_{E_{\mathrm{thres}}}^{E_{\max }} \frac{d R}{d E_{R}} d E_{R}
$$

P.Salati, proceedings of Cargèse 2007
recoil energy $\quad E_{R}=\frac{\mu_{\chi}^{2} v^{2}}{m_{N}}(1-\cos \theta)$

$$
\mu_{\chi}=\frac{m_{\chi} m_{N}}{m_{\chi}+m_{N}} \rightarrow\left\{\begin{array}{l}
m_{\chi} \text { for small } m_{\chi} \\
m_{N} \text { for large } m_{\chi}
\end{array}\right.
$$

recoil energy spectrum

$$
\frac{d R}{d E_{R}}=\frac{1}{2} \frac{\rho_{\odot}}{m_{\chi}} \frac{\sigma}{\mu^{2}} \int_{v_{\min }\left(E_{R}\right)}^{v_{\text {eec }}} \frac{1}{v} f(\vec{v}) \mathrm{d} \vec{v}
$$

with $f(\vec{v}) \propto e^{-v^{2} / V_{c}^{2}}+$ motion of Earth in (static?)halo
$\sigma \approx \sigma_{n}^{\mathrm{SI}} A^{4} \quad \times$ nuclear form factors

number of events

$$
N=\mathcal{E} \mathcal{T} \int_{E_{\text {thres }}}^{E_{\max }} \frac{d R}{d E_{R}} d E_{R}
$$

P.Salati, proceedings of Cargèse 200 r

Background rejection

[credit: B.Sadoulet]

CDMS coll.
measure two quantities to discriminate Sign \&e Bkgd, on event-by-event basis

DAMA/Libra

$\mathrm{NaI}(\mathrm{Tl})$

Annual modulation seen (8σ) :

DAIMA Coll., 0804.2741, 2008

DAMA/Libra

Annual modulation seen (8σ):

DAIMA Coll., 0804.2741, 2008

DAMA/Libra

Annual modulation seen (8σ):

An instrumental effect?

6JTO!? e.s. P.Belli, KITP workshop 12.2009

DAMA Coll., $0804.2741,2008$

DAMA/Libra

Annual modulation seen (8σ):

DAMA Coll., $0804.2741,2008$

CDMS

$\mathrm{Ge}+\mathrm{Si}$

2 events seen, with 0.6 exp'd background

CDMS coll., Science 327 (2010), 0912.3592
direct detection
Xenon, CDMS (Dam

J. Jochum's lecture

from annihil in galactic halo or center PAMIELA, ATIC, Fermi
from annihil in galactic halo or center
from annihil in galactic halo or center
V, V from annihil in massive bodies

direct detection

production at colliders

LHC

γ from annihil in galactic center or halo and from synchrotron emission

Fermi, HESS, radio telescopes
from annihil in galactic halo or center PAMBLA, ATIC, Fermi
from annihil in galactic halo or center
from annihil in galactic hall or center
ν, V from annihil in massive bodies

Produr on at olliders

Produr on at olliders

Produr on at olliders

Search strategy l:

look for decay subproducts of particles in the same theory

- well studied ($M_{T}^{2} \ldots$)
 - model dependent

'trigger on $4 \mathrm{j}+41+\mathrm{MET} .$. '
Search strategy 2: 'monojets'

- 'new'
- more model independent

How do we know that Dark Energy is out there?

Most of the Universe is Dark

$$
\left(\Omega_{x}=\frac{\rho_{x}}{\rho_{c}} ; \text { CMB first peak } \Rightarrow \Omega_{\text {tot }}=1 \text { (flat); HST } h=0.71 \pm 0.07\right)
$$

'Definition' of Dark Energy:

FRW \#2

$\frac{\ddot{a}}{a}=-\frac{4 \pi G}{3}(\rho+3 p)$
if $\rho<-p / 3$ i.e. $w:=\frac{\rho}{p}<-\frac{1}{3}$
\Rightarrow acceleration!

special case:

$\rho=-p$ i.e. $w=-1$ cosmological constant Λ
(constant as $\rho_{i} \propto(1+z)^{3\left(1+w_{i}\right)} \rightsquigarrow$ const)

$$
\left(\Omega_{x}=\frac{\rho_{x}}{\rho_{c}} ; \text { CMB first peak } \Rightarrow \Omega_{\mathrm{tot}}=1 \text { (flat); HST } h=0.71 \pm 0.07\right)
$$

