

Towards the detection of coherent elastic neutrino nucleus scattering

Janina Hakenmüller (for the CONUS Collaboration) Max-Planck-Institut für Kernphysik

IMPRS Seminar, MPIK, 22.01.2019

Neutrino interactions in standard model

Experimental challenges

Relevance of CEvNS

 Stellar collapse: 99% energy release in v
 → CENNS moving outwards

 Weinberg angle at low energies deviations

 → physics beyond SM

SM

Credit:TeraScale Supernova Initiative

BSM

 Neutrino floor in dark matter experiments Signature like dark matter
 → same detector response

"today's signal, tomorrow's background"

https://agenda.infn.it/getFile.py/access? contribId=11&sessionId=3&resId=1&materiaIId=slides&confId=9608

 Neutrino magnetic moment minimal extention SM: 10⁻¹⁹μ_B models exist with ≤10⁻¹⁴μ_B current limit: <2.8*10⁻¹¹μ_B [Borexino PhaseII]
 → precision experiment required

For muon neutrino flux ($2.5*10^7 \nu/cm^2/s$ from pion decay at rest) Brice et al, arXiv:1311.5958v1 [physics.ins-det] 23 Nov 2013

• Non-standard interactions If ϵ ~0.01 sensitive to TeV scales! \rightarrow competitive to much larger neutrino experiments

CONUS: Coherent Neutrino nUcleus Scattering

Collaboration:

- C. Buck, J. Hakenmüller, G. Heusser, M. Lindner, W. Maneschg,
- T. Rink, T. Schierhuber, H. Strecker
 - Max Planck Institut für Kernphysik (MPIK), Heidelberg
- K. Fülber, R. Wink
 - Preussen Elektra GmbH, Kernkraftwerk Brokdorf (KBR), Brokdorf

Scientific cooperation:

- M. Reginatto, M. Zboril, A. Zimbal
 - Physikalisch-Technische Bundesanstalt (PTB), Braunschweig

Reactor site

Nuclear power plant at Brokdorf (GER) - pressurized light water reactor

M

Overburden at <u>shallow</u> depth:

10-45 m w.e. (angular dep.) => muon-induced background

CONUS Experiment:

- 4kg low threshold p-type point contact HPGe detectors
- electrical PT cryocoolers
- Flush with air bottles

Reactor core:

thermal power 3.9 GW
high duty cycle (1 month/yr off)
1)Signal: Anti neutrinos @17m
~10¹³/(cm² s)
2)Potential background: Neutrons

Fast neutron classes	Corr. with	
	therm. power	
μ -ind. in Pb inside shield	No	
μ -ind. above ceiling	No	
(α, n) -reactions from walls	No	
fission n from spent fuel rods	No	
fission n from reactor core	Yes	

Neutrons at reactor site

NEMUS by PTB: spectral resolution possible! https://www.ptb.de/cms/ptb/fachabteilungen/ abt6/fb-64/643-

neutronenspektrometrie/nemus.html

at reactor core

Propagation of reactor neutrons to A408 in Geant4

Remaining fast neutrons?

Neutrons at reactor site

Main results:

- 1. Neutron fluence at distance of 17m to reactor core ~factor 2 lower than earth surface!
- 2. highly thermalized neutron field, correlated to reactor power
- 3. inhomogeneity in thermal neutron fluence of $\sim 20\%$
 - => in depth understanding of neutron background on site
- 4. MC result in front of room similar, same maximum energy

Reactor power vs neutron fluence

Data available on reactor

- Thermal power from heat in secondary circuit
- Reactor incore and excore instrumentation

Correlation: between neutron flux at CONUS site and thermal power – in particular for instrumentation at top

Reactor neutrons

Publication coming soon!

Background reduction

" No shield: natural radioactivity

Innermost layer Pb: Bremstrahlung ~ Z² self-shielding ~ Z⁵ => lower continuum for Pb ²¹⁰Pb activity: dedicated screening campaign => select suitable bricks => mean < 2Bq/kg MPIK lab: low radioactive concrete NPP Brokdorf: additonal background contributions

Freiburg cathedral lead

Inspired by GIOVE design (R&D in Heidelberg: 2017-2013)

25 cm Pb

Background reduction

No shield: natural radioactivity

MC Simulation of muon-induced bkg

Validated technique up to O(100keV) inside similar shield

- calculation of muon-flux in MPIK laboratory
- propagate muons through shield with Geant4 based framework MaGe
- excellent agreement for prompt muon-induced continuum
- lack of neutrons (40-70%) \rightarrow correct for missing neutrons

Validation of neutron correction factor: (2013-ongoing)

- similar shield with coax HPGe (Taup proceeding 2015)
- consistency of all 4 detectors
- count rate of neutron-induced Ge lines
- Bonner Sphere measurement inside shield

