

KIRCHHOFF-INSTITUT FÜR PHYSIK

Searching for supersymmetry using hadronically decaying tau leptons

Valerie Lang Kirchhoff-Institute for Physics, Heidelberg IMPRS-PTFS seminar, 07.11.2013

GRADUIERTEN-AKADEMIE International Max planes Lanes Sehool

- Standard model of particle physics
 - Describes the known matter
 + 3 interactions
 to very high precision

Unfortunately some open issues,e.g. what is dark matter?

• Standard model of particle physics

Unfortunately some open issues,e.g. what is dark matter?

- Standard model of particle physics
 - Describes the known matter
 + 3 interactions
 to very high precision

Unfortunately some open issues,e.g. what is dark matter?

07.11.2013

Valerie Lang - IMPRS-PTFS seminar

• ATLAS detector

Multipurpose detector

- ightarrow Onion shell structure
 - Inner detector tracking
 - Calorimeters
 - Muon system

ATLAS detector

Final state signature

- $\geq 2 \tau_{had}$
- Large E_T^{miss}
- Not much else

Multipurpose detector

- ightarrow Onion shell structure
 - Inner detector tracking
 - Calorimeters
 - Muon system

Tau leptons

- m_τ = 1.78GeV
- $\tau_{\tau} = 2.9 \times 10^{-13} \text{s}$
 - \rightarrow decay length 87.1 μ m
 - ightarrow inside beam pipe
- BR_{hadrons} = 65%

 π^0

 π^{-} π^{+}

<image>

Cut

- Define electrons, muons, taus and jets
- Compute variables like E_T^{miss} , m_{T2} , etc
- Select events according to criteria e.g. ≥ 2 τ's

Cut-and-Count Analysis

Cut

- Define electrons, muons, taus and jets
- Compute variables like E_T^{miss} , m_{T2} , etc
- Select events according to criteria e.g. ≥ 2 τ's

Count

• Count events passing the criteria

\rightarrow Compare

 Compare expectation from standard model to measured data

 "Invariant mass" of invisible particles (partially) decaying to invisible particles

- → Consider decay with 1 invisible particle: $\tilde{\tau}^+ \rightarrow \chi_1^0 \tau^+$ → $m_{\tilde{\tau}}^2 = m_{\tau}^2 + m_{\chi_1^0}^2 + 2[E_T^{\tau} E_T^{\chi_1^0} \cosh(\Delta y) - \mathbf{p}_T^{\tau} \cdot \mathbf{p}_T^{\chi_1^0}]$ with y=rapidity^(*)
 - → Transverse mass m_T^2 : leave out cosh(Δy).
 → Since cosh(Δy) ≥ 1 → $m_T^2 ≤ m_{\tilde{\tau}}^2$

http://arxiv.org/pdf/hep-ph/0304226.pdf

(*) rapidity
$$y = \frac{1}{2} \ln(\frac{E+p_z}{E-p_z})$$

 "Invariant mass" of invisible particles (partially) decaying to invisible particles

(*) rapidity $y = \frac{1}{2} \ln(\frac{E+p_z}{E-p_z})$

- → Consider decay with 1 invisible particle: $\tilde{\tau}^+ \rightarrow \chi_1^0 \tau^+$ → $m_{\tilde{\tau}}^2 = m_{\tau}^2 + m_{\chi_1^0}^2 + 2[E_T^{\tau} E_T^{\chi_1^0} \cosh(\Delta y) - \mathbf{p}_T^{\tau} \cdot \mathbf{p}_T^{\chi_1^0}]$ with y=rapidity^(*)
 - → Transverse mass m_T^2 : leave out $\cosh(\Delta y)$. → Since $\cosh(\Delta y) \ge 1 \rightarrow m_T^2 \le m_{\tilde{\tau}}^2$

→ 2*decay →
$$\tilde{\tau}^+ \tilde{\tau}^- \rightarrow \tau^+ \tau^- \chi_1^0 \chi_1^0$$

