# Jet counting & QCD scaling patterns

### Peter Schichtel

@ IMPRS-PTFS seminar 2013

based on:

Englert, P.S., Schumann, Plehn: Phys.Rev. D83 (2011) 095009 Gerwick, Schumann, Plehn: Phys.Rev.Lett. 108 (2012) 032003 Englert, P.S., Schumann, Plehn: JHEP 1202 (2012) 030 Gerwick, P.S., Schumann, Plehn: JHEP 1210 (2012) 162 Gerwick, Gripaios, Schumann, Webber: JHEP 1304 (2013) 089 and still some stuff to come ...

### jets?

#### jets are a collimated spray of hadrons

jet algorithm

distance measure [e.g. k<sub>T</sub> algorithm]

1.) 
$$y_{ij} = \frac{\Delta R_{ij}}{R} \min \left( p_{T,i}^2, p_{T,j}^2 \right)$$
  
2.)  $y_{iB} = p_{T,i}^2$ 

clustering scheme:
I.) smallest → cluster i and j
2.) smallest → call it a jet

i and j can be anything: particles, detector cells, partons,...



[CMS multi-jet event  $\rightarrow$ ]

#### many algorithms, different parameters yield different jets

# why jets?

this talk is all about LHC physics

proton collider: QCD machine

CMS

LHC is a SM machine: precision test

LHC is a discovery machine: Higgs(), BSM(?)

physics processes:

- → Drell-Yan [Z plus jets, mirror process to e+e-]
- → WBF Higgs [tagging jets]
- → strong coupling [2 vs. 3 jets]
- → di-jet resonances [new physics]

#### backgrounds:

- → W/Z plus jets [Higgs, missing energy]
- → top plus jets [decay chains, missing energy]
- → pure QCD jets [fake missing energy]

CMS Experiment at LHC, CERN Data recorded: Sat Apr 23 08:05:38 2011 EDT

[CMS multi-jet event  $\rightarrow$ ]

understanding jets is essential for LHC physics

# LHC physics

Experiments: a theorists point of view

what kind of information?

tracks particle flow calorimeter cells

jet algorithm





 $\rightarrow$  cross sections

sources of uncertainty:

- $\rightarrow$  systematics
- $\rightarrow$  statistcs

# LHC physics

Theory:



### jet counting

inclusive: at least n jets

- $\rightarrow$  easily calculable
- $\rightarrow$  n jets in matrix element
- $\rightarrow$  PDF's sum collinear radiation X
- $\rightarrow$  higher order leads to smaller uncertainty

exclusive: exactly n jets

- $\rightarrow$  excl. jet rates are ambiguous (ISR?)
- $\rightarrow$  closer to real event structure
- $\rightarrow$  statistical independent
- $\rightarrow$  correlation to other multi-jet observables

| analysis    | # excl. jets |
|-------------|--------------|
| Higgs WBF   | 0,1,2        |
| Higgs WW*   | 2            |
| di-boson    | 0,1          |
| top mass    | 4            |
| new physics | 4,8,n(?)     |

use exclusive jet cross-section ratios

count exclusive jets

jets are counted in addition to the hard event

observe two different patterns: staircase and Poisson scaling

### scaling patterns



rates depend on jet algorithm and hard process features NOT!

#### the same for inclusive! [NLO]





simultaneous evolution in energy and distance

 $t = 2E_i E_j (1 - \cos \theta_{ij})$ 



#### hadron collider effects at leading log pdfs and jet evolution factorize pdf effects on jet ratios assume threshold kinematics $B_n = \left| \frac{\frac{f(x^{(n+1)}, Q)}{f(x^{(n)}, Q)}}{\frac{f(x^{(n+2)}, Q)}{f(x^{(n+1)}, Q)}} \right|^2$ $x^{(0)} \approx \frac{m_Z}{2E_{\text{beam}}}$ $x^{(1)} \approx \frac{\sqrt{m_Z^2 + 2\left(p_T\sqrt{p_T^2 + m_Z^2} + p_T^2\right)}}{2E_{\text{beam}}}$ 1.1 1.1 Higgs kinematics Drell-Yan kinematics suppression of low n 0.9 0.9 [JHEP 1210 (2012) 162] gluon initial state d quark initial state 0.8 0.8 $\min p_{\rm T}^{\rm lead} \ge 100 \; {\rm GeV}$ $\prod_{T} p_{T}^{\text{lead}} \ge 100 \text{ GeV}$ $\mathbf{B}_{\mathrm{n}}$ $\mathbf{B}_{n}$ 0.7 0.7 ← all jets recoil ← all jets recoil 0.6 0.6 sweet spot $\leftarrow$ balanced in $p_{T}$ 0.5 0.5 $\leftarrow$ balanced in $p_{T}$ 0.4 0.4 2 3 5 7 2 3 5 6 6 4 7 1 4 n n









6/5

Njet+1/Njet

 $\sigma(Z/\gamma^*(\rightarrow \Gamma^{\dagger}\Gamma)+N_{jet}+1)/\sigma(Z/\gamma^*(\rightarrow \Gamma^{\dagger}\Gamma)+N_{jet}$ 

NLO / Data

MC / Data

MC / Data

1/0

2/1

3/2









## ... and use!

define two hard tagging jets measure gap fraction  $P(0) = \frac{\sigma_0}{\sigma_{\rm tot}}$ 

jet veto  $p_V$ 

in addition: measure jet sprectrum → expect Poisson

[JHEP 1210 (2012) 162]









0.5<u></u> 

1200 1400 m<sub>eff</sub> [GeV]

### BSM searches with autofocus

### ... and use!

number of jets  $\rightarrow$  color structure effective mass  $\rightarrow$  particles mass scale



SUSY benchmark points



[Phys.Rev. D83 (2011) 095009]

### conclusions

- $\rightarrow$  staircase scaling is a firm QCD prediction
  - @ LHC: low multiplicities due to PDF effects
- → compute staircase scaling breaking terms [new]
- → staircase and Poisson scaling are an observed fact
- -> precession test of QCD at high multiplicity [not possible with NLO]
- → tons of pheno applications:

Higgs studies, photon laboratory, BSM searches, jet substructure(?)

### thanks for listening