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The usual picture...

Our Universe today:

Dark Matter WIMPS, sterile νs, axions, PBH, etc.

→ Non-particle physics solution?

Dark Energy Cosmological Constant, Quintessence, etc.

→ Connection to the other dark stuff in the Universe?
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Motivation

Dark Matter modified gravity, UV-compete version of MOND

massive Graviton as DM

Dark Energy Λ ∼ m2
g?

Theory perturbation of GR in “theory space”

test stability of GR predictions

WARNING: I’m not an expert!!!
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Dark Matter – galaxy rotation curves

Newton:

a(r) = v(r)2/r =
GNM(r)

r2

Model galaxy:

M(r) = M0
r3

(r + r0)3

v(r) =

√
GNM0r2

(r + r0)3
∼

r r � r0 3

1√
r

r � r0 7

⇒ M(r)→ M(r) + MDM(r) or GN → G 0
N

[
1 + a(r/r0) + b(r/r0)2 · · ·

]
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Dark Energy – Degravitation

Rµν −
1

2
R gµν + Λ gµν = 8πGNTµν

⇒ the CC can be viewed as a vacuum energy ρΛ = Λ
8πGN

?
=
〈
T 0
µν

〉
∼ M4

pl

BUT: ρΛ ∼ (10−3 eV)4!

“de-gravitate” the Cosmological Constant:

Λgµν = 8πGN

〈
T 0
µν

〉
→ 8π

〈
GN(m−2�)T 0

µν

〉
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Degravitation[Dvali et al., 2007]

usually Why is the vacuum energy so much smaller than expected?

Degravitation Why does the vacuum energy density gravitate so little?

⇒ “high-pass filter” that decouples sources with wavelengths & m−1
g

Spin-1 analogy – uniform charge distribution Jµ = δ0
µρ

∂µFµν = Jν ⇔ ∇ · ~E = ρ ⇒ ~E = ~x ρ/3

insert “high-pass filter”:

(1 + m2
γ�
−1)∂µF̃µν

→
= (�+ m2

γ)Ãν = Jν (∂αÃ
α = 0)

~̃
E =

ρ

3
~x cos(mγt)
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Degravitation – continued

To mimic gravity, one needs to include non-linearities that damp these

oscillations: ∼ λ(AµA
µ)2.

For t →∞, the potential will settle in a static solution A∞µ = (A∞0 ,~0)

with m2A∞0 + λ(A∞0 )3 = ρ. Thus, ~E∞ = ~0!

Screening of the homogeneous “vacuum charge density”

Some remarks

• Is this straight-forwardly generalised to Gravity?

• If yes, how does this mechanism operate?

• Does mg 6= 0 automatically imply Degravitation?

• Ongoing debate!
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Could both approaches be related?

GN → GN(r)
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Outline

Consistent Massive Gravity

Phenomenology

Conclusions
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Consistent Massive Gravity



What’s wrong with mg 6= 0?

Spin-1:

L = a ∂µA
ν∂νA

µ + b (∂µA
µ)2

Gauge-invariance removes 1 dof and requires b = −a = 1
2 .

Aµ = A⊥µ + ∂µχ ⇒ L ⊃ (a + b)(�χ)2 , ∂µA⊥µ = 0.

χ constitutes 2 ghost dof: kinetic energy < 0: INCONSISTENT

Conclusion:

gauge-invariance ⇔ consistency

b = −a = 1
2
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Now add a mass term

The mass term in

LProca = −1

4
FµνF

µν − 1

2
m2AµA

µ

breaks gauge-invariance, but the kinetic term is unique by consistency!

Abelian Higgs mechanism:

LHiggs = −1

4
FµνF

µν − 1

2
(Dµφ)†(Dµφ)− V (|φ|)

with φ = (v + h)e iχ this gives

LHiggs = −1

4
FµνF

µν − 1

2
g2v2(Aµ − ∂µχ)2 − 1

2
(∂µh)2 − V ′(h)

gauge-invariant if Aµ → Aµ + ∂µα and χ→ χ+ α.
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Spin-2 – What’s the difference?

consistency implies gauge invariance hµν = h⊥µν + ∂µχν + ∂νχµ

There are now 4 possible combinations

no Higgs mechanism known → retain only the Stückelberg fields χµ

discontinuity if mg → 0: No analogy for spin-1

Lsource = AµJ
µ = (A⊥µ + ∂µχ)Jµ = A⊥µ J

µ if ∂µJ
µ = 0

i.e. χ doesn’t couple to conserved, external sources!

