Measurement of CP violation in the Charm System

Sascha Stahl Physikalisches Institut Heidelberg

INTERNATIONAL MAX PLANES LOOLDE HERAEER

European Research Council Established by the European Commission

What is CP violation?

• C = charge conjugation, P = space inversion

How do you get CP violation?

CKM matrix describes transition between quarks

CP violation in charm decays

CP violation in charm decays

CP violation in charm decays

Ь

CP measurements in $D^0 \rightarrow h^- h^+$, h = K or π , by LHCb

CP measurements in $D^0 \rightarrow h^- h^+$, h = K or π , by LHCb

Prompt produced Charm

Semileptonic B decays

- Important cross-check analysis
- Different detection signature

My analysis

How to determine an asymmetry?

$$A_{raw}(f) = \frac{N(f,\mu^{-}) - N(f,\mu^{+})}{N(f,\mu^{-}) + N(f,\mu^{+})}$$

Production and detection asymmetries

- Assumption: Cancellation of production and detection asymmetry in difference
- Production and detection asymmetry depend on kinematics

Production asymmetry:

Production and detection asymmetries

- Assumption: Cancellation of production and detection asymmetry in difference
- Production and detection asymmetry depend on kinematics
- Assign weights to events to match kinematics
 - \rightarrow Ensures cancellation of asymmetries

Controlling detection asymmetries

Controlling detection asymmetries

Controlling detection asymmetries

Results

• About 0.6 million D \rightarrow KK and 0.2 million D $\rightarrow \pi\pi$ candidates

Results

• About 0.6 million D \rightarrow KK and 0.2 million D $\rightarrow \pi\pi$ candidates

Status of CP violation in Charm decays

LHCb-CONF-2013-003

Semileptonic: $\Delta A_{CP} = (+0.49 \pm 0.30(stat.) \pm 0.14(syst.)) \%$ New prompt: $\Delta A_{CP} = (-0.34 \pm 0.15(stat.) \pm 0.10(syst.)) \%$ $\Delta A_{CP,LHCb} = (-0.15 \pm 0.16) \%$

Status of CP violation in Charm decays

LHCb-CONF-2013-003

Semileptonic: $\Delta A_{CP} = (+0.49 \pm 0.30(stat.) \pm 0.14(syst.)) \%$ New prompt: $\Delta A_{CP} = (-0.34 \pm 0.15(stat.) \pm 0.10(syst.)) \%$ $\Delta A_{CP,LHCb} = (-0.15 \pm 0.16) \%$

Outlook: Measuring individual asymmetries

Theory:
$$A_{CP}(K^+K^-) \approx -A_{CP}(\pi^+\pi^-)$$

$$A_{raw}(f) = A_{CP}(f) + A_D(\mu) + A_P(B)$$
 $f = K^+ K^-, \pi^+ \pi^-$

Outlook: Measuring individual asymmetries

Theory:
$$A_{CP}(K^+K^-) \approx -A_{CP}(\pi^+\pi^-)$$

$$A_{raw}(f) = A_{CP}(f) + A_D(\mu) + A_P(B) \qquad f = K^+ K^-, \pi^+ \pi^-$$

use CKM favoured decay
$$D^0 \to K^- \pi^+ / \overline{D}^0 \to K^+ \pi^-$$

$$A_{raw}(K^{\mp}\pi^{\pm}) = A_D(\mu) + A_P(B) + A_D(K^{\mp}\pi^{\pm})$$

Expected to be about 1%

Conclusion

• The LHCb experiment performed two independent analyses on the 2011 data set.

Semileptonic:	$\Delta A_{CP} = (+0.49 \pm 0.30(stat.) \pm 0.14(syst.)) \%$
	LHCb-PAPER-2013-003, arXiv:1303.2614
Prompt:	$\Delta A_{CP} = (-0.34 \pm 0.15(stat.) \pm 0.10(syst.)) \%$
(preminary)	LHCb-CONF-2013-003, available on CDS

• LHCb does not confirm evidence of CP violation in Charm decays.