→ 2 χ_1^0 contribute to E_T^{miss}
→ Split E_T^{miss} into $E_T^{miss} = q_T^{(1)} + q_T^{(2)}$ such that

$$m_{T2}^{2}(\chi) = \min_{\substack{q_{T}^{(1)} + q_{T}^{(2)} = E_{T}^{miss}}} \left[\max\left\{ m_{T}^{2}\left(p_{T}^{\tau^{(1)}}, q_{T}^{(1)}; \chi\right), m_{T}^{2}(p_{T}^{\tau^{(2)}}, q_{T}^{(2)}; \chi) \right\} \right]$$

How many events do we expect from standard model processes?

Processes which look like our signal

→ Use data to estimate due to incorrect fake tau modelling in simulation

ightarrow ABCD method

07.11.2013

How many events do we expect from standard model processes?

Processes which look like our signal

- \rightarrow Largest background (30-80%)
- → Use data to estimate due to incorrect fake tau modelling in simulation
- ightarrow ABCD method

07.11.2013

 E_{T}^{miss} = neutrinos e.g. from W-decay

- \rightarrow Diboson = 2nd largest (15-35%)
- → Estimate from simulation → many systematics sources to be considered
- → Validation of simulation in specific phase space regions with data

• Divide phase space into 3 background A,B,C + 1 signal region D

- Pair of uncorrelated variables: tau ID and e.g. m_{T2}
- Regions A, B, C dominated by background which is to be estimated
- Events in region D via rule of proportion

• Divide phase space into 3 background A,B,C + 1 signal region D

- Pair of uncorrelated variables: tau ID and e.g. m_{T2}
- Regions A, B, C dominated by background which is to be estimated
- Events in region D via rule of proportion

• Divide phase space into 3 background A,B,C + 1 signal region D

- Pair of uncorrelated variables: tau ID and e.g. m_{T2}
- Regions A, B, C dominated by background which is to be estimated
- Events in region D via rule of proportion

• Divide phase space into 3 background A,B,C + 1 signal region D

→ Compare obtained number of expected standard model events in signal region to data

How do the Monte Carlo estimates work, e.g. for diboson?

- Principle idea
 - Use number of events
 predicted in the signal regions
 - But signal regions = extreme phase space for diboson processes → range of very low Monte Carlo statistics
 - → Produce as much Monte Carlo as possible
 - → Statistically combine existing Monte Carlo to reduce statistical uncertainties

How do the Monte Carlo estimates work, e.g. for diboson?

- Principle idea
 - Use number of events predicted in the signal regions
 - But signal regions = extreme phase space for diboson processes → range of very low Monte Carlo statistics
 - → Produce as much Monte Carlo as possible
 - → Statistically combine existing Monte Carlo to reduce statistical uncertainties

→Systematic uncertainties

- Experimental uncertainties from reconstruction, e.g. tau energy scale
- Theoretical uncertainties from simulation, e.g. scales for separation of hard process, showering & radiation

Valerie Lang - IMPRS-PTFS seminar

What if we don't see a difference between our expectation and data?

• Results from March 2013

Process	Example signal region	
Expected standard model events	$17 \pm 4(\text{stat}) \pm 3(\text{sys})$	
Measured in data	14 Updates si	but t
Expected from 2 SUSY points	$\begin{array}{c} 9.2 \pm 1.2 \\ 8.9 \pm 0.7 \\ not \\ public \\ not \\ not \\ public \\ not \\ not \\ public \\ not \\$	shed yet
Observation \rightarrow Probably no SUSY		
\rightarrow But up to which parameter values		

are we sure we don't see SUSY?

What if we don't see a difference between our expectation and data?

• Results from March 2013

Different analyses searching for SUSY electroweak production

- → Large part of the haystack is searched, but so far no SUSY found
- → Continue with the remaining part

