Fundamental Symmetries and Rare Decays

Julian Heeck

Max-Planck-Institut für Kernphysik, Heidelberg

8.5.2014 IMPRS Seminar

based on J.H., PRL 111, 021801 (2013), J.H., Werner Rodejohann, EPL 103, 32001 (2013).

International Max planex Research School

Introduction

Symmetries:

unbroken	Poincaré (Lorentz), CPT, $SU(3)_C$, $U(1)_{EM}$
broken	C, CP, $SU(2)_L imes U(1)_Y$, lepton numbers L_lpha, \ldots
?	Baryon number <i>B</i> , total lepton number <i>L</i> , strong CP

Discovery of (broken) symmetries always exciting, test via rare decays at low energies.

Introduction

Symmetries			
unbroken	Poincaré (Lorentz), CPT, $SU(3)_C$, $U(1)_{EM}$		
broken	C, CP, $SU(2)_L \times U(1)_Y$, lepton numbers L_{α} ,		
?	Baryon number <i>B</i> , total lepton number <i>L</i> , strong CP		

Discovery of (broken) symmetries always exciting, test via rare decays at low energies.

• Here: focus on B - L and $U(1)_{EM}$ (later), the abelian symmetries.

- *B* and *L* classically conserved in the Standard Model.
- B + L theoretically broken non-perturbatively by 6 units.
- B L globally conserved.

Fate of fundamental $U(1)_{B-L}$ from experiments. Linked to neutrino nature and matter–antimatter asymmetry.

- *B* and *L* classically conserved in the Standard Model.
- B + L theoretically broken non-perturbatively by 6 units.
- B L globally conserved.

Fate of fundamental $U(1)_{B-L}$ from experiments. Linked to neutrino nature and matter-antimatter asymmetry.

Standard (theoretical) paradigm:

Majorana neutrinos \Leftrightarrow Neutrinoless double β decay $\Leftrightarrow \Delta(B - L) = 2$.

- *B* and *L* classically conserved in the Standard Model.
- B + L theoretically broken non-perturbatively by 6 units.
- B L globally conserved.

Fate of fundamental $U(1)_{B-L}$ from experiments. Linked to neutrino nature and matter–antimatter asymmetry.

Standard (theoretical) paradigm: Majorana neutrinos \Leftrightarrow Neutrinoless double β decay $\Leftrightarrow \Delta(B - L) = 2$. Other possibilities exist!

Dirac neutrinos
$$\Rightarrow \begin{cases} B - L \text{ conserved,} \\ \Delta(B - L) = 4, 6, 42, \dots \neq 2 \end{cases}$$

- *B* and *L* classically conserved in the Standard Model.
- B + L theoretically broken non-perturbatively by 6 units.
- B L globally conserved.

Fate of fundamental $U(1)_{B-L}$ from experiments. Linked to neutrino nature and matter–antimatter asymmetry.

Standard (theoretical) paradigm: Majorana neutrinos \Leftrightarrow Neutrinoless double β decay $\Leftrightarrow \Delta(B - L) = 2$. Other possibilities exist!

Dirac neutrinos
$$\Rightarrow \begin{cases} B - L \text{ conserved}, \\ \Delta(B - L) = 4, \delta, 42, \ldots \neq 2. \end{cases}$$

Can we test lepton number violation by higher units?

Effective operators

• Lowest order new processes: $\Delta(B - L) = 4$:

