Gauge Theories for Baryon and Lepton Numbers

IMPRS-PTFS Seminar, 7 November 2013

Based on arXiv:1304.0576 [hep-ph], arXiv:1306.0568 [hep-ph], arXiv:1309.3970 [hep-ph].

With P. Fileviez Pérez (MPIK), M. Lindner (MPIK), M. B. Wise (Caltech).

Michael Duerr

Max-Planck-Institut für Kernphysik, Heidelberg

INTERNATIONAL MAX PLANCK RESEARCH SCHOOL

Outline

- Introduction
- Gauging Baryon and Lepton Numbers
- Fermionic Leptoquarks
- Summary

Outline

Introduction

- Gauging Baryon and Lepton Numbers
- Fermionic Leptoquarks
- Summary

The Standard Model of Particle Physics

Standard Model gauge group:

$$G_{\mathsf{SM}} = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$

Field	<i>SU</i> (3) _C	$SU(2)_L$	U(1) _Y	$U(1)_B$	$U(1)_{L}$
Q_L	3	2	1/6	1/3	0
u _R	3	1	2/3	1/3	0
d _R	3	1	-1/3	1/3	0
ℓ_L	1	2	-1/2	0	1
e _R	1	1	-1	0	1
Н	1	2	1/2	0	0

Michael Duerr (MPIK)

Gauge Theories for B and L

Standard Model Features

 Renormalizable SM couplings conserve B and L, e.g.,

 $\mathcal{L}_{\mathsf{SM}} \supset \overline{\ell_L} \mathcal{D} \ell_L + Y_Q \overline{Q_L} H d_R$

 Yukawa couplings of massless charged leptons:

 $\mathcal{L}_Y = -Y_l \overline{\ell_L} He_R + h.c.$

Spontaneous symmetry breaking $SU(2)_L \otimes U(1)_Y \xrightarrow{(H^0)=\nu/\sqrt{2}} U(1)_{em}$:

$$\mathcal{L}_Y \rightarrow -\frac{v}{\sqrt{2}}Y_l\overline{e_L}e_R + \text{h.c.}$$

The Standard Model of Particle Physics

Wikipedia

Standard Model gauge group:

$$G_{\rm SM} = SU(3)_C \otimes SU(2)_L \otimes U(1)_Y$$

Field	<i>SU</i> (3) _C	$SU(2)_L$	U(1) _Y	$U(1)_B$	$U(1)_{L}$		
Q_L	3	2	1/6	1/3	0		
u _R	3	1	2/3	1/3	0		
d_R	3	1	-1/3	1/3	0		
ℓ_L	1	2	-1/2	0	1		
e _R	No	No right-handed neutrinos:					
Н	neutrinos massless in the SM! 0						

Neutrinos Have Mass

Neutrino oscillations

$$\nu_i = \sum_{\alpha} U_{i\alpha}^* \nu_{\alpha}$$

$$\nu_i(t) = e^{-i(Et - p_i x)} \nu_i$$

$$P_{\alpha \to \beta} = \sin^2(2\theta) \sin^2(1.27 \frac{\Delta m^2}{\text{ev}^2} \frac{L/\text{km}}{E/\text{GeV}})$$

Oszillation parameters

► Is lepton number conserved in Nature? $\rightarrow 0\nu\beta\beta$ experiments

R. N. Mohapatra et al., arXiv:hep-ph/0412099

Weinberg:

 $\mathcal{O}_5 = \frac{c_5}{\Lambda_L} LLHH$

Michael Duerr (MPIK)

Gauge Theories for B and L

Hints for DM

Galaxy rotation curves

Begeman et al., MNRAS **249** (1991) 523

NASA

Planck Collaboration, arXiv:1303.5076 [astro-ph.CO]

Consistent hints on all scales.

Michael Duerr (MPIK)

Gauge Theories for B and L

IMPRS-PTFS, 7 Nov 2013 8

Content of the Universe

Wikipedia

What about Baryon Number?

B and L accidental global symmetries in the SM.

