A new way to identify top quarks

Torben Schell

Institute for Theoretical Physics, Heidelberg University

IMPRS PTFS

ITP_

IMPRS-PTFS May 8, 2014

2 From a hard process to a LHC event and back

Top quarks?

Standard Model of particle physics

[http://en.wikipedia.org/wiki/File:Standard_Model_of_Elementary_Particles.svg]

Top history and basics

- 1973 postulated by Kobayashi and Maskawa to allow for CP violation in the Standard Model
- 1995 discovery at the Tevatron
- mass $m_t \approx 173 \text{ GeV}$

Why are we interested in top quarks?

- decay before hadronization
- weak scale mass \rightarrow largest coupling to the Higgs boson \rightarrow perfect laboratory to study electroweak symmetry breaking
- mediate Higgs production and decay from/to massless particles
- physics beyond the Standard Model

Production and decay on parton level ...

• top quark pair production at leading order

• top quark decay

T. Schell (ITP - U Heidelberg)

\ldots and an event simulation for the LHC

- parton density functions
- parton shower
- hard final and initial state radiation
- underlying event
- hadronization
- (pile-up)

[SHERPA, arXiv:0811.4622]

Jet clustering

Reconstruction of parton level gluons and quarks from calorimeter data

- Find the minimal distance of all objects d_{min} = min(d_{ij}, d_{iB}).
- If $d_{\min} \in \{d_{ij}\}$, join the two corresponding objects. If $d_{\min} \in \{d_{iB}\}$, remove object *i* → jet.
- Iterate until no objects are left.

• k_T : $d_{ij} = \min(p_{T,i}, p_{T,j}) \frac{\Delta R_{ij}}{R}$ $d_{iB} = p_{T,i}$

• C/A:
$$d_{ij} = \frac{\Delta R_{ij}}{R}$$
 $d_{iB} = 1$

• anti-
$$k_T$$
:
 $d_{ij} = \min(\frac{1}{p_{T,i}}, \frac{1}{p_{T,j}}) \frac{\Delta R_{ij}}{R}$
 $d_{iB} = \frac{1}{p_{T,i}}$

Jet filtering

Remove impurities from underlying event by reclustering the jet with an optimized cone size \rightarrow reduced area.

- start from the calorimeter data that ended up in jet
- recluster with a reduced cone size R_{filt}
- keep only the N_{filt} hardest objects
- $\bullet\,$ recluster to one object $\rightarrow\,$ filtered jet

How to detect top quarks?

 problem: tops decay products will decay into all directions
 → can not be distinguished from

background

 \bullet solution: boosted top quarks \rightarrow fat jets

use moderately boosted tops

[Plehn et al. arXiv:1006.2833]

HEPTopTagger – Steps I

[arXiv:1006.2833]

construction of fat jets:

- C/A algorithm with R = 1.5
- require $p_T > 200 \text{ GeV}$

search for hard substructures:

- undo last clustering step: $j \rightarrow j_1 j_2$
- mass drop criterion: neglect j_2 if $m_{j_1} > 0.8m_j$
- iterate until $m_i < m_{sub} = 30 \text{ GeV}$
- \rightarrow hard substructures

HEPTopTagger – Steps II

filtering:

filter a triple of hard substructures to reduce contamination from underlying event \rightarrow 3 jets (j_1 , j_2 , j_3).

) mass range cut:

reject the top candidate if its mass is not inside a mass window around m_t : 150 GeV $< m_{123} < 200$ GeV

HEPTopTagger – Steps III

(a) mass plane cuts: ask for $0.85 \frac{m_W}{m_t} < \frac{m_{ij}}{m_{123}} < 1.15 \frac{m_W}{m_t}$

[Plehn et al. arXiv:1006.2833]

additional cuts to reduce background: if $m_{23} \approx m_W \ 0.2 < \arctan\left(\frac{m_{13}}{m_{12}}\right) < 1.3$; else $\frac{m_{23}}{m_{123}} > 0.35$ **9** p_T -cut: Finally, require $p_T^{(\text{tag})} > 200 \text{ GeV}$

It is actually used

- close collaboration with ATLAS group of Prof. Schöning
- \bullet used in ATLAS analyses ${}_{[\mathrm{ATLAS}, \ \mathrm{CERN-PH-EP-2012-291}]}$

searches for flavor violation in the top-Higgs sector

[Greljo, Kamenik, Kopp, arXiv:1404.1278]

Recent developments

 extensions and improvements (cut order, distance measure, angular correlations, N–Subjettiness, low transverse momenta, ...)

[Plehn et al. arXiv:1111.5034 & arXiv:1312.1504]

- reconstruction of heavy resonances [in preparation]
- next step: full-hadronic decay of $t\bar{t}H$

Summary

there are many reasons to study top quarks

• the HEPTopTagger allows to reconstruct hadronically decaying top quarks in a moderately boosted regime based on jet substructure

• close collaboration with experimentalists which use the HEPTopTagger in ATLAS analyses