

Bundesministerium für Bildung und Forschung

DFG

Search for the top quark SUSY partner with the HEPTopTagger in ATLAS

Maddalena Giulini

under supervision of Prof. A. Schöning

Physikalisches Institut, Universität Heidelberg

11th IMPRS-PTFS Seminar June 8, 2016

- Introduction and motivation: search for the top supersymmetric partner, *stop*
- Method:

HEPTopTagger algorithm and performance

• Analysis:

stop search with the HEPTopTagger at 8 TeV

• Results:

exclusion limits

•00	000000	0000000	00
6			

SUPERSYMMETRY

- Space-time symmetry relating fermions and bosons
- Additional particles could solve the Higgs mass hierarchy problem: central role of the top SUSY partner \tilde{t}
- Naturalness favours light \tilde{t}
- Assumption of R-parity conservation:
 - Lightest SUSY Particle (LSP) stable \rightarrow DM candidate
 - LSP: neutralino $\tilde{\chi}_1^0$ (mixture of neutral higgsinos and gauginos)

$ \tilde{t} \to t \tilde{\chi}_1^0 $ $ \circ \bullet \circ $	HEPTopTagger	Analysis	Results
	000000	0000000	00
STOP DECAY			

• signature driven approach with simplified models: $(m_{\tilde{t}}, m_{\tilde{\chi}_{1}^{0}})$

$\tilde{t} \rightarrow t \tilde{\chi}_1^0$	HEPTopTagger	Analysis	Results
000	000000	000000	00

DIRECT *t* SEARCH IN FULLY HADRONIC CHANNEL

Fully hadronic channel:

- large branching ratio (BR($t \rightarrow qq'b$)=68%)
- $E_{\rm T}^{\rm miss}$ only from $\tilde{\chi}_1^0$
- top quark kinematic fully reconstructed

ATLAS 8 TeV published analysis: (JHEP09(2014)015)

- moderate top *p*_T: resolved techniques
- top quark reconstructed from R=0.4 jets

$m_{ ilde{t}} \gg m_{ ilde{\chi}_1^0}$

- top quark produced with high $p_{\rm T}$
- boosted techniques
- top quark reconstruction with **HEPTopTagger**

$\rightarrow t \tilde{\chi}_1^0$	HEPTopTagger	Analysis	Results
00	00000	000000	00

HEPTopTagger algorithm and performance

$\tilde{t} \rightarrow t \tilde{\chi}_1^0$	HEPTopTagger	Analysis	Results
000	00000	000000	00

TAGGING BOOSTED TOP QUARKS (TWIKI) Resolved vs Boosted Regime

- $\Delta R \sim \frac{2m}{p_{\rm T}} \left(\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2} \right)$
- high $p_{\rm T}$ top quark: decay products in a single large-*R* jet

low p_T tops, resolved decay products high p_T tops, collimated decay products

$\tilde{t} \rightarrow t \tilde{\chi}_1^0$	HEPTopTagger	Analysis	Results
000	00000	0000000	00

TAGGING BOOSTED TOP QUARKS (TWIKI) Multi-jet vs top quark substructures

- looking into substructure to discriminate top quark vs bkg
- $\bullet~$ reduction of pileup \rightarrow better reconstruction of top kinematic

multi-jet background

top quark decay

HEPTopTagger

(PLEHN, SALAM, SPANNOWSKY, TAKEUCHI, ZERWAS: JHEP 1010 (2010) 078 & JHEP08 (2012) 091)

$\tilde{t} \rightarrow t \tilde{\chi}_1^0$	HEPTopTagger	Analysis	Results
000	000000	0000000	00

HEPTOPTAGGER EFFICIENCY MEASUREMENT

$$f_{\text{data},i} = \left(\frac{N_{\text{data}}^{\text{tag}} - N_{i\bar{t}n\text{ot matched}}^{\text{tag}} - N_{non-i\bar{t}}^{\text{tag}}}{N_{\text{data}} - N_{i\bar{t}n\text{ot matched}} - N_{non-i\bar{t}}}\right)_{i} \text{ vs } f_{\text{MC},i} = \left(\frac{N_{\text{MC}}^{\text{tag}}}{N_{\text{MC}}}\right)_{i}$$

$\tilde{t} \rightarrow t \tilde{\chi}_1^0$	HEPTopTagger	Analysis	Results
000	000000	000000	00

Direct stop search with the HEPTopTagger

$\tilde{t} \rightarrow t \tilde{\chi}_1^0$	HEPTopTagger	Analysis	Results
000	000000	000000	00

ANALYSIS STRATEGY AND BACKGROUND ESTIMATION IN SUSY SEARCHES

- Signal Region (SR): extreme region of phase space
- More precise bkg estimation \rightarrow better sensitivity
 - data-driven methods:
 - shape and normalization extracted from data
 - large cross section processes like multi-jet
 - semi data-driven approach:
 - shape from simulation
 - normalization from **Control Regions** (CR) with high bkg purity and low signal contamination
 - SM processes with large cross sections $t\bar{t}$, V+jets
 - pure simulation:
 - low cross section SM processes like VV, $t\bar{t}V$

truth m_{T2} [GeV]

Missing Transverse Energy [GeV]

CONTROL REGIONS (CR)

V+jets low E_{T}^{miss} , $N_{b-jets} = 0$, "inverted" top candidate

21 / 25

CONTROL REGIONS (CR)

V+jets low $E_{\text{T}}^{\text{miss}}$, $N_{b\text{-jets}} = 0$, "inverted" top candidate $t\bar{t}$ low $E_{\text{T}}^{\text{miss}}$, $N_{b\text{-jets}} \ge 1$, low $m_{\text{T}}^{\text{b,min}}$

100

Data/SM

- No significant excess observed
- 95% C.L. exclusion limits computed for each point in the 2D $(m_{\tilde{t}}, m_{\tilde{\chi}_1^0})$ parameter space

CONCLUSIONS AND OUTLOOK

- search for stop pair production in fully hadronic channel
- analysis with HEPTopTagger improves limits

- at 13 TeV enhancement of signal cross section wrt bkg
- larger $m_{\tilde{t}}$ investigated \rightarrow top quarks more boosted
- HEPTopTagger signal regions could be implemented orthogonally wrt to resolved ones

26 / 25

m_{T2}, stransverse mass (Рнуз. Lett. B 463 99 (1999), J. Pнуз. G 29 2343 (2003), JHEP 0812:063,2008)

By analogy with W transverse mass: $m_{\tilde{t}} \ge M_{T}^{\tilde{t}}(\vec{p}_{T,t},\vec{p}_{T,\chi})$

scanning over
$$\vec{p}_T^{\chi_a}, \vec{p}_T^{\chi_b}$$
 with: $\vec{p}_T^{\text{miss}} = \vec{p}_T^{\chi_a} + \vec{p}_T^{\chi_b}$
 $m_{T2}^2 = \min_{\vec{p}_T^{\chi_a} + \vec{p}_T^{\chi_b}} \left(\max \left(M_T^2(\vec{p}_T^t, \vec{p}_T^{\chi_a}), M_T^2(\vec{p}_T^t, \vec{p}_T^{\chi_b}) \right) \right)$
 $\mathbf{m}_{\tilde{t}}^2 \ge \mathbf{m}_{T2}^2$
HEPTopTagger