Background reduction

No shield: natural radioactivity

DATA SET		Detector	Reactor OF	F [d]	Reactor ON [d]	
		CONUS1	24.9		156.9	
Final calibration Determine energy thershold		CONUS2	16.7		102.1	
		CONUS3	23.0		158.2	
		CONUS4	24.4		158.1	
		total	89		575	
Rate analysis excess in region of interest?	Systematics compare to expected shape - reactor: thermal power,			Shape analysis compare to expected sha Background model		
	 detectors: eπiciency background: decay DAQ: dead time losses quenching 		es			18

DATA SET	Detector	Reactor OFF [d]	Reactor ON [d]
	CONUS1	24.9	156.9
Final calibration Determine energy thershold	CONUS2	16.7	102.1
	CONUS3	23.0	158.2
	CONUS4	24.4	158.1
	total	89	575

-		
D ata	anal	VCIC
ιαιτ	anai	y JIJ
		-

Latest data release: **December 2018** 3 detectors (without CONUS-2 due to instabilities)

	Counts
Reactor OFF (72 d kg)	238+-18
Reactor ON (474 d kg)	1739+-47
ON-OFF	126+-128
Significance 1 sigma	
reduced reactor off time → benificial for shape analysis => stay tuned!	

Summary & Outlook

- Characterization of Room A408 at nuclear power plant
 - Detailed understanding of neutron background:
 - Neutron spectrum from Bonner Sphere measurement
 - MC of neutrons from reactor
 - Contribution inside CONUS shield negligible
 - Detailed understanding of gamma background from outside shield
 - Succesfull suppression inside shield
- Stable detector operation since O(6months)
- Rate only analysis december 2018: 1sigma \rightarrow shape analysis in progress
- Detailed study of systematics
 - Quenching
 - Detector efficiencies
 - Calibration
 - Reactor physics
- Ongoing data collection at 90% duty cycle
- Several **publications** in preparation (→ stay tuned!)
- Background modelling in progress

Thank you for your attention!

Characterization at exact location of experiment!

BACK UP

First detection: COHERENT

- 4 different targets (N² dependence): Csl scin. crystals (14.6 kg) + Nal (185 kg), single phase LAr (35 kg), HPGe (10 kg)
- neutrino source:

Spallation Neutron Source (SNS) (USA)

- multiple flavors of neutrinos ($\overline{\nu}_{\mu}$, ν_{μ} , ν_{e})
- neutrino energies within partially coherent regime
- flux: $4.3 \cdot 10^7 \text{ s}^{-1} \text{ cm}^{-2}$ in 20 m distance
- pulsed-beam \Rightarrow strong time correlation of signal
- First result (August 2017) (D. Akimov et al.)[2] 15 month of live-time accumulated with CsI[Na] 6.7 σ significance for excess in events,

1 σ consistency with SM prediction (black line)

Relevance of CEvNS

Stellar collapse: 99% energy release in v → CENNS moving outwards

Credit: TeraScale Supernova Initiative

Neutrino floor in dark matter experiments

- Signature like dark matter
 - → same detector response
- "today's signal, tomorrow's background"

https://agenda.infn.it/getFile.py/access? contribId=11&sessionId=3&resId=1&materialId=slides&confId=9608

$$\frac{d\sigma}{d\Omega} = \frac{G_f^2}{16\pi^2} (N - (1 - 4\sin^2\theta_w)Z)^2 E_v^2 (1 + \cos\theta)F^2(Q^2)$$

Weinberg angle at low energies Deviations \rightarrow physics beyond standard model ²³

Challenging reactor environment: 17m away from reactor core

- work under 'unusual' conditions: up to 35°C, transport by handcraft
- preservation of cleanliness (tested at MPIK-lab)
- no intranet (due to safety regulations):
 → no remote control
- radon in air (no easy ventilation possible), no liquid nitrogen allowed

Normalized Values 1.5 Radonlevel ZA408 1.4 **Temperature ZA408** 1.3 1.2 1.1 0.9 0.8 0. 01:00 02:00 02:00 02:00 02:00 02:00 02:00 02:00 01:00 19.05.18 18.06.18 18.07.18 17.08.18 16.09.18 20.03.18 19.04.18 16.10.18 15.11.18

Challenging during assembly ✓ Challenging for detector cooling → close monitoring

Challenging during operation
→ data export only via shifter

Challenging for background reduction \rightarrow flush with breathing ari bottles

sh with breathing an bottles

Close monitoring of enviromental conditions

- temperature: logged every 15 min
- radon: logged every 30 min

Stability: Energy scale

Pulser Position for C1:

Detector efficiencies at low energies

pulser measuremnts: combining multiple weeks function: y = p0 + p1 * log(x)

27

12:14

04/11/18