Most importantly:

In Gravity the consistency (absence of ghosts) is spoiled by non-linearity!
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Fierz-Pauli mass term

LFP = −1

8
m2

g

[
hµνh

µν −
(
h µ
µ

)2
]

[Fierz and Pauli, 1939]

can be made gauge-invariant under hµν → hµν + ∂(µξν) by Stückelberg

fields χα:

L′FP = −1

8
m2

g

[(
hµν + 2∂(µχν)

)2 −
(
h µ
µ + 2∂αχ

α
)2
]
,

if simultaneously χα → χα + 1
2ξ

α.

Great! But Gravity is non-linear. This is why it took 70 years to come up

with this...
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Consistent massive Gravity

The key observation is that we can introduce the Stückelberg fields by

redefining the background metric

ηµν → ηµν + 2∂(µχν)

in the linear case. Extending to the non-linear case is achieved by

fµν = ∂µφ
a∂νφ

bf ′ab

for a general background f and 4 Stückelberg fields φa.

The FP mass term is then generalised by hµν → (1− g−1f )µν .

NOT UNIQUE and NOT GHOST-FREE
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Ghost-free Massive Gravity[de Rham et al., 2011, Hassan and Rosen, 2012]

Sbi =
M2

g

2

∫
d4x
√
−|g |Rg +

∫
d4x
√
−|g |Lmatter+

+ m2M2
eff

∫
d4x
√
−|g |

4∑
n=0

βnen(X)

+
M2

f

2

∫
d4x
√
−|f |Rf

where X =
√
g−1f , i.e. Xµ

αXα
ν = gµαfαν , M2

eff =
(

1
M2

g
+ 1

M2
f

)−1

, and

e0 = 1, e1 = tr (X) , e2 =
1

2

[
tr (X)2 − tr

(
X2
)]
,

e3 =
1

6

[
tr (X)3 − 3 tr (X) tr

(
X2
)

+ 2 tr
(
X3
)]
, e4 = det(X)

14



Ghost-free Massive Gravity[de Rham et al., 2011, Hassan and Rosen, 2012]

Sbi =
M2

g

2

∫
d4x
√
−|g |Rg +

∫
d4x
√
−|g |Lmatter+

+ m2M2
eff

∫
d4x
√
−|g |

4∑
n=0

βnen(X) +
M2

f

2

∫
d4x
√
−|f |Rf

where X =
√
g−1f , i.e. Xµ

αXα
ν = gµαfαν , M2

eff =
(

1
M2

g
+ 1

M2
f

)−1

, and

e0 = 1, e1 = tr (X) , e2 =
1

2

[
tr (X)2 − tr

(
X2
)]
,

e3 =
1

6

[
tr (X)3 − 3 tr (X) tr

(
X2
)

+ 2 tr
(
X3
)]
, e4 = det(X)

14



Einstein equations

G (g)µν + m2 cos2(θ)
3∑

n=0

βnV
(n)(g)µν =8πGNTµν ,

G (f )µν + m2 sin2(θ)
4∑

n=1

√
|g |/|f |βnV (n)(f )µν =0,

where cos2(θ) =
M2

eff

M2
g

, the sin2(θ) =
M2

eff

M2
f

, and the interaction or mass

terms V (g/f ) follow from the variation of the en, e.g. V
(0)
µν (g) = gµν .

