Unified Emergence of Energy Scales and Cosmic Inflation

Jonas Rezacek Max-Planck-Institut für Kernphysik

Based on 2012.09706 (Jisuke Kubo, Jeff Kuntz, Manfred Lindner, J. R., Philipp Saake, Andreas Trautner)

25th May 2021 IMPRS Seminar

Introduction and Motivation

Open puzzles in cosmology and particles physics

- Big Bang problems: horizon, flatness, monopoles
- Neutrino mass
- Higgs mass naturalness

Energy scales in high-energy physics

Energy scales in high-energy physics

Scale invariance

Scale-invariant Gravity

• Dynamical generation of $M_{\rm Pl} = \langle \phi \rangle$

$$\mathcal{L}_{\rm EH} = \sqrt{-g}\,\xi\phi^2 R \quad \rightarrow \quad \sqrt{-g}\,\xi\langle\phi^2\rangle R = \sqrt{-g}\,M_{\rm Pl}^2 R$$

• Incorporate inflation

Scale invariance

Scale-invariant Gravity

• Dynamical generation of $M_{\rm Pl} = \langle \phi \rangle$

$$\mathcal{L}_{\rm EH} = \sqrt{-g}\,\xi\phi^2 R \quad \rightarrow \quad \sqrt{-g}\,\xi\langle\phi^2\rangle R = \sqrt{-g}\,M_{\rm Pl}^2 R$$

Incorporate inflation

Scale-invariant SM

- Only dimensionful parameter in the SM: μ_H
- $\bullet\,$ Radiative corrections modify Higgs potential $\rightarrow\,$ EW symmetry breaking

[Coleman, Weinberg '73]

• M_{Pl} and m_H exponentially separated and radiatively stable if: no intermediate scales [Meissner, Nicolai, hep-th/0612165]

Scale invariance

Scale-invariant Gravity

• Dynamical generation of $M_{\rm Pl} = \langle \phi \rangle$

$$\mathcal{L}_{\rm EH} = \sqrt{-g}\,\xi\phi^2 R \quad \rightarrow \quad \sqrt{-g}\,\xi\langle\phi^2\rangle R = \sqrt{-g}\,M_{\rm Pl}^2 R$$

Incorporate inflation

Scale-invariant SM

- Only dimensionful parameter in the SM: μ_H
- Radiative corrections modify Higgs potential \rightarrow EW symmetry breaking

[Coleman, Weinberg '73]

• M_{Pl} and m_H exponentially separated and radiatively stable if: no intermediate scales [Meissner, Nicolai, hep-th/0612165]

Contents

2 The model

SSB of scale invariance

Inflation

S Neutrino option

6 Conclusion

Contents

Introduction

2 The model

SSB of scale invariance

Inflation

6 Conclusion

Classical scale invariance

$$g_{\mu\nu}
ightarrow e^{2\sigma}g_{\mu\nu}$$
 where $\sigma = \text{const}$, $\Phi
ightarrow e^{-q[\Phi]\sigma}\Phi$ where $\begin{cases} q[\varphi] = 1\\ q[\psi] = 3/2\\ q[A_{\mu}] = 0 \end{cases}$

 \rightarrow All model parameters dimensionless!

Classical scale invariance

$$g_{\mu\nu} \to e^{2\sigma} g_{\mu\nu}$$
 where $\sigma = \text{const}$, $\Phi \to e^{-q[\Phi]\sigma} \Phi$ where $\begin{cases} q[\varphi] = 1\\ q[\psi] = 3/2\\ q[A_{\mu}] = 0 \end{cases}$

\rightarrow All model parameters dimensionless!

Building blocks

Gravity:

$$S_{G} = \int \mathrm{d}^{4}x \sqrt{-g} \left(-\beta \varphi^{2} R + \gamma R^{2} + \kappa W_{\mu\nu\alpha\beta} W^{\mu\nu\alpha\beta} + (\mathsf{GB-term}) \right)$$

Scalars:

$$S_{\phi} = \int \mathrm{d}^4 x \sqrt{-g} \left(\frac{1}{2} g^{\mu\nu} \partial_{\mu} \phi^i \partial_{\nu} \phi_i - \lambda^{ijkl} \phi_i \phi_j \phi_k \phi_l \right)$$
 in the SM: $\mu_H = 0$