- ▶ Violation of B:
 - Matter-antimatter asymmetry of the Universe.
 - ▶ Proton decay ($\Delta B = 1$, $\Delta L = \text{odd}$):

$$\tau_p \ge 10^{32-34} \, {\rm yrs}$$

Add non-renormalizable operators to the SM, e.g.,

$$\mathcal{O}_6 = \frac{C_6}{\Lambda_B^2} Q Q Q L$$

The scale Λ_B must be large:

 $\Lambda_B \geq 10^{15} \text{ GeV}$

The Big Desert

S. Weinberg, Phys. Rev. Lett. 49 (1979) 1566

Low scale Electroweak scale $(\Lambda_{EW} \sim 10^2 \, \text{GeV})$

Wikipedia

High scale e.g. GUT scale $(\Lambda_{GUT} \sim 10^{15} \text{ GeV})$

Michael Duerr (MPIK)

Gauge Theories for B and L

IMPRS-PTFS, 7 Nov 2013 11

The Big Desert S. Weinberg, Phys. Rev. Lett. 49 (1979) 1566 c_5 C₅ —LLHH LLHH Λ_l Λ_l : H Witcoon Wikipedia Low scale High scale Electroweak scale e.g. GUT scale $(\Lambda_{GUT} \sim 10^{15} \,\text{GeV})$ $(\Lambda_{FW} \sim 10^2 \, \text{GeV})$ Wikipedia

Michael Duerr (MPIK)

Gauge Theories for B and L

IMPRS-PTFS, 7 Nov 2013 11

Aim of this Talk

Define a consistent gauge theory for baryon and lepton numbers that can be broken at a low scale.

Neutrino masses
 Baryogenesis?
 Dark matter
 Signals at the LHC

Outline

Introduction

Gauging Baryon and Lepton Numbers

Fermionic Leptoquarks

Summary

B and **L** in the Standard Model

 SM: B and L are accidental symmetries, not free of anomalies.

> ⇒ we need additional fermions for anomaly cancellation.

Field	<i>SU</i> (3) _C	SU(2)L	U(1) _Y	$U(1)_B$	U(1) _L
Q_L	3	2	$\frac{1}{6}$	$\frac{1}{3}$	0
u _R	3	1	23	$\frac{1}{3}$	0
d _R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$	0
ℓ_L	1	2	$-\frac{1}{2}$	0	1
ν_R	1	1	0	0	1
e _R	1	1	-1	0	1
н	1	2	$\frac{1}{2}$	0	0

B and L may be gauged to obtain the gauge group:

 $SU(3)_C \otimes SU(2)_L \otimes U(1)_Y \otimes U(1)_B \otimes U(1)_L$

Standard Model Anomalies

Example: $SU(2)_L^2 \otimes U(1)_Y$

$$\mathcal{A} = \operatorname{Tr}\left(t^{a}t^{b}Y\right) = \frac{1}{2}\delta^{ab} \cdot \sum_{i}Y_{i}$$
$$\sum_{i}Y_{i} = -\frac{1}{2} + 3 \cdot \frac{1}{6} = 0$$

Field	$SU(3)_C$	$SU(2)_L$	$U(1)_{Y}$	$U(1)_B$	$U(1)_L$	ζ	
QL	3	2	$\frac{1}{6}$	$\frac{1}{3}$	0	$\int U(1)_{\gamma}$	
u _R	3	1	<u>2</u> 3	$\frac{1}{3}$	0	X	
d _R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$	0		
ℓ_L	1	2	$-\frac{1}{2}$	0	1		
ν_R	1	1	0	0	1	\leftarrow	
e _R	1	1	-1	0	1	$_{SU(2)_L}$	SU(2) _L
Н	1	2	$\frac{1}{2}$	0	0	. 2 2	

Michael Duerr (MPIK)

Standard Model Anomalies

Another example: $U(1)_{\gamma}^{3}$

$$\mathcal{A} = \text{Tr}(Y^3) = \sum_{i} Y_i^3$$
$$\sum_{i} Y_i^3 = 2\left(-\frac{1}{2}\right)^3 - (-1)^3 + 3\left[2\left(\frac{1}{6}\right)^3 - \left(\frac{2}{3}\right)^3 - \left(-\frac{1}{3}\right)^3\right] = 0$$

Field	<i>SU</i> (3) _C	<i>SU</i> (2) _L	U(1) _Y	$U(1)_B$	$U(1)_L$	2
QL	3	2	$\frac{1}{6}$	$\frac{1}{3}$	0	$\int U(1)_{Y}$
u _R	3	1	<u>2</u> 3	$\frac{1}{3}$	0	<u>ک</u>
d _R	3	1	$-\frac{1}{3}$	$\frac{1}{3}$	0	
ℓ_L	1	2	$-\frac{1}{2}$	0	1	
ν_R	1	1	0	0	1	$\left\langle \cdots \right\rangle$
e _R	1	1	-1	0	1	$U(1)_{Y} $ $U(1)_{Y}$
Н	1	2	$\frac{1}{2}$	0	0	5 5

