

CP violation in mixing at LHCb

F. Dordei

Outline

he LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

Precision measurement of CP violation in mixing at LHCb

Francesca Dordei

University of Heidelberg, Physikalisches Institut

3rd IMPRS-PTFS Seminar, Heidelberg - 24th April 2012

International Max planex Research school

Outline

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to \mathcal{A}

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

- The LHC and the LHCb detector
- Introduction to CP violation
- $\mathcal{A}^{\mathcal{P}}$ in interference of B_s^0 decay and mixing
- $\phi_s \text{ in } B^0_s \rightarrow J/\psi \phi$
- Challenges of precision measurement
- Conclusions

The Large Hadron Collider (LHC)

- The LHC accelerates protons in both directions until they collide at four intersection points with a central mass system energy of 8 TeV (7 TeV in 2010-2011).
- The four main experiments located at the intersection points are: ATLAS, CMS, ALICE and LHCb

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

(日)

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to ρ

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

24-04-2012 3/24

ELE DQQ

The LHCb experiment

LHCb

- Forward single arm spectrometer
- Acceptance: 15-300(250) mrad
- Copious source of b.c in the forward region

LHCb detector

Studies

CP^r measurements require precision:

- Time dependent analysis need good time resolution
- Flavour tagging needs particle **IDentification**
- High statistics, purity and efficiency needed to reach SM predictions.

CP violation in mixing at LHCb

The LHCb experiment

4/24 24-04-2012

The LHCb detector

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

The only source of CP violation in the SM is the Kobayshi-Maskawa mechanism. which predicts the existence of a phase factor in the 3x3 CKM matrix:

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

The request that the CKM matrix is unitary leads to relations between the elements:

・ 同 ト ・ ヨ ト ・ ヨ

LHCb

CP violation in mixing at LHCb

Introduction to nр

$B^0_s - \overline B^0_s$ mixing and $B^0_s o J/\psi \phi\,$ decay

 $B_s^0 - \overline{B}_s^0$ mixing

Time development of the mixing described by phenomenological Schroedinger eq:

$$i\frac{d}{dt} \begin{pmatrix} B_s \\ \overline{B}_s \end{pmatrix} = \left(M - \frac{i}{2} \Gamma \right) \begin{pmatrix} B_s \\ \overline{B}_s \end{pmatrix}$$

Diagonalizing it in terms of mass eigenstates:

$$i\frac{d}{dt}(B_L) = \left(M_L - \frac{i}{2}\Gamma_L\right)(B_L)$$
$$i\frac{d}{dt}(B_H) = \left(M_H - \frac{i}{2}\Gamma_H\right)(B_H)$$

 $B^0_s
ightarrow J/\psi \varphi$ decay

Phenomenological mixing parameters:

- $\Delta \Gamma = \Gamma_L \Gamma_H$ $\Delta M = M_L - M_H$
- Mixing phase: $\phi_M = 2 \arg (V_{ts} V_{tb}^*)$
- Decay dominated by tree level
- Decay phase: $\phi_D = arg(V_{cs}V_{cb}^*) \approx 0$

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

\mathcal{P} in interference of B_s^0 decay and mixing

- The interference between B⁰_s decays to J/ψφ with or without B⁰_s B⁰_s oscillation allows the measurement of φ_s, via CP violation.
- The SM prediction is very precise:

 $\Phi_s^{SM} = -2\beta_s = -2\arg\left(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*\right) = (-0.0363 \pm 0.0016) rad$ [J.Charles et al., Phys.Rev. D84, 033005 (2011)]

• ϕ_s sensitive to New Physics (eg. 4th generation in the box):

 $\varphi_{\text{s}} \rightarrow \varphi_{\text{s}}^{\text{SM}} + \varphi_{\text{s}}^{\text{NP}}$

Lнср

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to Q^{p}

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

24-04-2012 8/24

ϕ_s , the *CP* phase, a bit of history

Tevatron experiments have looked to CP violation in $B_s^0 \to J/\psi \phi$, deraving confidence intervals for ϕ_s .

Originally they found a combined $\sim 2\sigma$ deviation from $-2\beta_{s}.$

Deviation has decreased with more data, but $\sigma(\phi_s^{exp})$ still much larger than ϕ_s^{SM} .