1) Supernovae type Ia: 'standard candles'

1) Supernovae type Ia: 'standard candles'

1) Supernovae type Ia:

 'standard candles'
$\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\left(1-\Omega_{\mathrm{M}}\right)\left(1+z^{\prime}\right)^{3(1+w)}+\Omega_{\mathrm{R}}\left(1+z^{\prime}\right)^{4}}}$

1) Supernovae type Ia:

 'standard candles'

1) Supernovae type Ia: 'standard candles'

$$
\underset{\text { Luminosity }}{\mathcal{L}=4 \pi F d_{\mathrm{L}}^{2}=4 \pi F \chi_{\text {comoving distance }}^{2}(1+z)^{2}}
$$

$\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}}$ so \mathcal{L} as fnct of z and $\Omega_{\mathrm{M}}, \Omega_{\Lambda}$

1) Supernovae type Ia: 'standard candles'

$$
\mathcal{L}_{\text {Luminosity }}^{\mathcal{L}}=4 \pi F d_{\mathrm{L}}^{2}=4 \pi F \chi_{\text {comoving distance }}^{2}(1+z)^{2}
$$

$$
\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}}
$$

Perlmutter et al., 1999, Astrophys. J. 51 r
Riess et al., 1998, Astron. J. 116

1) Supernovae type Ia: 'standard candles'

$$
\underset{\text { Luminosity }}{\mathcal{L}=4 \pi F d_{\mathrm{L}}^{2}=4 \pi F \chi_{\text {comoving distance }}^{\chi^{2}}(1+z)^{2}}
$$

$\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}}$ so \mathcal{L} as fnct of z and $\Omega_{\mathrm{M}}, \Omega_{\Lambda}$
Well, they are not really standard, let's standardize them

1) Supernovae type Ia: 'standard candles'

$$
\mathcal{L}_{\text {Luminosity }}^{\mathcal{L}}=4 \pi F d_{\mathrm{L}}^{2}=4 \pi F \chi_{\text {comoving distance }}^{2}(1+z)^{2}
$$

$$
\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}}
$$

Perlmutter et al., 1999, Astrophys. J. 51 r
Riess et al., 1998, Astron. J. 116

1) Supernovae type Ia: 'standard candles'

$$
\underset{\text { Luminosity }}{\mathcal{L}=4 \pi F d_{\mathrm{L}}^{2}=4 \pi F \underbrace{\chi^{2}}_{\text {comoving distance }}(1+z)^{2}}
$$

Suzuki et al., 1105.3470

Bottom line:
distant SNe appear dimmer than predicted in a Universe without DE,
the Universe has accelerated in the past 5 Gyr

2) Baryon Acoustic Oscillations:

 'standard ruler'

2) Baryon Acoustic Oscillations:

 'standard ruler'

$$
\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}
$$

2) Baryon Acoustic Oscillations:

 'standard ruler'

$$
\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}
$$

What is the 'ruler'?

2) Baryon Acoustic Oscillations:

 'standard ruler'$$
L=\theta d_{\mathrm{A}}=\theta \frac{\chi_{\substack{\text { Length } \\\left(\mathrm{c}^{\prime}\right. \text { (known') }}}^{1+z} \text { comoving distance }}{\substack{\text { cunknown') }}}
$$

$$
\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}
$$

What is the 'ruler'?

[^0]
2) Baryon Acoustic Oscillations:

 'standard ruler'$$
\begin{aligned}
& L=\theta d_{\mathrm{A}}=\theta \frac{\chi}{1+z} \\
& \mathrm{~V}_{\text {Length }}^{\text {('known') }} \\
& \chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}
\end{aligned}
$$

What is the 'ruler'?

2) Baryon Acoustic Oscillations:

$$
\begin{aligned}
& \text { 'standard ruler' } \\
& L=\theta d_{\mathrm{A}}=\theta \frac{\chi^{\text {comoving distance }} \text { ('unknown') }}{1+z} \\
& \hat{\text { Length }}^{\text {('known') }} \\
& \chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}
\end{aligned}
$$

What is the 'ruler'?

[^1]
2) Baryon Acoustic Oscillations:

$$
\begin{aligned}
& \text { 'standard ruler' } \\
& L=\theta d_{\mathrm{A}}=\theta \frac{\chi^{\text {comoring distance }}}{1+z} \\
& \mathrm{C}_{\text {Lengith }} \\
& \text { (known') } \\
& \chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}
\end{aligned}
$$

What is the 'ruler'?