$$\begin{aligned} \mathcal{O}_{d=6} &: \quad \overline{\nu}_{R}^{c} \nu_{R} \; \overline{\nu}_{R}^{c} \nu_{R} \\ \mathcal{O}_{d=8} &: \quad |H|^{2} \; \overline{\nu}_{R}^{c} \nu_{R} \; \overline{\nu}_{R}^{c} \nu_{R} \;, \quad (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \; \overline{\nu}_{R}^{c} \nu_{R} \;, \quad F_{Y}^{\mu\nu} \overline{\nu}_{R}^{c} \sigma_{\mu\nu} \nu_{R} \; \overline{\nu}_{R}^{c} \nu_{R} \\ \mathcal{O}_{d=10} &: \quad (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \; (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \;, \quad |H|^{2} (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \; \overline{\nu}_{R}^{c} \nu_{R} \;, \\ &\quad F_{Y}^{\mu\nu} (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \; \overline{\nu}_{R}^{c} \sigma_{\mu\nu} \nu_{R} \;, \quad W_{a}^{\mu\nu} (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} \tau^{a} L) \; \overline{\nu}_{R}^{c} \sigma_{\mu\nu} \nu_{R} \;, \\ &\quad (\overline{u}_{R} d_{R}^{c}) (\overline{d}_{R} \tilde{H}^{\dagger} L) (\overline{\nu}_{R}^{c} \nu_{R}) \;, \dots \\ \mathcal{O}_{d=18} &: \quad (\overline{d}_{R} d_{R}^{c} \; \overline{u}_{R}^{c} u_{R} \; \overline{e}_{R}^{c} e_{R}) (\overline{d}_{R} d_{R}^{c} \; \overline{u}_{R}^{c} u_{R} \; \overline{e}_{R}^{c} e_{R}) \;, \dots \end{aligned}$$

 $\mathcal{O}_{d=20}: \quad \left[(\overline{(D_{\mu}L)}^{c}\widetilde{H})(H^{\dagger}D_{\nu}L)\right]^{2} \supset (\overline{e}_{L}^{c}W_{\mu}^{+}W_{\nu}^{+}e_{L})(\overline{e}_{L}^{c}W^{+\mu}W^{+\nu}e_{L}),\ldots$

Effective operators

• Lowest order new processes: $\Delta(B-L) = 4$:

$$\begin{aligned} &\mathcal{O}_{d=6}: \quad \overline{\nu}_{R}^{c} \nu_{R} \; \overline{\nu}_{R}^{c} \nu_{R} \\ &\mathcal{O}_{d=8}: \quad |H|^{2} \; \overline{\nu}_{R}^{c} \nu_{R} \; \overline{\nu}_{R}^{c} \nu_{R} \;, \quad (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \; \overline{\nu}_{R}^{c} \nu_{R} \;, \quad F_{Y}^{\mu\nu} \overline{\nu}_{R}^{c} \sigma_{\mu\nu} \nu_{R} \; \overline{\nu}_{R}^{c} \nu_{R} \\ &\mathcal{O}_{d=10}: \quad (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \; (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \;, \quad |H|^{2} (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \; \overline{\nu}_{R}^{c} \nu_{R} \;, \\ &F_{Y}^{\mu\nu} (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} L) \; \overline{\nu}_{R}^{c} \sigma_{\mu\nu} \nu_{R} \;, \quad W_{a}^{\mu\nu} (\overline{L}^{c} \tilde{H}^{*}) (\tilde{H}^{\dagger} \tau^{a} L) \; \overline{\nu}_{R}^{c} \sigma_{\mu\nu} \nu_{R} \;, \\ &(\overline{u}_{R} d_{R}^{c}) (\overline{d}_{R} \tilde{H}^{\dagger} L) (\overline{\nu}_{R}^{c} \nu_{R}) \;, \dots \\ &\mathcal{O}_{d=18}: \quad \left(\overline{d}_{R} d_{R}^{c} \; \overline{u}_{R}^{c} u_{R} \; \overline{e}_{R}^{c} e_{R}) (\overline{d}_{R} d_{R}^{c} \; \overline{u}_{R}^{c} u_{R} \; \overline{e}_{R}^{c} e_{R}) \\ &(\overline{d}_{R} d_{R}^{c} \; \overline{u}_{R}^{c} u_{R} \; \overline{e}_{R}^{c} e_{R}) (\overline{d}_{R} d_{R}^{c} \; \overline{u}_{R}^{c} u_{R} \; \overline{e}_{R}^{c} e_{R}) \\ &\mathcal{O}_{d=20}: \quad \left[((\overline{D}_{\mu} L)^{c} \tilde{H}) (H^{\dagger} D_{\nu} L) \right]^{2} \supset (\overline{e}_{L}^{c} W_{\mu}^{+} W_{\nu}^{+} e_{L}) (\overline{e}_{L}^{c} W^{+\mu} W^{+\nu} e_{L}) \;, \dots \end{aligned}$$

• ν vs. $\overline{\nu}$ undetectable, use only charged particles, e.g. $\mathcal{O}_{d=18}$.