Michael Duerr (MPIK)

Gauge Theories for B and L

Baryonic and Leptonic Anomalies

Purely baryonic anomalies:

$$\begin{split} &\mathcal{A}_1\left(SU(3)^2\otimes U(1)_B\right), \ \mathcal{A}_2\left(SU(2)^2\otimes U(1)_B\right), \\ &\mathcal{A}_3\left(U(1)_Y^2\otimes U(1)_B\right), \ \mathcal{A}_4\left(U(1)_Y\otimes U(1)_B^2\right), \\ &\mathcal{A}_5\left(U(1)_B\right), \ \mathcal{A}_6\left(U(1)_B^3\right). \end{split}$$

Purely leptonic anomalies:

$$\begin{split} &\mathcal{A}_7\left(SU(3)^2\otimes U(1)_L\right), \ \mathcal{A}_8\left(SU(2)^2\otimes U(1)_L\right), \\ &\mathcal{A}_9\left(U(1)_Y^2\otimes U(1)_L\right), \ \mathcal{A}_{10}\left(U(1)_Y\otimes U(1)_L^2\right), \\ &\mathcal{A}_{11}\left(U(1)_L\right), \ \mathcal{A}_{12}\left(U(1)_L^3\right). \end{split}$$

Mixed anomalies:

$$\begin{split} &\mathcal{A}_{13}\left(U(1)_B^2\otimes U(1)_L\right), \mathcal{A}_{14}\left(U(1)_L^2\otimes U(1)_B\right), \\ &\mathcal{A}_{15}\left(U(1)_Y\otimes U(1)_L\otimes U(1)_B\right). \end{split}$$

Baryonic and Leptonic Anomalies

Purely baryonic anomalies:

$$\begin{split} &\mathcal{A}_1\left(SU(3)^2\otimes U(1)_B\right), \ \mathcal{A}_2\left(SU(2)^2\otimes U(1)_B\right), \\ &\mathcal{A}_3\left(U(1)_Y^2\otimes U(1)_B\right), \ \mathcal{A}_4\left(U(1)_Y\otimes U(1)_B^2\right), \\ &\mathcal{A}_5\left(U(1)_B\right), \ \mathcal{A}_6\left(U(1)_B^3\right). \end{split}$$

Purely leptonic anomalies:

$$\begin{split} &\mathcal{A}_7\left(SU(3)^2\otimes U(1)_L\right), \ \mathcal{A}_8\left(SU(2)^2\otimes U(1)_L\right), \\ &\mathcal{A}_9\left(U(1)_Y^2\otimes U(1)_L\right), \ \mathcal{A}_{10}\left(U(1)_Y\otimes U(1)_L^2\right), \\ &\mathcal{A}_{11}\left(U(1)_L\right), \ \mathcal{A}_{12}\left(U(1)_L^3\right). \end{split}$$

Mixed anomalies:

$$\begin{split} &\mathcal{A}_{13}\left(U(1)_B^2\otimes U(1)_L\right), \mathcal{A}_{14}\left(U(1)_L^2\otimes U(1)_B\right), \\ &\mathcal{A}_{15}\left(U(1)_Y\otimes U(1)_L\otimes U(1)_B\right). \end{split}$$

SM + right-handed ν $A_2 = -A_3 = \frac{3}{2},$ $A_8 = -A_9 = \frac{3}{2}$

Possible Solutions

Sequential/Mirror family: P. Fileviez Pérez, M. B. Wise, arXiv:1002.1754 [hep-ph]

Ruled out: new quarks change gluon fusion production; Landau poles of the new Yukawas near the weak scale.

Vector-Like fermions: P. Fileviez Pérez, M. B. Wise, arXiv:1106.0343 [hep-ph]

Ruled out: new charged leptons reduce BR of $H \rightarrow \gamma \gamma$ by a factor of 3.

• One family of leptoquarks: $F_{L} \sim (3, 2, 0, -1, -1), j_{R} \sim (3, 1, \frac{1}{2}, -1, -1), k_{R} \sim (3, 1, -\frac{1}{2}, -1, -1).$ Ruled out: stable charged fields.

