

Towards a Mass-Ratio Measurement of Tritium and Helium-3 at THe-Trap

Tom Segal, IMPRS Seminar, 03.07.2017 Heidelberg

Penning Traps - Motivation

Metrology: fundamental constants	$CPT < 10^{-10}$
Atomic physics: binding energies	QED 10 ⁻⁹ - 10 ⁻¹¹
Weak Interaction studies: CVC hypothesis, CKM	unitarity 10 ⁻⁸
Nuclear mass models and formulas: IMME	$10^{-7} - 10^{-8}$
Astrophysics: r-process, rp-process, waiting point	nts 10 ⁻⁷
Nuclear fine structure: deformation, halos	$10^{-7} - 10^{-8}$
Nuclear physics: shells, sub-shells, pairing	10 ⁻⁶
Chemistry: identification of molecules	$10^{-5} - 10^{-6}$

Introduction to Penning Traps

The Axial Frequency

The Reduced Cyclotron (+) & Magnetron (-) Frequencies $\omega_z = \sqrt[-]{\frac{qV}{md^2}}$

The Invariance Theorem (Brown and Gabrielse, PR 1982) $2\omega_c^2 = \omega_{\pm}^2 \omega_{\pm}^2 + \omega_{-}^2 + \omega_{z}^2$ The Cyclotron Frequency

$$\omega_c = \frac{q}{m} B$$

$$\Phi(\rho, z) = \frac{V_0}{Z_0^2 + \frac{1}{2}\rho_0^2} \left(z^2 - \frac{1}{2}\rho^2\right)$$
$$d = \frac{\sqrt{2z_0^2 + \rho_0^2}}{2}$$

q - elementary charge , V - electric potential, m - ion mass , $z_{_0}$ – height parameter , $\rho_{_0}$ – radius parameter

THeeTfaap:

 $B = 5875, \lambda t, \forall = 990V, z_{0} \sim c^{2}.5.44mm$ + z = $\omega_{+} \sim 29MHz$, $\omega_{z} \sim 4MHz$, $\omega_{-} \sim 300kHz$,

Real Penning Traps

- Particle Interactions
- ✤ B & E misalignment*
- ✤ E ellipticity*
- Cylindrically symmetric E and B imperfections.*
- Relativity
- Image charges

* Cancelled out by Gabrielse's Invariance Theorem

Motivation 1 – The Neutrino Mass

MeasuningetheaQeValueo en theapotaHd+Caye+ofHiklwill alite+. Tkaisawi[1]aid=KaJRiAg[i]]e inemeasuring:itheselectrop

[1] E. W. Otten et al., Int. J. Mass Spectrom. 251 (2006) 173–178

Motivation 2 – The Helium Mass

Group	iroup M _{3He} -3.016029000u in 10 ⁻⁹ u		Difference f in 10 ^{.9} u	Discrepancy In stds		
UW (04) 321.250(0.360)			0.425(0.40	~1		
SMILETRAP(06)	321.700(2	.600)	-0.025(2.64	43)	~0	
FSU (15)	322.430(0	.190)	-0.755(0.23	~3		
UW (15)	321.675(0	.043)	0(0)		0	
2.5 2 (n 1.5 1 (10 ₋₀) 0.5 0.5 -0.5 -1 -1.5 -2 -2.5				Discrepanc	× - , , , , , , , , , , , , , , , , , ,	
	UW (04)	SMILETRAP	(06) FSU	(15) UW	/(15)	

THe-Trap

THe Magnet

Max-Planck-Institut Für Kernphysik

THe Magnet

(D)

THe Environmental DAQ System

THe Environmental DAQ System

P	γEnvDAC	2								st	art
da	ta will be save	ed into	: tritium	i:\PyEn	vDAQ\dat	a and trit	ium:\PyEnv	DAQ\TH	eeFile	es. pa	use
Ch	annels / Acti	ons\/1	Vessage	es)						Clear	Ale
	name	unit	factor	offset	raw range (V)	raw value (V)	calibrated value	safe range	status		_
1	Time	s				1498645527.0					
2	p_Bore	Pa	20.0			0.006805035	0.136100714664				
3	p_Reservoir	mBar				1.197222674					
4	p_Mag_Room	mBar	130.53	1044.797		-0.43079233	988.56567599				
5	p_LN2	none	137.0			0.003741152	0.512537889338				
6	p_UHV	mBar(log)	1e-11			3.049895126	1.12174754146				
7	p_Prevac	mBar(log)	3.1623e-06			2.918186839	0.00261932813				
8	p_Mag_Room_Com	Pa?	30009.0			2.097149801	62933.3684018				
9	Fluxgate_1	muT	1.561			-2.59603316	-4.05240777039				
10	Valve_Bore	V				-0.32228463					
11	Valve_Reservoir	V				7.585429184					
12	Mon1	7				0.006336382					
13	Mon2	?				0.014770880					
14	Humidity	%	10.0			6.0986632502	60.986632502				
15	APR3_1Torr	mBar	887.0			0.156210917	138.559083681				
16	RoomHeater	с				0.852056998					
17	RoomCooler	с				2.365401668					
18	LHe_Counter	L/min				1.376638718					
19	LN2_Counter	L/min				-0.01247903					
20	T_Magnet_Top	с	4.639	19.09		1.009504236	23.7730901521				
21	T_Glovebox	с	4.6329	25.128		-0.10131235	24.6586300077				
22	T_Top_Window	с	-0.001821	27.933001		2690.0	23.034511				
23	T_Top_Door	с	-0.001827	27.346001		2507.0	22.765712				
24	T_Mag_Wall	с	-0.001783	27.339001		2579.0	22.740644				
25	T ADD1	c	-0.001951	27.541		2007.0	21 002552				

THe Website

Shimming the magnet

2015

2011

Shielding Factor

Magnetic Field Drift

Detection Method

Ion Trapping

- **Trap many ions** with a FEP (Field Emission Point)
- Remove all but one ion using "brooms" and "ring

Old Measurement Method – Sweeps

Correction voltage in V vs offsetted excitation

Reducing The Anharmonicities

- 1. Measure the axial frequency shift (the lock voltage)
- 2. Excite reduced cyclotron (or the magnetron) mode
- 3. Measure the axial frequency shift (the lock voltage)
- 4. De-energize the reduced cyclotron (or the magnetron)

Martin's Oxygen Measurement

Offsetted cyclotron frequencies of ¹²C⁴⁺ and ¹⁶O⁵⁺ in mHz

Picture taken from M. Höcker's PhD thesis.

New Measurement Method – Pulse & Phase

↑Excitation

New Measurement Method – Pulse & Phase

Channels 1 & 2 – x & y ringdown components Channel 3 – coupling pulse

THe Gas Inlet System

THe Gas Inlet System

Cleaning Up the Lab - Before

Future Plans

- Remove noise signals to allow trapping of a single Ne ion
- Perform a mass measurement with Ne (and C?)
- Inject, trap and measure He.

MaX-Planck-Institut für Kernphysik

Danke für eure Aufmerksamkeit

