A LAr scintillation veto for GERDA Phase II

Anne Wegmann

Max-Planck-Institut für Kernphysik - Heidelberg

IMPRS-PTFS seminar, July 7 2015

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Double beta decays

 $2\nu\beta\beta: (A, Z) \rightarrow (A, Z + 2) + 2e^{-} + 2\nu_{e}$

- so far observed in 12 nuclei with half lifes in the range of 10¹⁸ - 10²⁴ yr
- $T_{1/2}^{2\nu}$ (⁷⁶ Ge) = (1.926 ± 0.095)10²¹ yr measured by the GERDA collaboration arxiv:1501.02345v1
- $\Delta L = 0$: lepton number conserved
- allowed by the standard model

 $0\nu\beta\beta: (A, Z) \rightarrow (A, Z + 2) + 2e^{-}$

- only if v has Majorana mass component
- still hunted process
- $\Delta L = 2$: lepton number violation
- \rightarrow physics beyond the standard model

State of the art of $0\nu\beta\beta$ decay search with ⁷⁶Ge

Decay rate (if light Majorana ν exchange is dominating process)

$$(\mathcal{T}^{0
u}_{1/2})^{-1}=G^{0
u}(Q_{etaeta},Z)\left|M^{0
u}
ight|^2\langle m_{etaeta}
angle^2$$

•
$$G^{0
u}(Q_{etaeta},Z)\propto Q^5_{etaeta}=$$
 phase space integral

•
$$|M^{0\nu}|$$
 nuclear matrix element

•
$$\langle m_{\beta\beta} \rangle = \left| \sum_{i=1}^{3} U_{e_i} m_i \right| = \text{effective }
u \text{ mass}$$

The GERDA experiment

Anne Wegmann (MPIK)

LAr veto for GERDA Phasell

IMPRS-PTFS seminar

4 / 21

Experimental aspects of $0\nu\beta\beta$ search in ^{76}Ge

source = detector

 \rightarrow high detection efficiency

- detectors from Ge material enriched to $\approx 87\%$ in ^{76}Ge (coaxial and BEGe)
- stable performance
- $\Delta E \approx 0.1\%$ at Q_{etaeta}

 \Rightarrow main challenge: avoid background at Q_{etaeta}

GERDA Phasel $0\nu\beta\beta$ decay result

$$\mathsf{BI} = 1.0(1) \cdot 10^{-2} \, \tfrac{\mathrm{cts}}{\mathrm{keV} \cdot \mathrm{kg} \cdot \mathrm{yr}}$$

➤ design goal fulfilled

> 10 times better BI than previous experiments

Number of events in $Q_{\beta\beta} \pm 2\sigma_E$ after cuts (gray):

- 2.5 expected background events
- 3 observed
- 6 expected from claim
- \Rightarrow No signal observed at Q_{etaeta}
- \Rightarrow claim rejected with 99% probability

result on $T_{1/2}^{0\nu}$

frequentist profile likelihood fit

- best fit $N^{0\nu} = 0$
- $T_{1/2}^{0\nu}(90\% C.L.) > 2.1 \cdot 10^{25} yr$
- median sensitivity: $2.4 \cdot 10^{25} yr$

GERDA Phasell goal

• background, i.e. statistical fluctuation limited scenario

$$T_{1/2}^{0
u} \propto \sqrt{rac{M\cdot t}{\Delta E\cdot BI}}$$

• zero background regime

 $T_{1/2}^{0
u} \propto M\cdot t$

 $M \cdot t$: exposure $[kg \cdot y], \Delta E$: energy resolution

BI: background index $[\rm cts/(\rm keV \cdot \rm kg \cdot \rm yr)]$

PhaseII goal: explore $\mathcal{T}_{1/2}^{0 u}$ up to $1.5\cdot 10^{26}\,\mathrm{yr}$

- $\bullet~$ increase of exposure $\rightarrow~$ increase detector mass
- improved energy resolution
- significant reduction of background to re-enter background free regime \rightarrow BI of $10^{-3} [cts/(keV \cdot kg \cdot yr)]$

Towards an upgrade of GERDA

additional 25 new BEGe detectors $\approx 20 \, \mathrm{kg}$ mass (87% enrichment)