2) Baryon Acoustic Oscillations:

$$
\begin{aligned}
& \text { 'Standard ruler' } \\
& L=\theta d_{\mathrm{A}}=\theta \frac{\chi}{1+z} \\
& \mathrm{~V}_{\text {Length }} \\
& \text { ((known') } \\
& \chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}
\end{aligned}
$$

What is the 'ruler'? A pinch in the galaxy distribution

2) Baryon Acoustic Oscillations:

 'standard ruler'$$
\begin{aligned}
& L=\theta d_{\mathrm{A}}=\theta \frac{\chi^{-2}}{1+z} \text { (unknown') } \\
& \mathrm{T}_{\substack{\text { Length } \\
(\text { (known') }}}^{\chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}}
\end{aligned}
$$

What is the 'ruler'? A pinch in the galaxy distribution

2) Baryon Acoustic Oscillations:

NB: can actually do the same in Z direction 'standard ruler'

$$
\begin{aligned}
& L=\theta d_{\mathrm{A}}=\theta \frac{\chi^{2}}{1+z} \\
& \mathrm{~V}_{\text {Length }} \text { (unknown') } \\
& (\text { (known) } \\
& \chi(z)=\int_{0}^{z} \frac{d z^{\prime}}{H(z)}=\int_{0}^{z} \frac{d z^{\prime}}{H_{0} \sqrt{\Omega_{\mathrm{M}}\left(1+z^{\prime}\right)^{3}+\Omega_{\Lambda}}} \text { so } L \text { as fnct of } z \text { and } \Omega_{\mathrm{M}}, \Omega_{\Lambda}
\end{aligned}
$$

What is the 'ruler'? A pinch in the galaxy distribution

3) CMB:

In principle: another 'standard ruler' *: the size of the sound horizon at $z \simeq 1100$

$$
r_{s}=\int c_{s} d \tau \quad c_{s} \simeq c / \sqrt{3}
$$

3) CMB:

In principle: another 'standard ruler' *: the size of the sound horizon at $z \simeq 1100$

$$
r_{s}=\int c_{s} d \tau \quad c_{s} \simeq c / \sqrt{3}
$$

3) CMB:

In principle: another 'standard ruler' *:
the size of the sound horizon at $z \simeq 1100$

$$
r_{s}=\int c_{s} d \tau \quad c_{s} \simeq c / \sqrt{3}
$$

*(actually, it's the 'same' ruler as BAO!)
In practice: D is too subdominant at $z \simeq 1100$, there are degeneracies w other effects

3) CMB:

In principle: another 'standard ruler' *: the size of the sound horizon at $z \simeq 1100$

$$
r_{s}=\int c_{s} d \tau \quad c_{s} \simeq c / \sqrt{3}
$$

*(actually, it's the 'same' ruler as BAO!)
In practice: DE is too subdominant at $z \simeq 1100$, there are degeneracies w other effects

On the other hand: CMB fit gives $\Omega_{\text {tot }} \simeq 1$

$$
\Omega_{\mathrm{DM}} \simeq 0.27
$$

$\Omega_{\Lambda} \approx 0.73$

3) CMB:

In principle: another 'standard ruler' *: the size of the sound horizon at $z \simeq 1100$

$$
r_{s}=\int c_{s} d \tau \quad c_{s} \simeq c / \sqrt{3}
$$

*(actually, it's the 'same' ruler as BAO!)
In practice: D is too subdominant at $z \simeq 1100$, there are degeneracies w other effects

On the other hand: CMB fit gives $\Omega_{\text {tot }} \simeq 1$

$$
\begin{aligned}
& \Omega_{\mathrm{DM}} \simeq 0.27 \\
& \text { ensing of } \mathrm{CMB} \text { light }
\end{aligned}
$$

Moreover, recently: using weak lensing of CMB light

$$
\Omega_{\Lambda}=0.61_{-0.06}^{+0.14}
$$

- complementarity
- concordance

$\Omega_{\Lambda}=0.725 \pm 0.016$ $\Omega_{\mathrm{M}}=0.274 \pm 0.007$

Other probes played / will play a role:

- cluster counts
- weak lensing...

- complementarity
- concordance

$$
\begin{aligned}
& \Omega_{\Lambda}=0.725 \pm 0.016 \\
& \Omega_{\mathrm{M}}=0.274 \pm 0.007
\end{aligned}
$$

Other probes played / will play a role:

- cluster counts
- weak lensing...