Dominant at low energies: Neutrinoless quadruple beta decay $0\nu4\beta$

$$4d \rightarrow 4u + 4e^- \quad \Leftrightarrow \quad 4n \rightarrow 4p + 4e^-$$
.

UV completion

• One scalar $\phi_{B-L=4}$ to break B-L, one scalar $\chi_{B-L=-2}$ as mediator.

$$\mathcal{L} \supset y_{\alpha\beta} \,\overline{L}_{\alpha} H \nu_{R,\beta} + \kappa_{\alpha\beta} \,\chi_{B-L=-2} \,\overline{\nu}_{R,\alpha} \nu_{R,\beta}^{c} + \text{h.c.}$$

- Neutrinos are Dirac (and $\Delta L = 2$ forbidden) if $\langle \chi_{B-L=-2} \rangle = 0$.
- Scalar potential $V(H, \phi, \chi) \supset -\mu \phi_{B-L=4} (\chi_{B-L=-2})^2 + h.c.$
- Lepton number violation $\Delta L = 4$ still possible!¹ $\overline{\nu}_{R}^{c} \nu_{R} \ \overline{\nu}_{R}^{c} \nu_{R} =$

¹Heeck and Rodejohann, EPL **103**, 32001 (2013) [arXiv:1306.0580].

Neutrinoless quadruple beta decay $0\nu 4\beta$

$$(A,Z) \rightarrow (A,Z+4) + 4 e^{-}$$
 via $\mathcal{O} = (\overline{\nu}_{L}^{c} \nu_{L})^{2} / \Lambda^{2}$:

Candidate nuclei

- Experimental aspects of $0\nu 4\beta$ independent of underlying mechanism.
- Need beta-stable initial state:

• Decay modes: $0\nu 4\beta$ and $2\nu 2\beta$ ($0\nu 2\beta$ forbidden here).

Candidates for nuclear $\Delta L = 4$ processes

	$Q_{0 u4eta}$	Other decays	NA/%
$^{96}_{40}\mathrm{Zr} \rightarrow {}^{96}_{44}\mathrm{Ru}$	0.629 MeV	$ au_{1/2}^{2 u2eta}\simeq 2 imes 10^{19}$ y	2.8
$^{136}_{54}{\rm Xe} \to {}^{136}_{58}{\rm Ce}$	0.044 MeV	$ au_{1/2}^{2 u2eta}\simeq 2 imes 10^{21}$ y	8.9
$^{150}_{60}\mathrm{Nd} \to {}^{150}_{64}\mathrm{Gd}$	2.079 MeV	$ au_{1/2}^{2 u2eta}\simeq 7 imes 10^{18}$ y	5.6
	$Q_{0 u4 m EC}$		
$^{124}_{54}\mathrm{Xe} \rightarrow {}^{124}_{50}\mathrm{Sn}$	0.577 MeV	—	0.095
$^{130}_{56}{\rm Ba} \to {}^{130}_{52}{\rm Te}$	0.090 MeV	$ au_{1/2}^{2 u m 2EC} \sim 10^{21}$ y	0.106
$^{148}_{64}\mathrm{Gd} \rightarrow {}^{148}_{60}\mathrm{Nd}$	1.138 MeV	$ au_{1/2}^lpha \simeq$ 75 y	_
$^{154}_{66}{\rm Dy} \rightarrow {}^{154}_{62}{\rm Sm}$	2.063 MeV	$ au_{1/2}^lpha \simeq 3 imes 10^6 \; { m y}$	
	$Q_{0\nu 3 { m EC} eta^+}$		
$^{148}_{64}\mathrm{Gd} \rightarrow {}^{148}_{60}\mathrm{Nd}$	0.116 MeV	$ au_{1/2}^lpha \simeq$ 75 y	—
$^{154}_{66}{\rm Dy} \rightarrow {}^{154}_{62}{\rm Sm}$	1.041 MeV	$ au_{1/2}^lpha \simeq 3 imes 10^6$ y	
	$Q_{0 u 2 { m EC} 2eta^+}$		
$^{154}_{66}{\rm Dy} \rightarrow {}^{154}_{62}{\rm Sm}$	0.019 MeV	$ au_{1/2}^lpha \simeq 3 imes 10^6$ y	

