
In any field, find the strangest thing and then explore it.
(John Archibald Wheeler)
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1 Getting Started

Find an answer to the two questions:

• Why are there small temperature fluctuations ∆T in the cosmic microwave
background (CMB), i.e., ∆T

T ∼ 10−5, although two points on the last
scattering surface with an angular separation
2Θ∗ ≥ 1.19◦ are causally disconnected? (horizon problem)

• How can these small inhomogeneities in CMB be explained?

→ Inflation:
The shrinking Hubble sphere during inflation, i.e., d

dt (aH)−1 < 1, solves the
horizon problem, see Julian Heeck, Introduction to Inflation.
In the following, the smallness of inhomogeneities is explained by quantum fluc-
tuations.
The proceeding starts with an introduction into cosmological perturbation the-
ory with an emphasis on scalar perturbations. After that, the perturbed action
S(2) for the inflaton field φ minimally coupled to gravity is demonstrated at
second-order in the gauge-invariant comoving curvature perturbation R using
comoving gaue. Variation of S(2) yields the Mukhanov-Sasaki equation for the
mode functions vk. Quantizing vk leads to the unique Bunch-Davies mode func-
tions. The main result of this talk is presented in section 3.5 where the quantum
zero-point fluctuations of the Bunch-Davies mode functions in the Minkowski
vacuum are discussed from which the power spectrum PR(k) of the comoving
curvature perturbation R follow. It is PR(k) which explains the temperature
fluctuations in CMB.
The notation of [1] is adopted, in particular, derivatives with respect to physical
time t are denoted by overdots, while derivatives with repsect to conformal time
τ are indicated by primes.

2 Cosmological Perturbation Theory

This section is dedicated to perturbations generating the observed inhomo-
geneities. After basic remarks about perturbations the metric and matter per-
turbations are introduced [2]. Taken the Friedmann-Robertson-Walker (FRW)
metric (see Alexander Dueck, Introduction to Cosmology) as metric of the back-
ground spacetime N it is stated that general metric and matter perturbations
can be decomposed into independent scalar (S), vector (V) and tensor (T) com-
ponents. Scalar perturbations are examined in more detail yielding the comov-
ing curvature perturbation R. Its power spectrum PR(k) is the key quantity to
describe inhomogeneities arising from inflation.

2.1 General Remarks

• metric of homogeneous, isotropic universe:
ds2 = gµνdx

µdxν = −dt2 + a2(t) dx2

If one allows small perturbations to the metric, then an inhomogeneous
universe results.
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• LetM be the physical, i.e., perturbed spacetime with coordinates xa and
let N be the background, i.e., homogeneous, unperturbed spacetime with
coordinates xab . Let D be the diffeomorphism D : N → M; xab 7→ xa.
Consider a function X(t,x) on M. For a given diffeomorphism D the
perturbation δX(t,x) of X(t,x) is
δX(t,x) = X(t,x)−X(D−1(t,x)), where X(t) indicates a function on the
background spacetime N [3].
Observe that X(t) only depends on time due to homogeneity of N .

• Since the action of general relativity is diffeomorphism invariant, the
spacetime M can also be described in coordinates x̃a by the diffeom-
porphism D̃ : N →M; xab 7→ x̃a. D̃ induces the perturbation
δX̃(t,x) = X̃(t,x)−X(D̃−1(t,x)).
Problem: δX̃(t,x) 6= δX(t,x), however, the action is invariant under dif-
feomorphism

• gauge transformation G : δX G→ δX̃
problem: freedom to chose G → arbitrariness in value of perturbation of
X at any given spacetime point, unless X is gauge invariant
→ fix G by gauge choice

• Different Fourier modes δX(t,k) of a perturbation δX(t,x), i.e.,
δX(t,k) =

∫
d3x δX(t,x)eikx, are independent [1].

2.2 Metric and Matter Perturbations

• metric gµν perturbations:
ds2 = −(1 + 2Φ)dt2 + 2a(t)Bidxidt+ a2(t)[(1− 2Ψ)δij + 2Eij ]dxidxj

Φ: lapse (3-scalar) → δg00

Bi: shift (3-vector) → δg0i

Ψ: spatial curvature perturbation (3-scalar) → δgii
Eij : shear (symmetric traceless 3-tensor) → δgij

• matter Tµ ν perturbations:
Energy-momentum tensor Tµ ν consists of density ρ with perturbation
δρ(t, xi) = ρ(t, xi)− ρ(t),
pressure p with perturbation
δp(t, xi) = p(t, xi)− p(t),
four-velocity uµ with
gµνu

µuν = −1→ uµ = (1− Φ, vi +Bi) (perturbed metric used)
and anisotropic stress Σµ ν with
Σµνuν = 0.
The perturbed energy-momentum tensor has the following entries:

T 0
0 = −(ρ+ δρ) ,

T 0
i = (ρ+ p)vi ,

T i 0 = −(ρ+ p)(vi +Bi) ,
T i j = δi j(p+ δp) + Σi j .