Michael Duerr (MPIK)

Outline

- Introduction
- Gauging Baryon and Lepton Numbers
- Fermionic Leptoquarks

Summary

New Solution: Vectorlike Leptoquarks

Field	<i>SU</i> (3) _C	$SU(2)_L$	<i>U</i> (1) _Y	$U(1)_B$	$U(1)_{L}$
Ψ_L	1	2	$-\frac{1}{2}$	$-\frac{3}{2}$	$-\frac{3}{2}$
Ψ_R	1	2	$-\frac{1}{2}$	$+\frac{3}{2}$	$+\frac{3}{2}$
η _R	1	1	-1	$-\frac{3}{2}$	$-\frac{3}{2}$
η_L	1	1	-1	$+\frac{3}{2}$	$+\frac{3}{2}$
Xĸ	1	1	0	$-\frac{3}{2}$	$-\frac{3}{2}$
ΧL	1	1	0	$+\frac{3}{2}$	$+\frac{3}{2}$

M. Duerr, P. Fileviez Pérez, M. B. Wise, arXiv:1304.0576 [hep-ph]

Interactions

Responsible for the new fermion masses:

$$-\mathcal{L} \supset h_1 \overline{\Psi}_L H \eta_R + h_2 \overline{\Psi}_L \widetilde{H} \chi_R + h_3 \overline{\Psi}_R H \eta_L + h_4 \overline{\Psi}_R \widetilde{H} \chi_L + \lambda_1 \overline{\Psi}_L \Psi_R S_{BL} + \lambda_2 \overline{\eta}_R \eta_L S_{BL} + \lambda_3 \overline{\chi}_R \chi_L S_{BL} + a_1 \chi_L \chi_L S_{BL} + a_2 \chi_R \chi_R S_{BL}^{\dagger} + \text{h.c.}$$

with
$$S_{BL} \sim (1, 1, 0, -3, -3)$$

Neutrino masses:

$$-\mathcal{L}_{\nu} = Y_{\nu} \bar{\ell}_L \tilde{H} \nu_R + \frac{\lambda_R}{2} \nu_R \nu_R S_L + \text{h.c.}$$

with $S_L \sim (1, 1, 0, 0, -2)$

Further Aspects

Symmetry breaking:

- ► S_{BL} breaks $U(1)_B$ and $U(1)_L$ ($\Delta B = \pm 3$, $\Delta L = \pm 3$),
- S_L contributes to breaking of $U(1)_L$ ($\Delta L = \pm 2$).

→ no proton decay

Fermionic sector:

- 4 neutral and 4 charged new chiral fermions after symmetry breaking.
- No coupling to the SM fermions → no new source of flavor violation.
- ▶ Lightest new fermion automatically stable \rightarrow DM candidate.

Simple Example: Baryon Number Only

- ► Gauge group: $G_{SM} \otimes U(1)_B$
- Additional fields for an anomaly-free theory:

$$\begin{split} \Psi_L &\sim (\mathbf{1}, \mathbf{2}, -1/2, B_1), & \Psi_R &\sim (\mathbf{1}, \mathbf{2}, -1/2, B_2), \\ \eta_R &\sim (\mathbf{1}, \mathbf{1}, -1, B_1), & \eta_L &\sim (\mathbf{1}, \mathbf{1}, -1, B_2), \\ \chi_R &\sim (\mathbf{1}, \mathbf{1}, 0, B_1), & \chi_L &\sim (\mathbf{1}, \mathbf{1}, 0, B_2), \end{split}$$

- New Higgs for spontaneous breaking of baryon number: $S_B \sim (\mathbf{1}, \mathbf{1}, 0, -3)$
- Condition from anomaly cancellation: $B_1 B_2 = -3$.

M. Duerr, P. Fileviez Pérez, arXiv:1309.3970 [hep-ph]

Spontaneous Symmetry Breaking

Relevant interactions of the new fields (for B₁ ≠ −B₂):
 -L ⊃ λ₁Ψ
_LΨ_RS_B + λ₂η
_Rη_LS_B + λ₃χ
_Rχ_LS_B + h.c.
 ⟨S_B⟩ ≠ 0:

 $-\mathcal{L} \supset M_{\Psi}\bar{\Psi}_{L}\Psi_{R} + M_{\eta}\bar{\eta}_{R}\eta_{L} + m_{\chi}\bar{\chi}_{R}\chi_{L} + \text{h.c.}$

• Remnant Z_2 stabilizes the DM candidate:

$$\Psi_{L,R} \rightarrow -\Psi_{L,R}, \ \eta_{L,R} \rightarrow -\eta_{L,R}, \text{ and } \chi_{L,R} \rightarrow -\chi_{L,R}$$

Dark Matter

- ▶ Dirac DM, SM singlet-like: $\chi = \chi_R + \chi_L$
- Coupling to the new gauge boson:

$$\mathcal{L} \supset g_B \overline{\chi} \gamma_\mu Z^\mu_B (B_2 P_L + B_1 P_R) \chi$$

Model has only four free parameters:

 M_{χ}, M_{Z_B}, g_B , and $B_1 + B_2$

\implies fully testable by combining LHC, DM direct detection, DM relic density.