Best candidate: Neodymium $^{150}_{60}$ Nd

Decay channels:

• ${}^{150}_{60}\text{Nd} \to {}^{150}_{62}\text{Sm}$ via $2\nu 2\beta \ (\tau^{2\nu 2\beta}_{1/2} \simeq 7 \times 10^{18} \text{ y})$:

$$0 < \sum E_{e,i} < 3.371 \,\mathrm{MeV}.$$

• ${}^{150}_{60}\mathrm{Nd} \rightarrow {}^{150}_{64}\mathrm{Gd}$ via $0\nu4\beta$:

Neutrinoless quadruple beta decay $0\nu 4\beta$

 $(A,Z) \rightarrow (A,Z+4) + 4 e^{-}$ via $\mathcal{O} = (\overline{\nu}_{L}^{c} \nu_{L})^{2} / \Lambda^{2}$:

• Very naive comparison with competing channel $2\nu 2\beta$:

$$\frac{\tau_{1/2}^{0\nu 4\beta}}{\tau_{1/2}^{2\nu 2\beta}} \simeq \left(\frac{Q_{0\nu 2\beta}}{Q_{0\nu 4\beta}}\right)^{11} \left(\frac{\Lambda^4}{q^{12}G_F^4}\right) \simeq 10^{46} \, \left(\frac{\Lambda}{\rm TeV}\right)^4,$$

with $|q| \sim p_{
u} \sim 1\,{
m fm}^{-1} \simeq 100\,{
m MeV}.$

• Estimated rate in toy model unobservably small. Elaborate models with resonances overcome this?

Rare decays in QED

What do we know about photons?

• Mass m= 0, charge Q= 0, lifetime $au_{\gamma}=\infty$

What do we know about photons?

- Mass m = 0, charge Q = 0, lifetime $\tau_{\gamma} = \infty$
- Measurements:

What do we know about photons?

- Mass m = 0, charge Q = 0, lifetime $\tau_{\gamma} = \infty$
- Measurements:

Massive photons

- Standard argument: $\mathcal{L} \supset \frac{1}{2}m^2 A_\mu A^\mu$ breaks gauge invariance $A_\mu \rightarrow A_\mu \partial_\mu \theta(x)$.
- True, but theory *still* renormalizable, unitary, charge conserved etc.
- Formal reason: Stückelberg mechanism:

$$rac{1}{2}m^2 A_\mu A^\mu o \Delta L \equiv rac{1}{2}(m A^\mu + \partial^\mu \sigma)(m A_\mu + \partial_\mu \sigma)\,.$$

- Real scalar σ transforms as $\sigma \rightarrow \sigma + m\theta(x)$, gauge invariance restored.
- Mass term $\frac{1}{2}m^2A_{\mu}A^{\mu}$ is just gauge *fixing*, not *breaking*.

U(1) gauge bosons can have mass without symmetry breaking.

Massive photons II

Theory:²

- QED $U(1)_{\mathsf{EM}} \subset \mathsf{Standard} \ \mathsf{Model} \ SU(3)_{\mathsf{C}} \times SU(2)_{\mathsf{L}} \times U(1)_{\mathsf{Y}}.$
- Stückelberg mass for hypercharge boson m_Y^2 gives photon mass + corrections m_γ^2/M_Z^2 to SM.
- Not possible in Grand Unified Theories $SU(3)_C \times SU(2)_L \times U(1)_Y \subset SU(5) \subset SO(10) \subset E_6.$

Experiment:³

- Coulomb's law $V(r) = -\frac{e}{r}e^{-mr}$ gives $m \lesssim 10^{-14} \, \mathrm{eV}$.
- Solar wind magnetic field: $m \lesssim 10^{-18} \, {\rm eV}$.
- Galactic magnetic field: $m \lesssim 10^{-26} \, {\rm eV}$.