The inflaton φ, which is a scalar field (see Julian Heeck, Introduction to
Inflation), is also pertubed:
δφ(t, xi) = φ(t, xi)− φ(t).
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• The metric perturbations enter the Einstein tensor Gµν = Rµν − 1
2gµνR

and thus the Einstein field equations Gµν = 8πGTµν link metric and
matter perturbations.

2.3 SVT Decomposition

In Fourier space, a perturbation δX(t,k) of helicity m has its amplitude multi-
plied by eimω under a rotation with an angle ω around the wavevector k. Scalar,
vector and tensor perturbations are defined as perturbations having helicities 0,
±1, ± 2, respectively.
The FRW metric is taken as background spacetime N . The symmetries result-
ing from homogeneity and isotropy allow to decompose the metric and matter
perturbations into independent scalar, vector and tensor perturbations. It is a
fact that vector perturbations are not created by inflation, hence the consider-
ation is limited to scalar and tensor perturbations.
A 3-scalar α is a helicity scalar, i.e., α = αS . A 3-vector βi can be decom-
posed into a helicity scalar βSi and a helicity vector βVi , i.e., βi = βSi + βVi with
βSi = − ikik β and kiβ

V
i = 0 in Fourier space. A symmetric traceless 3-tensor

Eij can be decomposed into a helicity scalar ESij , a helicity vector EVij and a

helicity tensor ETij i.e., Eij = ESij +EVij +ETij with ESij =
(
−kikjk2 + 1

3δij

)
E and

kiE
T
ij = 0.

Scalar perturbations are discussed in more detail.

2.4 Scalar Perturbations

• four scalar metric perturbations:

ds2 = −(1 + 2Φ)dt2 + 2a(t)B,i dxidt+ a2(t)[(1− 2Ψ)δij + 2E,ij ]dxidxj

(2.2)
The invariance of ds2 under a scalar gauge transformation GS ,

t
GS→ t+ α ,

xi
GS→ xi + δijβ,j

where α and β,j are free gauge parameters, directs the transformation
behavior of the four scalar metric perturbations:

Φ GS→ Φ− α̇ ,
B
GS→ B + a−1α− αβ̇ ,

E
GS→ E − β ,

Ψ GS→ Ψ +Hα .

• gauge dependence of matter perturbations:

δφ
GS→ δφ− φ̇α ,

δρ
GS→ δρ− ρ̇α ,

δp
GS→ δp− ṗα ,

δq
GS→ δq + (ρ+ p)α ,
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where q is the scalar part of the 3-momentum density.

• Perturbing the action of the inflaton field φ minimally coupled to gravity
(see section 3.1),

S =
1
2

∫
d4x
√
g [R− (∇φ)2 − 2V (φ)] , (2.6)

the four scalar metric perturbations and the inflaton perturbation sum up
to five scalar degrees of freedom (dof). It is a fact that gauge invariance
of (2.6) removes two dof. Constraints from the perturbed Einstein field
equations remove two additional dof. One physical degree of freedom
remains [4] which is chosen to be the comoving curvature perturbation R,

R = Ψ− H

ρ+ p
δq . (2.7)

From the gauge transformations of Ψ and δq it is clear that R is gauge
invariant.

2.5 Comoving Curvature Perturbation R and Gaussian
Statistics

The time evolution of the comoving curvature perturbation R(t,x) is governed
by the Einstein field equations and energy-momentum conservation Tµν ;ν = 0:

Ṙ = − H

ρ+ p
δp+

k2

(aH)2
(...) .

For adiabtic matter perturbations, i.e., δpen = δp− ṗ

ρ̇
δρ = 0 which are available

for single-field inflation models (see Julian Heeck, Introduction to Inflation),R is
conserved on superhorizon scales k � aH. Calculating the primordial spectrum
of R at horizon crossing, R can therefore be regarded as time-independent, i.e.,
R = R(x).
In the following R(x) is assumed to be a Gaussian random field with Fourier
transformations

Rk = A

∫
d3xR(x)e−ikx , (2.8a)

R(x) = B

∫
d3kRke

ikx , (2.8b)

where BA = 1
(2π)3 .

• two-point correlation function ξR(r): ξR(r) = 〈R(x)R(x + r)〉 ,
〈...〉 means averaging.