- better energy resolution
- enhanced pulse shape discrimination

new low mass holders with reduced mass and copper partly replaced by silicon

low radioactivity electronics matching the low capacitance of BEGes

A LAr scintillation veto for GERDA

LAr scintillation light

... can be used as anticoincidence veto

- excited states are created in
 - singlets $\tau \approx 6 \, \mathrm{ns}$
 - $\bullet~{\rm triplets}~\tau\approx 1.5\,\mu{\rm s}$
- decay under emission of photons, $\lambda = 128 \, \mathrm{nm}$
- in ultra-pure LAr 40000 ph/MeV
- contaminations lead to reduction of triplet lifetime and attenuation length

LArGe - a test facility for GERDA

Proof of LAr-veto concept in low background environment

- bg suppression studied for different sources in different locations
- simulation framework extended with photon tracking
- ⇒ good MC description after tuning and physics validation

source	pos	suppression factor			
		LAr veto	PSD	total	MC (LAr)
²²⁸ Th	int	1180 ± 250	2.4 ± 0.1	5200 ± 1300	909 ± 235
	ext	25 ± 1.2	2.8 ± 0.1	129 ± 15	17.2 ± 1.6
²²⁶ Ra	int	4.6 ± 0.2	4.1 ± 0.2	45 ± 5	3.8 ± 0.1
	ext	3.2 ± 0.2	4.4 ± 0.4	18 ± 3	3.2 ± 0.4
⁶⁰ Co	int	27 ± 1.7	76 ± 8.7	3900 ± 1300	16.1 ± 1.3

The hybrid design

3" photomultiplier tubes (MPIK)

Cu cylinder with wavelength shifting reflector foil

Anne Wegmann (MPIK)

LAr veto for GERDA Phasell

Outcome of an extensive MC simulation campaign

goal: optimize the veto design with respect to suppression factors and self-induced background

- suppression factor PMTs vs. fibers
- vertical position of PMTs and detector array
- loose/dense packing of the array

study the impact of LAr purity (attenuation length)

⇒ LAr veto still gives good SF but pe yield drops

predicted suppression factors for different backgrounds					
	det. holders	det. surface	hom. in LAr	far away	
²¹⁴ Bi ²⁰⁸ TI	$\begin{array}{c} 10.3\pm0.3\\ 320\pm34 \end{array}$	3.5 ± 0.1	54.8 ± 7.9	- 112.1 ± 38.8	
⁴² K	-	1*	5.3 ± 0.6	-	
* suppression factors calculated for older designs (approximate values)					

self-induced BI

- induced BI $\approx 2.3 \cdot 10^{-5} \, {\rm cts}/({\rm kg} \cdot {\rm keV} \cdot {\rm yr})$
- takes into account radioactivity of PMTs, VD, fibers, SiPMs, copper shrouds, reflector foil, cables,...

PMT light readout

 $\frac{228 \text{ } Th}{\text{PMT }^{*} < 1.94} < \frac{228 \text{ } Ra}{\text{VD}}$

* calculated from component screening

test facility @ MPIK

- test of up to 10 PMTs in LAr
- Iow radioactivity PMTs
- gain calibration with LED peak-to-valley ≥ 4
- \succ afterpulse probability < 10%
- signal rate monitoring low dark-rate: < 100 Hz in LN
- longterm test up to 6 weeks performed
- ⇒ some PMTs exhibited light production

Photomultiplier longterm stability

in LAr: some PMTs exhibited light production likely cause: discharges of e[−] surface charges on ceramic stem iterative process to study several countermeasures in close cooperation with Hamamatsu: ⇒ significant improvement of PMT stability in later versions

- more than 40 PMTs tested for \geq 40 d in LAr
- 20% failure rate for latest generation

⇒ 16 good ones selected for the operation in GERDA

Commissioning of the LAr veto in GERDA

LAr veto for GERDA Phasell

IMPRS-PTFS seminar 15 / 21

Anne Wegmann (MPIK)

First commissioning data with calibration source

 five working Ge detectors
 two calibration sources deployed: ²²⁸Th, ²²⁶Ra

Daq mode

- FADC trigger set on Ge detectors
- if Ge triggers all other channels (Ge detectors and light detectors) are readout simultanously

First commissioning data with calibration source

Anne Wegmann (MPIK)

LAr veto for GERDA Phasell

IMPRS-PTFS seminar 16 / 21

First commissioning data with calibration source

event vetoed ?