Fermions:

$$S_{\phi} = \int \mathrm{d}^4 x \sqrt{-g} \left(\frac{i}{2} \overline{\psi} \partial \!\!\!/ \psi + y_i \phi^i \overline{\psi} \psi \right)$$

The model

The Model

$$\begin{split} \frac{\mathcal{L}_{\rm CW}}{\sqrt{-g}} &= \frac{1}{2} g^{\mu\nu} \partial_{\mu} S \partial_{\nu} S + \frac{1}{2} g^{\mu\nu} \partial_{\mu} \sigma \partial_{\nu} \sigma - \frac{1}{4} \lambda_S S^4 - \frac{1}{4} \lambda_{\sigma} \sigma^4 - \frac{1}{4} \lambda_{s\sigma} S^2 \sigma^2 \\ \frac{\mathcal{L}_{\rm GR}}{\sqrt{-g}} &= -\frac{1}{2} (\beta_S S^2 + \beta_{\sigma} \sigma^2 + \beta_H H^{\dagger} H) R + \gamma R^2 + \kappa W_{\mu\nu\alpha\beta} W^{\mu\nu\alpha\beta} \\ \frac{\mathcal{L}_{\rm SM}}{\sqrt{-g}} &= \mathcal{L}_{\rm SM}|_{\mu_H=0} - \frac{1}{4} (\lambda_{HS} S^2 + \lambda_{H\sigma} \sigma^2) H^{\dagger} H \\ \frac{\mathcal{L}_{N\chi}}{\sqrt{-g}} &= \frac{i}{2} \overline{N_R} \partial N_R - \left(\frac{1}{2} y_M S \overline{N_R} (N_R)^c + y_\nu \bar{L} \tilde{H} N_R + \text{h.c.} \right) \end{split}$$

- **(**) breaking of scale-invariance by Coleman-Weinberg mechanism ($\langle S \rangle = v_S$)
- 2 identifcation of $M_{\rm Pl}$ and inflation
- SM interactions
- type-I seesaw, inducing Higgs mass

Contents

Introduction

The model

SSB of scale invariance

Inflation

Neutrino option

6 Conclusion

Dimensional transmutation

Mechanisms for dynamical generation of scales

• Coleman-Weinberg mechanism [Coleman, Weinberg '73]

Dimensional transmutation

Mechanisms for dynamical generation of scales

• Coleman-Weinberg mechanism [Coleman, Weinberg '73]

Approximation tool for multi-scalar potential: Gildener-Weinberg approach

[Gildener, Weinberg '76]

SSB of scale invariance

 \bullet Desired flat direction $(S \neq 0, \sigma = 0)$ for

$$V_{\text{tree}}(S,\sigma) = \frac{1}{4} \left(\lambda_S S^4 + \lambda_\sigma \sigma^4 + \lambda_{S\sigma} S^2 \sigma^2 \right)$$
$$\lambda_S \ll \lambda_{S\sigma} \quad \text{and} \quad \lambda_S \ll \lambda_\sigma$$

• Coleman-Weinberg potential in background $\sigma = 0$:

$$U_{\text{eff}}(S, R, \sigma) = V_{\text{tree}}(S, \sigma) + U_{(1-\text{loop})}(S, R)$$

• Stationary condition for $\sigma=0$

$$\left. \frac{\partial U_{\text{eff}}}{\partial S} \right|_{S=v_S, R=0} = 0 \quad \Rightarrow \quad v_S = v_S(\mu)$$

Generated scales

- By dimensional transmutation $\langle S \rangle = v_S \neq 0$
- Planck mass

 $M_{\rm Pl} \approx v_S \sqrt{\beta_S}$

For inflation $\beta_S \sim 10^{(2-3)} \Rightarrow v_S \sim 10^{(16-17)}~{\rm GeV}$

Majorana masses

 $m_N = y_M v_S$ (neutrino option)

Generated scales

- By dimensional transmutation $\langle S \rangle = v_S \neq 0$
- Planck mass

 $M_{\rm Pl} \approx v_S \sqrt{\beta_S}$

For inflation $\beta_S \sim 10^{(2-3)} \Rightarrow v_S \sim 10^{(16-17)} \text{ GeV}$

Majorana masses

$$m_N = y_M v_S$$
 (neutrino option)

