

Mitigating detector effects in measurements with the ATLAS Experiment

Thomas Spieker Kirchhoff Institute for Physics, Heidelberg May 2, 2017

Bundesministerium für Bildung und Forschung

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL PT FOR PRECISION TESTS OF FUNDAMENTAL SYMMETRIES

The measurement: $Z \rightarrow vv$

Want to measure $Z \rightarrow \nu \nu$

The measurement: $Z \rightarrow vv + jets$

Really: Want to measure $Z \rightarrow vv + jets$

Could measure this for a search

JHEP 1801 (2018) 126

Search has limitation: choice of model

Data @ detector level

theory

Search has limitation: choice of model

Data @ detector level

theory

New theories difficult to constrain

JHEP 1402 (2014) 057

Data @ detector level

theory

detector simulation)

Bring data to theories!

Data @ detector level

theory

Unfolding

Detector simulation

- Differences between detector- and particle level
 - Fakes
 - Found @ detector level
 - not present @ particle level
 - Misses
 - Not found @ detector level
 - present @ particle level

- Migrations
 - Present in both, but in different bins

Monte Carlo knows

Bin-by-Bin Unfolding

Binwise correction factors

Bin-by-Bin Unfolding

Migration matrix diagonal if resolution is negligible

Monte Carlo knows

Drawback: relies entirely on MC prediction

T.Spieker (KIP)

arXiv:1106.3107

Bayes Theorem:

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

B = detector level A = particle level

arXiv:1106.3107

Bayes Theorem:

$$P(A | B) = \frac{P(B | A)P(A)}{P(B)}$$

B = detector level A = particle level

P(A) Monte Carlo Prediction

arXiv:1106.3107

arXiv:1106.3107

Iterative Dynamically Stabilized Unfolding arXiv:1106.3107

 $P(A | B) = \frac{P(B | A)P(A)}{P(B)}$ B = detector levelBayes Theorem: A = particle level P(A) Data unfolded Prediction n-1 Data unfolded (Prediction n) P(B)Data

IDS regularization

- Bayes unfolding: Regulatized by number of iterations
- IDS unfolding: Regularized by change in interation
 If small changes remain, unfolding stops

$$u_{j} = t_{j} \cdot \frac{N_{d}^{MC}}{N_{MC}} + B_{j}^{u} + \sum_{k=1}^{n_{d}} f\left(\left|\Delta d_{k}\right|, \tilde{\sigma} d_{k}, \lambda\right) \ \Delta d_{k} \ \tilde{P}_{kj} + \left(1 - f\left(\left|\Delta d_{k}\right|, \tilde{\sigma} d_{k}, \lambda\right)\right) \ \Delta d_{k} \ \delta_{kj},$$

IDS unfolding used in analysis

Outlook

• Measurement in several lepton categories:

• Unfold and combine them all at particle level

Summary

- Unfolding has many advantages
 - Increases longevity
 - Simplifies combination of results
- Detector-corrected measurement sensitive to anomalous MET+jet production published recently (Eur. Phys. J. C 77 (2017) 765)
- Next iteration extends this approach
 - More sophisticated unfolding
 - Combination of several topologies at particle level

Summary

- Unfolding has many advantages
 - Increases longevity
 - Simplifies combination of results
- Detector-corrected measurement sensitive to anomalous MET+jet production published recently (Eur. Phys. J. C 77 (2017) 765)
- Next iteration extends this approach
 - More sophisticated unfolding
 - Combination of several topologies at particle level

Thanks for the attention!

T.Spieker (KIP)

Detailed event selection

Numerator and denominator	$\geq 1 { m jet}$	VBF
$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 200 \mathrm{GeV}$	
(Additional) lepton veto	No e, μ with $p_{\rm T} > 7 { m GeV}, \ \eta < 2.5$	
$\operatorname{Jet} y $	< 4.4	
Jet p_{T}	$> 25{ m GeV}$	
$\Delta \phi_{ m jet_i,p_T^{miss}}$	> 0.4 , for the four leading jets with $p_{\rm T} > 30 {\rm GeV}$	
Leading jet $p_{\rm T}$	> 120 GeV	$> 80 \mathrm{GeV}$
Subleading jet $p_{\rm T}$	_	$> 50 \mathrm{GeV}$
Leading jet $ \eta $	< 2.4	—
$m_{ m jj}$	_	$> 200{ m GeV}$
Central-jet veto	_	No jets with $p_{\rm T} > 25 {\rm GeV}$
Denominator only	$\geq 1 \text{jet and VBF}$	
Leading lepton $p_{\rm T}$	$> 80{ m GeV}$	
Subleading lepton $p_{\rm T}$	$> 7{ m GeV}$	
Lepton $ \eta $	< 2.5	
$m_{\ell\ell}$	$66{-}116{ m GeV}$	
ΔR (jet, lepton)	> 0.5, otherwise jet is removed	

Can also measure a ratio

Measure ration of $Z \rightarrow vv + jets$ and $Z \rightarrow II + jets$

$$R_{\rm miss} = \frac{\sigma(\not p_{\rm T} + {\rm jets})}{\sigma(Z \to \ell^+ \ell^- + {\rm jets})}$$

02.05.2018

Can also measure a ratio

$$R_{\rm miss} = \frac{\sigma(\not\!\!\!p_{\rm T} + {\rm jets})}{\sigma(Z \to \ell^+ \ell^- + {\rm jets})}$$

Bin-by-Bin Unfolding in searches

Relies 100% on Monte Carlo modeling of the events!

R^{miss} (particle) R^{miss} (detector) 20 R^{miss} (detector) **ATLAS** vs = 13 TeV, 3.2 fb⁻ ATLAS vs = 13 TeV, 3.2 fb 18 $Z \rightarrow \mu \mu \geq 1$ iet $Z \rightarrow \mu \mu \geq 1$ jet 16 SM 0.9 14 ----- SM + BSM 12 0.8 10 0.7 8 SM 0.6 6 SM + BSM 200 400 600 800 1000 1200 1400 800 1200 1400 200 400 600 1000 p______[GeV] $p_{\tau}^{\text{miss}} \left[\text{GeV} \right]$

Can still be perfectly applicable if "mismodeling" does not affect the correction factors

Here: BSM signal large enough to modify correction factors, would show large deviations in data

T.Spieker (KIP)

Eur. Phys. J. C 77 (2017) 765