L. Amendola's lecture

What do we know of the (particle physics) properties of Dark Đnergy?

Λ cosmological constant, $w=-1$
Λ cosmological constant, $w=-1$ measured value $\rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}$
Λ cosmological constant, $w=-1$ measured value $\rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}$
estimate $\rho_{\text {vac }}=\frac{1}{2} \sum_{\text {particles }} g_{i} \int_{0}^{k_{\text {max }}} \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{k^{2}+m^{2}}$
$\simeq \sum_{\text {particles }} \frac{g_{i} k_{\max }^{4}}{16 \pi^{2}}$

Λ cosmological constant, $w=-1$ measured value $\rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}$
estimate $\rho_{\text {vac }}=\frac{1}{2} \sum_{\text {particics }} g_{i} \int_{0}^{k_{\text {max }}} \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{k^{2}+m^{2}}$

$$
\simeq \sum_{\text {particles }} \frac{g_{i} k_{\max }^{4}}{16 \pi^{2}}
$$

$$
\text { if } k_{\max } \sim M_{\mathrm{Pl}} \quad \rho_{\Lambda} \sim 10^{74} \mathrm{GeV}^{4}
$$

Λ cosmological constant, $w=-1$ measured value $\rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}$ estimate $\begin{aligned} & \rho_{\mathrm{vac}}=\frac{1}{2} \sum_{\text {particles }} g_{i} \int_{0}^{k_{\max }} \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{k^{2}+m^{2}} \\ & \simeq \sum_{\text {particles }} \frac{g_{i} k_{\max }^{4}}{16 \pi^{2}} \\ & \text { if } k_{\max } \sim M_{\mathrm{Pl}} \quad \rho_{\Lambda} \sim 10^{74} \mathrm{GeV}^{4}\end{aligned}$
Λ cosmological constant, $w=-1$

$$
\text { measured value } \rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}
$$

$$
\text { estimate } \rho_{\text {vac }}=\frac{1}{2} \sum_{\text {particles }} g_{i} \int_{0}^{k_{\max }} \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{k^{2}+m^{2}}
$$

121 orders

$$
\simeq \sum_{\text {particles }} \frac{g_{i} k_{\max }^{4}}{16 \pi^{2}}
$$ of magnitude!!

59 orders of magnitude!
if $k_{\max } \sim M_{\mathrm{Pl}} \quad \rho_{\Lambda} \sim 10^{74} \mathrm{GeV}^{4}$
if SuSy $k_{\max } \sim 1 \mathrm{TeV} \quad \rho_{\Lambda} \sim 10^{12} \mathrm{GeV}^{4}$
Λ cosmological constant, $w=-1$

$$
\text { measured value } \rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}
$$

$$
\text { estimate } \rho_{\text {vac }}=\frac{1}{2} \sum_{\text {particices }} g_{i} \int_{0}^{k_{\text {max }}} \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{k^{2}+m^{2}}
$$

$$
\simeq \sum_{\text {particles }} \frac{g_{i} k_{\max }^{4}}{16 \pi^{2}}
$$

59 orders of magnitude!
if $k_{\max } \sim M_{\mathrm{PI}} \quad \rho_{\mathrm{A}} \sim 10^{74} \mathrm{GeV}^{4}$
if SuSy $k_{\max } \sim 1 \mathrm{TeV} \quad \rho_{\Lambda} \sim 10^{12} \mathrm{GeV}^{4}$

The worst fine tuning problem. Ever.
Λ cosmological constant, $w=-1$ measured value $\rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}$
estimate $\rho_{\text {vac }}=\frac{1}{2} \sum_{\text {particles }} g_{i} \int_{0}^{k_{\text {max }}} \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{k^{2}+m^{2}}$

$$
\simeq \sum_{\text {particles }} \frac{g_{i} k_{\max }^{4}}{16 \pi^{2}}
$$

if $k_{\text {max }} \sim M_{\mathrm{Pl}} \quad \rho_{\Lambda} \sim 10^{74} \mathrm{GeV}^{4}$
if SuSy $k_{\max } \sim 1 \mathrm{TeV} \quad \rho_{\Lambda} \sim 10^{12} \mathrm{GeV}^{4}$
evolution in time

121 orders of magnitude! !

59 orders of magnitude!