Effective CC

Λeff = m2 cos2(θ)β0
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Einstein equations – linearised

For a specific choice of ~β = (3,−1, 0, 0,+1), one recovers the FP mass

term by expanding around a background η

gµν = ηµν +
δgµν
Mg

, fµν = ηµν +
δfµν
Mf

Smass =m2M2
eff

∫
d4x
√
−|g |

4∑
n=0

βnen(X)

'−m2M2
eff

∫
d4x

[(
δg

Mg
− δf

Mf

)µν (
δg

Mg
− δf

Mf

)
µν

−

−
(
δgµ

µ

Mg
− δf µµ

Mf

)2
]
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Einstein equations – linearised 2

Therefore, the mass eigenstates are

(
u

v

)
≡

(
cos θ − sin θ

sin θ cos θ

)(
δg

δf

)

⇒ Smass = −m2

8

∫
d4x

[
uµνuµν − (uµµ)2

]
,

while v remains massless.

two interesting limits

θ → 0: Only massive mode couples to matter

θ → π
2 : GR limit, but without the discontinuity!
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Bi-Schwarzschild BH

Starting off with an ansatz

gµνdx
µdxν = −eν1(r)dt2 + eλ1(r)dr2 + r2dΩ2,

fµνdx
µdxν = −eν2(r)dt2 + eλ2(r)(r + rµ(r))′

2
dr2 + (r + rµ(r))2dΩ2,

we can calculate the “Newtonian” potential in the weak field regime:

ν1(r) =


− rS

r − r2 Λeff

3 r � 3

√
rS
m2

g

− rS
r

[
h(θ) + 2 cos2(θ)e−mg r

(
1 +

Λ′
eff

3m2
g

)]
−

−r2 sin2(θ) Λeff

3 r � 3

√
rS
m2

g

Degravitation for sin2(θ)→ 0!
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Phenomenology



Spiral galaxy rotation curves

pr
eli
m
ina
ry

courtesy of Juri Smirnov
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Previous analyses[Brownstein and Moffat, 2006]

Fig. 1.—Continued

726

Fig. 1.—Continued

727
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Previous analyses[Brownstein and Moffat, 2006]

Fig. 2.—Continued

730

Fig. 2.—Continued

731
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Bounds on the graviton mass

solar system tests λg > 2.8 · 1012 km, mg < 7.2 · 10−23 eV

weak lensing λg > 2 · 1021 km, mg < 6 · 10−32 eV

rely on a Yukawa potential ∝ e−mg r

GW150914 λg > 4.2 · 1011 km, mg < 1.2 · 10−22 eV

due to a modified dispersion relation vg =

√
1− m2

g

E 2

But do these bounds apply here?
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A word of honesty – the bullet cluster

visible

matter

(X-rays)

dark

matter

(lensing)

Bullet cluster favours particle DM

Need extra, non-baryonic degrees of freedom!
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Conclusions



Summary

• We know how to give the graviton a mass! 3

• non-linearities make this a difficult, yet interesting problem!

• Bigravity is a consistent framework which allows to study some of

the effects

⇒ solve (in part) the DM problem 3

⇒ Degravitation seems to work 3

⇒ Λ ∼ m2
g 3

• Many open questions and lots of work to be done!

⇒ CMB, GW, cosmological implications etc.
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Thank you!
(and please comment!)

24



Back-up slides



Back-up – Einstein Eqs. continued

Recall that Xµ
ν =

(√
g−1f

)µ
ν

:

V (0)(g)µν =δµν ,

V (1)(g)µν =tr (X) δµν − Xµ
ν ,

V (2)(g)µν =
(
X2
)µ

ν
− tr (X) Xµ

ν +
δµν

2

[
tr (X)2 − tr

(
X2
)]
,

V (3)(g)µν =−
(
X3
)µ

ν
+ tr (X)

(
X2
)µ

ν
− 1

2

[
tr (X)2 − tr

(
X2
)]

Xµ
ν+

+
δµν

6

[
tr (X)3 − 3 tr (X) tr

(
X2
)

+ 2 tr
(
X3
)]
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Back-up – Einstein Eqs. continued

Recall that Xµ
ν =

(√
g−1f

)µ
ν

:

V (1)(f )µν =Xµ
ν ,

V (2)(f )µν =−
(
X2
)µ

ν
+ tr (X) Xµ

ν ,

V (3)(f )µν =
(
X3
)µ

ν
+ tr (X)

(
X2
)µ

ν
+

1

2

[
tr (X)2 + tr

(
X2
)]

Xµ
ν ,

V (4)(f )µν =δµν
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