Massive photon not crazy, simplest SM extension.

³Goldhaber and Nieto, arXiv:0809.1003.

²Ruegg and Ruiz-Altaba, arXiv:hep-th/0304245.

Unstable photons

- Massive photon can kinematically decay, ^4 e.g. to lightest neutrino: $\gamma \rightarrow \nu \nu.$
- Model-independent limit on τ_{γ} : well-known low-energy photons.

⁴Heeck, PRL **111** (2013), 021801 [arXiv:1304.2821].

Unstable photons

- Massive photon can kinematically decay, ^4 e.g. to lightest neutrino: $\gamma \rightarrow \nu \nu.$
- Model-independent limit on τ_{γ} : well-known low-energy photons.
- Blackbody spectrum from cosmic microwave background!

⁴Heeck, PRL **111** (2013), 021801 [arXiv:1304.2821].

Unstable photons

• Modified blackbody spectrum:

$$\rho(E,T) \mathrm{d}E \simeq \frac{1}{\pi^2} \frac{E^3 \mathrm{d}E}{\exp(\sqrt{E^2 - m^2}/T) - 1} \sqrt{1 - \frac{m^2}{E^2}} \exp\left(-\frac{m}{E} \frac{d_L}{\tau_{\gamma}}\right)$$

with comoving distance to CMB $d_L \simeq 47$ billion lightyears.

Limit on photon decay

• Fit to precise (10⁻⁴) COBE data: $m < 3 \times 10^{-6} \, {\rm eV}$ and model-independent limit on photon lifetime:

$$au_\gamma > 3\,\mathrm{yr}\left(rac{m}{10^{-18}\,\mathrm{eV}}
ight)$$
 at 95% C.L.

• Visible photons are boosted: $au_{\gamma}({
m red light}) \sim 10^{18} au_{\gamma}.$

Caution:

- Assumed free-streaming CMB photons: interactions with ionized plasma generate plasma-mass for γ .
- Model-*dependent* limits far stronger, because $\gamma \rightarrow XX$ implies milli-charged X.⁵

⁵Davidson, Hannestad, and Raffelt, arXiv:hep-ph/0001179.

Summary

Fundamental abelian symmetries of SM:

 $U(1)_{B-L}$

- global, local, unbroken, broken by 2, 4, 6, ... units?
- Now: $\Delta L = 2$ via $0\nu 2\beta$.
- In principle: $\Delta L = 4$ via $0\nu 4\beta$; experimentally (and theoretically) challenging.
- ΔL = 4 lowest LNV of Dirac neutrinos.

 $U(1)_{\rm EM}$

- Photon can be massive (gauge invariant!).
- Could (kinematically) decay, e.g. $\gamma \rightarrow \nu \nu$.
- First model-independent bound: $\tau_{\gamma} > 3 \, {\rm yr.}$
- Severe implications: photon decay (or mass) would kill GUTs.

Phenomenology of LNV Dirac neutrinos

Quick summary:

- Even with Dirac neutrinos, we can have LNV.
- Lowest order is then $\Delta(B-L) = \Delta L = 4$, via $\mathcal{O}_{d=6} = (\overline{\nu}_R^c \nu_R)^2 / \Lambda^2$.

How to check for $\Delta L = 4$?

- Neutrinoless quadruple beta decay $(A, Z) \rightarrow (A, Z + 4) + 4 e^{-}$.
- Collider process $e^-e^- \rightarrow W^-W^-W^-W^-\ell^+\ell^+$.
- Rare meson decays etc.?

All tough, many particles in final state!

 $\Delta L = 4$ can however easily be relevant in the early Universe \Rightarrow new Dirac leptogenesis mechanism predicting 3.14 $\lesssim N_{\rm eff} \lesssim 3.29.^6$

⁶Heeck, PRD 88, 076004 (2013) [arXiv:1307.2241].