• power spectrum PR(k):

〈RkRk′〉 = (2π)3δ(k + k′)PR(k) (2.9)

• variance σ2
R: σ2

R =
∫
d ln k∆2

R(k) with ∆2
R(k) = k3

2π2PR(k) and
B = 1

(2π)3 .
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In Gaussian statistics, three-point correlation functions vanish and all higher-
order correlation functions can be expressed in terms of the two-point correlation
function. The power spectrum PR(k) thus encodes the full information about
the fluctuations in the comoving curvature perturbation modes Rk.
In the next section, the modesRk are quantized. The fluctuations then naturally
emerge from quantum zero-point fluctuations of the quantized mode functions
v̂k.

3 Quantum Zero-Point Fluctuations

The aim of this section is to demonstrate how the power spectrum PR(k) arises
from quantum zero-point fluctuations of quantized mode functions v̂k.
The input is the second-order action S(2) for the comoving curvature perturba-
tion R. It is shown that each mode function vk satisfies the equation of a simple
harmonic oscillator (SHO) with time-dependent frequency.
Concerning the time-dependence of the frequencies additional conditions have
to be imposed to arrive at the unique Bunch-Davies mode functions vk.
Since demonstration is the main purpose, full calculations are passed on but the
interested reader may find them in the given references.

3.1 Mukhanov-Sasaki Equation

• action (2.6) of inflaton-field matter minimally coupled to gravity:

S =
1
2

∫
d4x
√
g [R− (∇φ)2 − 2V (φ)]

• fixing the gauge parameters α and β,j of the scalar gauge transformation
GS :
→ comoving gauge:

δφ = 0, gij = a2[(1− 2R)δij + hij ], hij,i = hi i = 0 (3.1)

• scalar perturbations: expanding (2.6) to second order in R [4] (attention:
hij generates tensor perturbations with resulting gravitational waves [1]):

S(2) =
1
2

∫
d4x
√
g a3 φ̇

2

H2

[
Ṙ2 − a−2 (∂iR)2

]
(3.2)

• variable redefinition
v = zR (3.3)

with z2 = a2 φ̇
2

H2 = 2a2ε and switching to conformal time τ , i.e., ∂τ = 1
a∂t

[3]:

⇒ S(2) =
1
2

∫
dτd3x

[
(v′)2 − (∂iv)2 +

z′′

z
v2

]
(3.4)

• Expressing (3.4) in Fourier modes vk, i.e.,
v(τ,x) =

∫
d3k

(2π)3 vk(τ)eikx,
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and variation after v′, ∂iv and v finally yields the equation for the mode
functions vk (k = |k|), the Mukhanov-Sasaki equation:

v′′k +
(
k2 − z′′

z

)
vk = 0 . (3.5)

Observe that (3.5) is the equation of a SHO with time-dependent frequency
f(τ) = k2 − z′′

z .

3.2 Quantization of the Mode Functions vk

The mode functions vk are promoted to operators v̂k,

v̂k = vk(τ)âk + v∗−k(τ)â†−k , (3.6)

with creation and annihilation operators â†−k and âk, respectively, satisfying

âk =
W [v∗k, v̂k]
W [v∗k, vk]

(3.7)

and
[âk, â

†
k′ ] = (2π)3δ(3)(k− k′)⇔W [vk, vk] = 1 , (3.8)

where W [v, w] = i
~ (v∗w′ − v∗′w).

3.3 Non-Uniqueness of Vacuum State

• Mode functions vk(τ) and v∗k(τ) in the operator description (3.6) are linear
independent solutions of the Mukhanov-Sasaki equation (3.5).
→ linear combination of vk(τ) and v∗k(τ), χk(τ) = αkvk(τ) + βkv

∗
k(τ), is

solution of (3.5).
Note that for a SHO with time-independent frequenncy the coefficients in
the operator description are fixed c numbers, hence creation and annihi-
lation operators are unique.

• If the operator v̂k is constructed with operators âk and mode functions
vk(τ), then using a different set of mode functions, e.g., χk(τ), v̂k has to
be constructed with operators b̂k according to (3.7):

v̂k = χk(τ)b̂k + χ∗−k(τ)b̂†−k .

âk and b̂k are related by the Bogolubov transformations [1].

• → non-uniqueness of the vaccum state:
The b-vacuum state, defined by b̂k|0〉b = 0, contains particles created from
the a-vacuum state â†k|0〉a: b〈0|â†kâk|0〉b = |βk|2δ(0) [5].

• → How to calculate zero-point fluctuations 〈0|v̂kv̂k′ |0〉 if mode functions
vk(τ) and hence the vacuum state |0〉 are not unique?
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3.4 Bunch-Davies Mode Functions vk

• vacuum state for the fluctuations of vk(τ):
The vacuum state is chosen to be the Minkowski vacuum state âk|0〉 = 0
observed for τ → −∞.