threshold for spe set in the valley

veto window choosen according to trigger distribution in the trace

⇒ set veto flag if one photo electron is detected inside veto window in any channel

outlook

maximize SF · acc (threshold, window)

 acceptance accessible via random coincidences with pulser events

Anne Wegmann (MPIK)

LAr veto performance of different light readouts - ²²⁸Th calibration

 ${\cal Q}_{\beta\,\beta}\,\pm$ 200 keV excl. SEP of 208 TI., AC cut for MC comparison

Anne Wegmann (MPIK)

Comparison to MC simulation - ²²⁸Th calibration

	SF(data)	SF (MC)
top PMTs	4.7 ± 0.1	43.3 ± 0.5
bot PMTs	12.9 ± 0.1	46.1 ± 0.6
all PMTs	22.5 ± 0.3	68.0 ± 1.0
SiPMs	48.0 ± 0.9	$\textbf{97.0} \pm \textbf{1.7}$
all	60.0 ± 1.2	$\textbf{97.4} \pm \textbf{1.7}$

- \Rightarrow SF and pe yield significantly lower than predicted by MC simulations
 - possible reasons:
 - fiber implementation in MC
 - optical properties

Combined LAr veto & PSD performance - ²²⁸Th calibration

86.8% acceptance for pulser, ROI: $Q_{\beta\beta} \pm 100 \,\mathrm{keV}$, excl. SEP of ²⁰⁸TI.

Combined LAr veto & PSD performance - ²²⁶Ra calibration

89.9% acceptance for pulser, ROI: $2023 - 2047 \,\mathrm{keV}$ && $2059 - 2074 \,\mathrm{keV}$

Anne Wegmann (MPIK)

Summary & outlook

- Phase I of the GERDA experiment successfully completed *T*^{0ν}_{1/2}(90%C.L.) > 2.1 · 10²⁵ yr
- MC campaign performed to find optimal veto design
- LAr light instrumentation fully operational
- LAr veto performance with calibration sources

> 228 Th: SF = 97.9 ± 3.7 > 226 Ra: SF = 5.7 + 0.2

- data and MC not yet in agreement
- \Rightarrow Phase II physics data taking with the light instrumentation will start soon

Bonus slides

data taking of Phasel

- Nov 2011 May 2013: 8 coaxial detectors
- 2 detectors not considered due to high leakage current
- total mass: 14.6 kg

- July 2012 May 2013: 5 BEGes
- 1 detector not considered due to unstable behavior
- total mass: 3.0 kg

region of interest (ROI) = interval @ [1930 - 2190] keV

blinded window @ $Q_{etaeta}\pm 20\,\mathrm{keV}$ to not bias analysis

- β -spectrum of ³⁹Ar (with Q=565 keV
- $2\nu\beta\beta$ -spectrum of ⁷⁶Ge
- γ -lines of 40 K, 42 K, 60 Co, 214 Bi, 212 Bi and 208 Tl
- α-spectrum of ²³⁸U chain (in semi-coaxial detectors)

data set	Exposure	FWHM @
	$[kg \cdot y]$	$Q_{etaeta}[keV]$
golden	17.9	4.8 ± 0.2
silver	1.3	4.8 ± 0.2
BEGe	2.4	3.2 ± 0.2

Anne Wegmann (MPIK)

Background modeling

Contribution at $Q_{\beta\beta}$

- γ -rays (close sources): ²¹⁴Bi, ²⁰⁸TI
- α and β -decays (surface decays): ²²⁶Ra daugther, ²¹⁰Po, ⁴²K

Result

- no γ -line expected in blinded window
- background flat between [1930 - 2190]keV (excluding peaks at 2104 and 2119 keV)

• "golden": $Bl = 1.75^{+0.26}_{-0.24} \cdot 10^{-2} \frac{cts}{kg \cdot keV \cdot yr}$ "BEGe": $Bl = 3.6^{+1.3}_{-1.0} \cdot 10^{-2} \frac{cts}{kg \cdot keV \cdot yr}$

Pulse shape discrimination in GERDA Phase I

Which pulse shapes can we distinguish?