 $\Delta A_{CP,LHCb} = (-0.15 \pm 0.16)~\%$ (naive average)

 \sim 3 fb⁻¹ on tape. Looking forward to analysing 2012 data.

LHCb-PAPER-2013-003 in preparation

Determination of mistag rate in semileptonic decays

- Random combination of real D with random muon fakes decay
- Mistag rate ($\overline{\omega}$) dilutes asymmetry
- Different mistag rates for D and \overline{D} possible ($\Delta \omega$)

$$A_{raw}^{\rm corr}(f) = (1 - 2\bar{\omega}) A_{raw} - \Delta\omega$$

- Determination in D* and muon doubly-tagged subsample and flavour specific decay $D^0\to K^-\pi^+$

 $\bar{\omega} = (0.982 \pm 0.012)\%$ $\Delta \omega = (0.006 \pm 0.021)\%$

The LHCb experiment

• Collected 1 fb⁻¹ in 2011 and 2 fb⁻¹ in 2012 \rightarrow Huge b (26 10¹⁰) and c (59 10¹¹) samples

Kaon and Pion separation

Experimental status of CP violation in February 2013

Main systematic uncertainties

	Semilentonic analysis		Absolute
•	Semileptonic analysis	Source of uncertainty	uncertainty
	 Low decay time backgrounds 	Production asymmetry:	
	Eow decay time backgrounds	Difference in b -hadron mixture	0.02%
	 Weighting procedure 	Difference in B decay time acceptance	0.02%
		Production and detection asymmetry:	
	Fit model	Different weighting	0.05%
		Background from real D^0 mesons:	
		Mistag asymmetry	0.02%
		Background from fake D^0 mesons:	
		D^0 mass fit model	0.05%
		Low-lifetime background in $D^0 \to \pi^- \pi^+$	0.11%
		Λ_c^+ background in $D^0 \to K^- K^+$	0.03%
		Quadratic sum	0.14%

Kaon detection asymmetry

- Idea: Take prompt, Cabibbo favoured $D \to K\pi \ \pi$ and $D \to Ks \ \pi$

$$A_{raw}(K\pi\pi) = A_D(K\pi) + A_D(\pi) + A_P(D)$$

$$A_{raw}(K_s\pi) = A_D(\pi) + A_P(D)$$
Not fully true
$$A_{raw}(K\pi\pi) - A_{raw}(K_s\pi) = A_D(K\pi)$$

Differences from the previous prompt result

- Prompt ΔA_{cp} shifted from -0.82 ± 0.21 % to -0.34 ± 0.15 %
- Change of result understood and compatible with statistical fluctuations
- New reconstruction on 0.6 fb⁻¹ \rightarrow better particle ID for D children
 - Removed and added events \rightarrow on overlapping events, same result
- Increased data set, 0.6 fb⁻¹ \rightarrow 1 fb⁻¹
 - 0.4 fb⁻¹ additional data with lower but compatible asymmetry

Changes to previous published result – data sample

- Prompt ΔA_{cp} shifted from -0.82 ± 0.21 % to -0.34 ± 0.15 %
 - Larger data sample (0.6 \rightarrow 1.0 fb⁻¹)
 - Better reconstruction and calibrations applied
 - Changed analysis procedure (next slide)
- 0.6 fb⁻¹ analysed before
 - 15 / 14 % of KK/ $\pi\pi$ not selected anymore \rightarrow same ΔA_{cp}
 - 17 / 34 % of KK/ $\pi\pi$ additionally selected $\rightarrow \Delta A_{cp} = (-0.55 \pm 0.21)$ % on 0.6 fb⁻¹
- Extra 0.4 fb⁻¹ $\rightarrow \Delta A_{cp} = (-0.28 \pm 0.26) \%$
- Combined $\Delta A_{cp} = (-0.45 \pm 0.17) \%$