• Higgs portal has to be suppressed $\lambda_{HS} \ll 1$

Contents

Introduction

2 The model

SSB of scale invariance

Inflation

Conclusion

CMB in the big bang picture

CMB in the inflation picture

[Figure taken from Baumann, 0907.5424]

Inflatio

Slow-roll inflation

$$S = \int \mathrm{d}^4 x \sqrt{-g} \left[-\frac{M_{\mathsf{PI}}}{2} R + \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi) \right], \qquad \mathrm{d}s^2 = \mathrm{d}t^2 - a^2(t) \delta_{ij} \mathrm{d}x^i \mathrm{d}x^j$$

$$\frac{\ddot{a}}{a} = -\frac{1}{6} \left(\rho_{\phi} + 3p_{\phi} \right) = -\frac{\rho_{\phi}}{6} \left(1 + 3w_{\phi} \right) > 0 \qquad \Rightarrow \qquad \boxed{w_{\phi} < -\frac{1}{3}}$$
$$w_{\phi} = \frac{p_{\phi}}{\rho_{\phi}} = \frac{\frac{1}{2} \dot{\phi}^2 - V(\phi)}{\frac{1}{2} \dot{\phi}^2 + V(\phi)} \qquad \Rightarrow \qquad \boxed{V(\phi) \gg \frac{1}{2} \dot{\phi}^2}$$

Inflation

Valley approximation

- Slow-roll satisfied along valley
- Flat potentials natural in scale-invariant models

Inflation

Can we constrain inflation models with the CMB?

- Inflation: primordial quantum fluctuations seed structure
- CMB 2-point correlation for temperature T constrains primordial power spectrum

$$\boldsymbol{C}^{TT}(k) \to \boldsymbol{\Delta}^{\mathsf{primordial}}(k)$$

Inflation

Can we constrain inflation models with the CMB?

- Inflation: primordial quantum fluctuations seed structure
- CMB 2-point correlation for temperature T constrains primordial power spectrum

$$C^{TT}(k) \to \Delta^{\mathsf{primordial}}(k)$$

• Inflationary CMB observables

- n_s scalar spectral-tilt (scale dependence)
- r tensor-to-scalar ratio

Contents

Introduction

2 The model

3 SSB of scale invariance

Inflation

How to connect the Planck and EW scale?

• New approach to hierarchy problem: Neutrino Option

[Brivio, Trott, 1703.10924]

How to connect the Planck and EW scale?

How to connect the Planck and EW scale?

How to connect the Planck and EW scale?

• Another contribution to the Higgs mass

$$\lambda_{HS}S^2(H^{\dagger}H) \to \lambda_{HS}v_S^2(H^{\dagger}H)$$

• Assume $\lambda_{HS} \ll 1$ at tree level

 $\{\lambda_{HS}, y_M\} \sim 0$ stable under renormalization group

• λ_{HS} not fine-tuned to special value!

• Another contribution to the Higgs mass

$$\lambda_{HS}S^2(H^{\dagger}H) \to \lambda_{HS}v_S^2(H^{\dagger}H)$$

• Assume $\lambda_{HS} \ll 1$ at tree level

 $\{\lambda_{HS}, y_M\} \sim 0$ stable under renormalization group

- λ_{HS} not fine-tuned to special value!
- Majorana Yukawa coupling fixed by Planck scale and inflation

$$y_M = \frac{m_N}{v_S} \simeq \frac{m_N \beta_S^{1/2}}{M_{\text{Pl}}} \simeq 10^{-10} \left(\frac{\beta_S}{10^3}\right)^{1/2}$$

• $y_M \rightarrow 0$ technically natural (U(1)_{B-L} restored) ['t Hooft '80]

Conclusion

Summary & conclusion

- Classically scale invariant model with dynamical generation of all scales
- Extended scalar sector for Coleman-Weinberg-type breaking
- VEV $v_S = 10^{16-17}$ GeV generates Planck scale $M_{\rm Pl} \approx \beta_S^{1/2} v_S$
- Inflation predictions consistent with Planck observations
- Majorana mass scale $M_N = y_N v_S \sim 10^7 {\rm ~GeV}$
- Higgs mass realized by neutrino option (+ light active neutrinos)
- Dark matter production possible without spoiling neutrino option

Thank you!