- Single site event (SSE): 0νββ-events, 2νββ-events, DEP events
- Multi site event (MSE): have multiple compton scattering in the detector e.g. SEP events, FEP events
- Slow rising pulses: β-particles entering the detector via the n⁺ surface
- Fast rising pulses: α-particles on the p⁺ contact

Coaxial: 3 independent pulse shape selections performed

- Neural network analysis (ANN)
- Likelihood classification
- PSD selection based on pulse assymetry
- **BEGe**: Based on A/E method
 - $\epsilon_{PSD} = 0.92 \pm 0.02$
 - ullet ~ 85% of background events at ${\it Q}_{etaeta}$ are rejected

Training the neural network with calibration data

- Input parameters: timing information on rising part of the charge pulse
- Output: Qualifier between 0 (background event) and 1 (signal-like)
- DEP events in the interval $1592 \, \mathrm{keV} \pm 1 FWHM$ serve as proxy for SSE
- Full energy line of ²¹²Bi in the equivalent interval around 1620 keV are dominantly MSE, taken as background events

Anne Wegmann (MPIK)

Training the neural network with calibration data

- Input parameters: timing information on rising part of the charge pulse ٠
- Output: Qualifier between 0 (background event) and 1 (signal-like)
- DEP events in the interval $1592 \text{ keV} \pm 1$ *FWHM* serve as proxy for SSE
- Full energy line of ^{212}Bi in the equivalent interval around 1620 $\rm keV$ are dominantly MSE, taken as background events

Application to Phase I data

 \Rightarrow About 45% of events are rejected by ANN

Efficiency: $\epsilon_{0\nu\beta\beta} = 0.90^{+0.05}_{-0.09}$

- all events removed by ANN are removed by at least one other method
- events discarded by ANN are in 90% of the cases discarded by all 3 methods
- in a larger energy window about 3% are only rejected by ANN

BEGe detectors & pulse shape discrimination

Broad Energy Germanium (BEGe) detectors as the ${\rm GERDA}$ Phase II detectors will improve the sensitivity by

- improved energy resolution $\Delta(E)$
- enhanced pulse shape discrimination against background events

Which pulse shapes can we distinguish?

- $0\nu\beta\beta$ -events are single site events (SSE)
- SSE by γ -rays are signal like and cannot be rejected
- γ-rays can interact via multiple compton scattering (MSE)
- β-particles enter the detector via the n⁺ surface and produce slow pulses
- α-particles enter the detector through the region of the p⁺ contact producing a comparatively high signal

The Pulse Shape Analysis Method

Pulse Shape Analysis (PSA)

- Use the ratio of the amplitude of the current signal A and the energy E: A/E
- A/E cut determined in PSA of a ²²⁸Th spectrum:
 - SSE are located on a horizontal lines
 - MSE are found below the SSE lines
 - single escape peak (SEP) of the $2614.5 \, \mathrm{keV}$ line contains a high fraction of MSE
 - prominent double escape peak (DEP at 1592.5 keV) of the 208 T/-line which contains a high fraction of SSE

Application of the PSD to data

- data of all detectors added (after all corrections and normalization)
- cut levels: A/E < 0.965 & A/E > 1.07
- Q_{ββ} ± 200 keV: 7 out of 40 events survive PSD cut, 30 are below, 3 above
- $\Rightarrow \text{ Background Index:} \\ (0.042 \pm 0.007) cts/(keV \cdot kg \cdot yr) \\ \text{after PSD } 0.007^{+0.004}_{-0.002} cts/(keV \cdot kg \cdot yr)$

Considering the limits of $0\nu\beta\beta$ decay search in Xenon...

Considering the limits of $0\nu\beta\beta$ decay search in Xenon...