→ Consistency between all independent subsamples

LHCb-CONF-2013-003 in preparation

Changes to previous published result – analysis procedure

- New: slow pion constraint to PV in vertex fit
- Additional information \rightarrow improved mass resolution of factor 2.5
 - Better background rejection, better sensitivity
- $\Delta A_{cp} = (-0.34 \pm 0.15) \%$
- Toy studies show expected variation of 0.05 %
 - Possible correlation with IP cut \rightarrow already systematic of 0.08% assigned

LHCb-PAPER-2013-003 in preparation

Sensitivity to indirect CP violation (SL analysis)

• Small contribution due to time dependent CP violation

$$\Delta A_{CP} \approx \Delta a_{CP}^{\text{dir}} \left(1 + y \cos \phi \frac{\overline{\langle t \rangle}}{\tau} \right) + \left(a_{CP}^{\text{ind}} + \overline{a_{CP}^{\text{dir}}} y \cos \phi \right) \frac{\Delta \langle t \rangle}{\tau}$$

- <t> and $\Delta <$ t> describe effective lifetime measured in $D \rightarrow KK$ und $D \rightarrow \pi\pi$
 - Different lifetime acceptances
 - Fit of effective lifetime and acceptance in both decay channels

→ Sensitivity to indirect CP violation ~2 % (SL), ~10 % (prompt)

Results: Semileptonic analysis

• Unweighted

Table 1: Unweighted raw asymmetries (in %) for the $D^0 \rightarrow \pi^- \pi^+$, $D^0 \rightarrow K^- K^+$ and $D^0 \rightarrow K^- \pi^+$ decays for the two magnet polarities. The mean value is the arithmetic average over the two polarities. The uncertainties are statistical only.

	Magnet up	Magnet down	Mean
$A_{\rm raw}^{\rm unweighted}(K^-K^+)$	$-0.33 {\pm} 0.23$	$-0.22{\pm}0.19$	$-0.28 {\pm} 0.15$
$A_{\rm raw}^{\rm unweighted}(\pi^-\pi^+)$	$-1.18{\pm}0.40$	$-0.35{\pm}0.34$	$-0.77 {\pm} 0.26$
$\Delta A_{CP}^{\mathrm{unweighted}}$	$0.85{\pm}0.46$	$0.13{\pm}0.39$	$0.49{\pm}0.30$
$A_{\rm raw}^{\rm unweighted}(K^-\pi^+)$	$-1.64{\pm}0.10$	$-1.60{\pm}0.08$	$-1.62{\pm}0.06$

• Weighted

Table 2: Weighted raw asymmetries (in %) for the $D^0 \rightarrow \pi^- \pi^+$ and $D^0 \rightarrow K^- K^+$ decays for the two magnet polarities. The mean value is the arithmetic average over the two polarities. The uncertainties are statistical only.

	Magnet up	Magnet down	Mean
$A_{\rm raw}(K^-K^+)$	$-0.39{\pm}0.23$	$-0.20{\pm}0.19$	$-0.29{\pm}0.15$
$A_{\rm raw}(\pi^-\pi^+)$	$-1.25{\pm}0.40$	$-0.29{\pm}0.34$	$-0.77 {\pm} 0.26$
ΔA_{CP}	$0.86 {\pm} 0.46$	$0.09{\pm}0.39$	$0.48{\pm}0.30$

• Up and down compatible also in individual asymmetries

LHCb-PAPER-2013-003 in preparation

Kinematical weighting (semileptonic decays)

- Production- and detector asymmetries depend on D and muon kinematics
- Different kinematics due to different particle identification cuts
- Assign weights to $D \rightarrow KK$ and $D \rightarrow \pi\pi$ to match kinematics.
 - \rightarrow Same production- and detector asymmetries

LHCb-PAPER-2013-003 in preparation

Kinematical weighting (semileptonic decays)

- Production- and detector asymmetries depend on D and muon kinematics
- Different kinematics due to different particle identification cuts
- Assign weights to $D \rightarrow KK$ and $D \rightarrow \pi\pi$ to match kinematics.
 - \rightarrow Same production- and detector asymmetries