New Gauge Boson at the LHC

B. A. Dobrescu, F. Yu, arXiv:1306.2629 [hep-ph]

Dark Matter Relic Density

Michael Duerr (MPIK)

Dark Matter Direct Detection

Michael Duerr (MPIK)

Left-right symmetric model

SM fields

 $G_{LR} = SU(2)_L \otimes SU(2)_R \otimes U(1)_{B-L}$

- $Q_L \sim (\mathbf{2}, \mathbf{1}, 1/3)$ $Q_R \sim (\mathbf{1}, \mathbf{2}, 1/3)$ $\ell_L \sim (\mathbf{2}, \mathbf{1}, -1)$ $\ell_R \sim (\mathbf{1}, \mathbf{2}, -1)$
- Connects neutrino masses and spontaneous parity violation.
- Standard version uses hybrid version of type I and type II seesaw mechanism for neutrino masses.

Pati, Salam, PRD 10 (1974) 275, Mohapatra, Pati, PRD 11 (1975) 2558, Senjanovic, Mohapatra, PRD 12 (1975) 1502

$\Rightarrow SU(2)_L \otimes SU(2)_R \otimes U(1)_B \otimes U(1)_L$

He, Rajpoot, PRD 41 (1990) 1636

Michael Duerr (MPIK)

Gauge Theories for B and L

Anomaly Cancellation

Anomalies that need to be cancelled:

$$\mathcal{A}_1\left(SU(2)_L^2 \otimes U(1)_B\right) = 3/2$$
$$\mathcal{A}_2\left(SU(2)_L^2 \otimes U(1)_L\right) = 3/2$$
$$\mathcal{A}_3\left(SU(2)_R^2 \otimes U(1)_B\right) = -3/2$$
$$\mathcal{A}_4\left(SU(2)_R^2 \otimes U(1)_L\right) = -3/2$$

 Simplest solution: type III seesaw fields

$$\rho_L \sim (\mathbf{3}, \mathbf{1}, -3/4, -3/4)$$
 and

$$\rho_R \sim (\mathbf{1}, \mathbf{3}, -3/4, -3/4)$$

M. Duerr, P. Fileviez Pérez, M. Lindner, arXiv:1306.0568 [hep-ph]

Outline

- Introduction
- Gauging Baryon and Lepton Numbers
- Fermionic Leptoquarks
- Summary

Summary

Simple extension of the SM:

- B and L are gauge symmetries broken at a low scale
- ▶ no proton decay ⇒ no need for a desert
- Neutrino masses
- Fermionic DM candidate
- Testable at the LHC

Summary

Simple extension of the SM:

- B and L are gauge symmetries broken at a low scale
- ▶ no proton decay ⇒ no need for a desert
- Neutrino masses
- Fermionic DM candidate
- Testable at the LHC

Thank you!

Backup slides

Michael Duerr (MPIK)

Gauge Theories for B and L

IMPRS-PTFS, 7 Nov 2013 1

Neutrino parameters

 Pontecorvo–Maki–Nakagawa–Sakata mixing matrix $s_{ij} = \sin \theta_{ij}$ $c_{ij} = \cos \theta_{ij}$ α, β : Majorana phases δ : Dirac phase

 $U = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix} \operatorname{diag}\left(1, e^{i\frac{\alpha}{2}}, e^{i(\frac{\beta}{2} + \delta)}\right)$

• Oszillation parameters ($\Delta m_{ii}^2 = m_i^2 - m_i^2$)

$\sin^2 \theta_{12}$	S	$\sin^2 \theta_{13}$	
$0.302^{+0.013}_{-0.012}$	$0.413^{+0.03}_{-0.02}$	$0.0227^{+0.0023}_{-0.0024}$	
δ _{CP} /°	$\Delta m^2_{21} [10^{-5} \mathrm{eV}^2]$	$\Delta m_{31}^2 [10^{-3} \mathrm{eV}^2]$ (NO)	$\Delta m_{32}^2 [10^{-3} \mathrm{eV}^2]$ (IO)
300^{+66}_{-138}	$7.50^{+0.18}_{-0.19}$	$7.50_{-0.19}^{+0.18} +2.473_{-0.067}^{+0.070}$	

M. C. Gonzalez-Garcia et al., arXiv:1209.3023 [hep-ph]