MC sum spectrum

Comparison MC & data suppression factor of total string & individual detectors

 $Q_{etaeta}\pm 200$ keV

		top PMTs	bot PMTs	PMTs	SiPMs	LAr
1/0	data	6.0 ± 0.1	12.8 ± 0.2	29.2 ± 0.7	82.9 ± 3.6	113.3 ± 5.7
4/C	MC	63.3 ± 1.9	51.6 ± 1.4	93.4 ± 3.4	148.4 ± 6.6	148.9 ± 6.7
1/D	data	5.1 ± 0.1	13.2 ± 0.2	25.2 ± 0.6	65.8 ± 2.8	83.8 ± 3.7
1/D	MC	58.1 ± 1.9	58.3 ± 1.9	99.9 ± 4.1	154.9 ± 7.8	155.5 ± 7.8
700	data	4.1 ± 0.1	13.4 ± 0.2	19.9 ± 0.3	40.6 ± 1.0	50.5 ± 1.4
790	MC	$\textbf{37.8} \pm \textbf{0.9}$	44.1 ± 1.2	59.3 ± 1.8	80.5 ± 2.8	81.1 ± 2.8
250	data	4.0 ± 0.1	17.2 ± 1.0	23.6 ± 1.6	40.1 ± 3.5	52.4 ± 5.2
220	MC	21.9 ± 1.4	29.8 ± 2.2	35.6 ± 2.8	45.9 ± 4.0	45.9 ± 4.0
02B	data	4.0 ± 0.1	21.8 ± 1.7	29.5 ± 2.7	43.1 ± 4.8	63.9 ± 8.6
020	MC	21.6 ± 1.6	$\textbf{30.6} \pm \textbf{2.7}$	$\textbf{34.0} \pm \textbf{3.1}$	$\textbf{43.8} \pm \textbf{4.5}$	$\textbf{43.8} \pm \textbf{4.5}$
all	data	4.8 ± 0.1	13.4 ± 0.1	23.6 ± 0.3	54.0 ± 1.0	69.1 ± 1.4
	MC	43.3 ± 0.5	46.1 ± 0.6	68.0 ± 1.0	$\textbf{97.0} \pm \textbf{1.7}$	97.4 ± 1.7
acceptance		97.76%	96.55%	95.49%	88.87%	86.78%

• SF of data is not yet corrected for the pulser acceptance !!!

Anne Wegmann (MPIK)

LAr veto for GERDA PhaseII

Ra226 calibration with MS (20150430)

- data from IntegrationTest_20150528
- ²²⁶Ra source @ position 7560 (with MS)
- identical detector configuration (Ge & LAr) as in ²²⁸Th calibration
- \Rightarrow analysis for the comparison of data and MC is restricted to these detectors
 - for the plots showing combined results (LAr veto performance and PSD) not fully depleted detectors are used for AC

MC

Comparison MC & data suppression factor of total string

		top PMTs	bottom PMTs	PMTs	SiPMs	LAr
1/0	data	1.6 ± 0.1	1.9 ± 0.1	2.5 ± 0.1	$\textbf{4.7}\pm\textbf{0.3}$	5.5 ± 0.1
4/C	MC	4.3 ± 1.9	3.7 ± 1.5	5.2 ± 2.4	$\textbf{7.4} \pm \textbf{3.8}$	$\textbf{7.4} \pm \textbf{3.8}$
1/D	data	1.5 ± 0.1	2.2 ± 0.1	2.6 ± 0.1	4.2 ± 0.2	5.0 ± 0.3
1/0	MC	5.9 ± 2.2	4.9 ± 1.7	8.3 ± 3.5	11.9 ± 5.8	11.9 ± 5.8
700	data	1.4 ± 0.1	2.0 ± 0.1	2.3 ± 0.1	3.1 ± 0.1	3.6 ± 0.1
79C	MC	4.3 ± 0.8	4.9 ± 0.9	5.3 ± 1.3	11.5 ± 3.0	11.5 ± 3.0
25 D	data	1.4 ± 0.1	2.6 ± 0.2	2.9 ± 0.2	$\textbf{3.3}\pm\textbf{0.3}$	4.3 ± 0.4
MC	MC	3.7 ± 0.7	5.2 ± 1.1	5.8 ± 1.3	7.2 ± 1.7	7.2 ± 1.7
020	data	1.6 ± 0.1	4.3 ± 0.5	$\textbf{4.9} \pm \textbf{0.6}$	5.4 ± 0.7	8.1 ± 1.4
02D	MC	5.4 ± 1.1	7.6 ± 1.8	9.0 ± 2.3	11.5 ± 3.3	11.5 ± 3.3
data	data	1.5 ± 0.1	2.1 ± 0.1	2.5 ± 0.1	3.7 ± 0.1	4.4 ± 0.3
all	MC	4.1 ± 0.3	5.4 ± 0.4	5.4 ± 0.6	$\textbf{9.3}\pm\textbf{0.9}$	$\textbf{9.3}\pm\textbf{0.9}$
асс		97.81%	97.26%	95.82%	92.61%	89.90%

 $Q_{etaeta}\pm 35$ keV excluding gamma lines

• SF of data is not yet corrected for the pulser acceptance !!!

Comparison MC & data pe yield

	max (data)	max (MC)
SiPM	pprox 1-3	pprox 40 $-$ 100
top PMTs	pprox 1-2	pprox 2-3
bot PMTs	pprox 1-2	pprox 3-5