Comments on $0\nu4\beta$

- Background: electrons from $2\nu 2\beta$ kick out two more e^- . $\Rightarrow 4 e^-$ with $\sum E_i \sim Q_{0\nu 4\beta}$ possible.
- $0\nu4\beta$ to excited state ${}^{150}_{64}\text{Gd}^*$: Q reduced by $0.6 \,\mathrm{MeV}$ (2⁺) or $1.2 \,\mathrm{MeV}$ (0⁺), but more photons...
- Nuclear matrix elements impossible (?) to calculate. \Rightarrow No way to extract fundamental couplings from $\tau_{0\nu4\beta}$ (?)
- $0\nu 6\beta$ etc. all involve beta-unstable nuclei. $\Rightarrow 0\nu 2\beta$ and $0\nu 4\beta$ somewhat unique.
- Very different $\Delta(B L) = 4$ decay: $4n \rightarrow 3p + 3e^{-}$, mimics $0\nu 3\beta$. Candidate:

$$\begin{array}{ccc} {}^{148}_{60}\mathrm{Nd} & \xrightarrow{931.6\,\mathrm{MeV}} & {}^{147}_{63}\mathrm{Eu} + 3e^{-} \\ & & & \downarrow & \\ & & & \downarrow & \\ & & & \downarrow & \\ & & & 147\mathrm{Sm}\,\left(\tau^{\beta^+}_{1/2} \simeq 24\,\mathrm{d}\right) \end{array}$$

followed by the β^+ decay into $^{147}_{62}\mathrm{Sm}$ with half-life 24 d.

Dirac B - L: Leptogenesis

Leptogenesis via $\Delta L = 4$?

 Scalar potential V(H, φ, χ) ⊃ −μφ_{B-L=4}(χ_{B-L=-2})² breaks complex χ_{B-L=-2} = (Ξ₁ + i Ξ₂)/√2 into two real scalars with mass

$$m_1^2=m_c^2-2\mu\langle\phi_{B-L=4}
angle\,,\qquad m_2^2=m_c^2+2\mu\langle\phi_{B-L=4}
angle\,.$$

• Heavy mediator scalar Ξ_j decays to $\nu_R \nu_R$ or $\overline{\nu}_R \overline{\nu}_R$ out-of-equilibrium in early Universe.⁷

• *CP* violation requires second scalar $\chi_{B-L=-2}$.

Asymmetry in ν_R . How to translate to baryon asymmetry? ⁷Heeck, PRD **88**, 076004 (2013) [arXiv:1307.2241].

Baryon Asymmetry

$$Y_{
u_R} \equiv rac{n_{
u_R}}{s} \sim rac{1}{g_*} \; rac{\Gamma\left(\Xi_i
ightarrow
u_R
u_R
ight) - \Gamma\left(\Xi_i
ightarrow
u_R^c
u_R^c
ight)}{\Gamma\left(\Xi_i
ightarrow
u_R
u_R
ight) + \Gamma\left(\Xi_i
ightarrow
u_R^c
u_R^c
ight)} \; .$$

• Dirac-Yukawa coupling $Y_{\nu} = m_{\nu}/\langle H \rangle$ too small to equilibrate $\nu_R \dots$ Add second Higgs doublet H_2 with large Yukawa $\overline{L}H_2\nu_R$:

- Neutrinophilic H_2 with small VEV $\langle H_2 \rangle \sim 1 \, eV$ \Rightarrow Dirac neutrinos light with large Yukawas.
- H_2 moves Y_{ν_R} to Y_{ν_L} .
- Sphalerons move Y_{ν_L} to Y_B .

 \Rightarrow Different from neutrinogenesis, similar to standard leptogenesis!

- Necessary thermalization of $\nu_R \Rightarrow N_{\rm eff} > 3!$
- $3.14 \lesssim N_{\rm eff} \lesssim 3.29$ depending on H_2^+ mass and Yukawa coupling.
- Specific collider signatures of neutrinophilic H₂.⁸

⁸S. M. Davidson and H. E. Logan, PRD **80**, 095008 (2009).