• boundary conditions:
For z2 = 2a2ε the following equation holds

z′′

z
= (aH)2

[
2− ε+

3
2
η − 1

2
εη +

1
4
η2ηκ

]
(3.9)

with ε = − Ḣ
H2 , η = ε̇

Hε , κ = η̇
Hη [6].

In the de Sitter limit, i.e., ε→ 0, (3.9) simplifies to

z′′

z
= 2(aH)2 =

2
τ2

with a(τ) = − 1
Hτ .

In the chosen subhorizon limit τ → −∞ (3.5) reads

v′′k + k2vk = 0 ,

which has oscillating solutions vk = e±ikτ√
2k

The vacuum state |0〉 is the

state with minimum energy for the solution vk = e−ikτ√
2k

.
→ initial condition for all modes:

lim
τ→−∞ vk =

e−ikτ√
2k

. (3.10)

In the de Sitter limit (3.5) reads

v′′k +
(
k2 − 2

τ2

)
vk = 0 ,

which has the general solution

vk = α
e−ikτ√

2

(
1− i

kτ

)
+ β

eikτ√
2

(
1 +

i

kτ

)
.

Observe that α and β are free parameters owing to to the non-uniqueness
of the mode functions. However, the subhorizon limit (3.10) sets β = 0 and
the normalization condition (3.8) sets α = 1. The unique Bunch-Davies
mode functions result:

vk = e−ikτ√
2

(
1− i

kτ

)
with superhorizon limit

lim
kτ→0

vk =
1
i
√

2
1
k

3
2 τ

. (3.11)
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3.5 Power Spectrum PR(k) for Scalar Perturbations from
Quantum Fluctuations

• power spectrum Pv(k):
Using (3.6) and (3.8), the following calculation is obvious:

〈v̂k, v̂k′〉 = 〈0|v̂k, v̂k′ |0〉
= 〈0|(vk(τ)âk + v∗−k(τ)â†−k)(v′k(τ)âk′ + v∗−k′(τ)â†−k′)|0〉
= |vk|2〈0|[âk, â†−k′ ]|0〉
= |vk|2δ(k + k′)
≡ Pv(k)δ(k + k′) .

The quantum zero-point fluctuations 〈v̂k, v̂k′〉 are created on subhorizon
scales and freeze on superhorizon scales because the comoving curvature
perturbationR is constant on superhorizon scales (see Figure 1). Since the
power spectrum PR(k) is calculated at horizon crossing the superhorizon
limit (3.11) for the mode functions is used yielding
Pv(k) = 1

2k3
1
τ2 = 1

2k3 (aH)2.

• power spectrum PR(k):
Using v = zR, PR(k) equals

PR =
1
z2
Pv

=
1

2a2ε?

1
2k3

(a?H?)2

=
1

4k3

H2
?

ε?

⇒ PR(k) =
1

2k3

H4
?

φ̇2
?

with the relation ε = 1
2
φ̇2

H2 for a scalar field φ with action (2.6). Quantities
with lower index ? are evaluated at the time of horizon crossing.

• Combining equations (3.6), (3.3), (2.8a), (2.8b), (3.1) and (2.7), the out-
come is that the scalar metric perturbations (2.2) invoked to explain in-
homogeneities are explained by quantum zero-point fluctuations.

4 PR(k) and the Cosmic Microwave Background

The power spectrum PR(k) is related to the observed angualr power spectrum
Cl of CMB temperature fluctuations:

Cl =
2
π

∫
dk k2 PR(k)∆Tl(k)2

with transfer function ∆Tl(k), see Michael Duerr, Inflation and Contact with
Observations.
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(aH)−1

〈RkRk′〉 super-horzionsub-horizon

Ṙ ≈ 0

transfer
  function

CMB
recombination today

projection∆T C!

horizon exit

time

comoving scales

horizon re-entry

zero-point 
  fluctuations

R̂k

Figure 1: Creation and evolution of perturbations in the inflationary universe. Fluctu-
ations are created quantum mechanically on subhorizon scales (see section 3.5). While
comoving scales, k−1, remain constant the comoving Hubble radius during inflation,
(aH)−1, shrinks and the perturbations exit the horizon and freeze until horizon re-
entry at late times. After horizon re-entry the fluctuations evolve into anisotropies
in the CMB and perturbations in the LSS. This time-evolution has to be accounted
for to relate cosmological observations to the primordial perturbations laid down by
inflation (see Michael Duerr, Inflation and Contact with Observations). Figure from
[1].
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