The worst fine tuning problem. Ever.
Λ cosmological constant, $w=-1$ measured value $\rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}$ estimate $\rho_{\text {vac }}=\frac{1}{2} \sum_{\text {particles }} g_{i} \int_{0}^{k_{\text {max }}} \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{k^{2}+m^{2}}$

$$
\simeq \sum_{\text {particles }} \frac{g_{i} k_{\max }^{4}}{16 \pi^{2}}
$$

if $k_{\max } \sim M_{\mathrm{PI}} \quad \rho_{\Lambda} \sim 10^{74} \mathrm{GeV}^{4}$
if SuSy $k_{\max } \sim 1 \mathrm{TeV} \quad \rho_{\Lambda} \sim 10^{12} \mathrm{GeV}^{4}$
evolution in time

59 orders of magnitude!

121 orders of magnitude!
 The worst fine tuning problem. Ever.

Why now?
Coincidence problem.
Λ cosmological constant, $w=-1$ measured value $\rho_{\Lambda}=2.510^{-47} \mathrm{GeV}^{4}$ estimate $\rho_{\mathrm{vac}}=\frac{1}{2} \sum_{\text {particles }} g_{i} \int_{0}^{k_{\text {max }}} \frac{d^{3} k}{(2 \pi)^{3}} \sqrt{k^{2}+m^{2}}$

$$
\simeq \sum_{\text {particles }} \frac{g_{i} k_{\max }^{4}}{16 \pi^{2}}
$$

if $k_{\text {max }} \sim M_{\mathrm{Pl}} \quad \rho_{\Lambda} \sim 10^{74} \mathrm{GeV}^{4}$
if SuSy $k_{\max } \sim 1 \mathrm{TeV} \quad \rho_{\Lambda} \sim 10^{12} \mathrm{GeV}^{4}$
evolution in time

Why now?
Coincidence problem. 59 orders of magnitude!

121 orders of magnitude! ! (20) The worst fine tuning problem. Ever.

Anthropism? Multiverse?
Φ 'quintessence', w>-1

Φ 'quintessence', $w>-1$

$$
\begin{aligned}
& \rho_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}+V \\
& p_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}-V \\
& w_{\Phi}=-1+\frac{\dot{\Phi}^{2}}{\dot{\Phi}^{2}+2 V} \\
& \text { so if } \dot{\Phi} \ll \square \text { Dark Energy }
\end{aligned}
$$

Φ 'quintessence', $w>-1$

$$
\begin{aligned}
& \rho_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}+V \\
& p_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}-V \\
& w_{\Phi}=-1+\frac{\dot{\Phi}^{2}}{\dot{\Phi}^{2}+2 V} \\
& \text { so if } \dot{\Phi}<V \square \text { Dark Energy }
\end{aligned}
$$

evolution in time

Φ 'quintessence', $w>-1$

evolution in time

$$
\begin{aligned}
& \rho_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}+V \\
& p_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}-V \\
& w_{\Phi}=-1+\frac{\dot{\Phi}^{2}}{\dot{\Phi}^{2}+2 V} \\
& \text { so if } \dot{\Phi}<V \square \text { Dark Energy }
\end{aligned}
$$

Modified Gravity (f(R), DGP...)
Φ 'quintessence', $w>-1$

evolution in time

$$
\begin{aligned}
& \rho_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}+V \\
& p_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}-V \\
& w_{\Phi}=-1+\frac{\dot{\Phi}^{2}}{\dot{\Phi}^{2}+2 V} \\
& \text { so if } \dot{\Phi}<V
\end{aligned}
$$

Modified Gravity (f(R), DGP...)

Swiss cheese, local voids...
Φ 'quintessence', $w>-1$

evolution in time

$$
\begin{aligned}
& \rho_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}+V \\
& p_{\Phi}=\frac{1}{2} \dot{\Phi}^{2}-V \\
& w_{\Phi}=-1+\frac{\dot{\Phi}^{2}}{\dot{\Phi}^{2}+2 V} \\
& \text { so if } \dot{\Phi}<V \\
& \text { Dark Energy }
\end{aligned}
$$

Modified Gravity (f(R), DGP...)

Swiss cheese, local voids...

We have (almost) no clue of what they are, but many hints and many ideas.

The 'era of data'
is now for DM.

The 'era of data' is coming for DE.

May you live in exciting times.

[^0]: D. Bisenstein, cmb.as.arizona.edu/ ${ }^{\text {eisenste/acousticpeak/ }}$

[^1]: D.Bisenstein, cmb.as.arizona.edu/ ${ }^{\sim}$ eisenste/aco