Note the 2-fold ambiguity

• • • • • • • • • • •

Decay rates invariant under transform:

$$\begin{split} \varphi_s &\iff \pi - \varphi_s \quad \Delta \Gamma_s \iff -\Delta \Gamma_s \\ \delta_{\parallel} &\iff 2\pi - \delta_{\parallel} \quad \delta_{\perp} &\iff -\delta_{\perp} \end{split}$$

b) 4 (E) b

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to $Q \neq Q$

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

E OQQ

Analysis strategy

CP Asymmetry :

$$A_{CP} = \frac{\Gamma(\overline{B}_{s}(t) \to (J/\psi phi)_{CP} - \Gamma B_{s}(t) \to (J/\psi phi)_{CP}}{\Gamma(\overline{B}_{s}(t) \to (J/\psi phi)_{CP} + \Gamma B_{s}(t) \to (J/\psi phi)_{CP}}$$

What we measure is:

$$\textit{A}_{\textit{CP}} = -\eta_{\textit{CP}} \cdot \textit{sin}(\varphi_{\textit{s}}) \cdot \textit{sin}(\Delta\textit{m}_{\textit{s}}t)$$

Decay time: fast B_s^0 oscillation needs to be resolved ($\Delta m_s = 17.63 p s^{-1}$);

Flavour tagging: to separate B_s^0 from \overline{B}_s^0 **Mass**: to separate signal from background;

!!! $B_s^0 \rightarrow J/\psi \phi$ is not a CP eigenstate.

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to ρ

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

CP violation in mixing at LHCb

Separation of CP eigenstates

Pseudoscalar to vector mesons ($J^{PC} = 1^{--}$) decay: final states *CP* odd and *CP* even.

L = 0, 2 CP =
$$(-1)^{L}$$
 = +1
L = 1 CP = $(-1)^{L}$ = -1

Three polarisation amplitudes and phases:

- $|A_0|^2$, $|A_{\parallel}|^2$, δ_0 , δ_{\parallel} (*CP*-even)
- $|A_{\perp}|^2$, δ_{\perp} (*CP*-odd)

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

Angular analysis in θ , ϕ , ψ to separate *CP*=±1 states and extract ϕ_s .

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

24-04-2012 11/24

$B^0_s ightarrow J/\psi \varphi \,$ angular and proper time distributions

different shapes in angular distributions

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

Decay time resolution

Fast B_s^0 oscillation need to be resolved! Time resolution affect the observed A_{CP} :

$$A_{CP} \approx -\eta_{CP} \cdot \sin(\phi_s) \cdot D_{\sigma_{ct}} \cdot \sin(\Delta m_s t) \qquad D_{\sigma_{ct}} \approx \exp[-(\Delta m_s \sigma_{ct})^2/2]$$

We need good proper time resolution σ_{ct} w.r.t. sinusoid period of oscillation \approx 350*fs*, and excellent knowledge of σ_{ct} in data.

How to determine σ_{ct} in data? !! IDEA

• • • • • • • •

- Reconstructing fake B_s^0 with zero lifetime;
- Using prompt J/ψ bkg plus 2 random tracks: $\tau = 0 \pm \sigma_{ct}$
- Decay time resolution $\sigma_{ct} \approx 45 \, \text{fs}$

э

3 N

E SQA

Lнср

CP violation in mixing at LHCb

F. Dordei

Dutline

he LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

 $B_s^0
ightarrow J/\psi \phi$ in LHCb

[LHCB-CONF-2012-002]

- $\mathcal{L} = 1 f b^{-1}$
- Very pure sample:
 - pprox 21200 signal candidates.
 - background $\mathbb{O}\left(\%\right)$
- World's largest $B_s^0 \rightarrow J/\psi \phi$ dataset!

$$\Delta\Gamma_{s} = \Gamma_{L} - \Gamma_{H} \approx \Gamma_{CP \, odd} - \Gamma_{CP \, even}$$

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

Flavour tagging - B_s^0 or \overline{B}_s^0 ?

• tagging efficiency $\epsilon_{tag} = (32.99 \pm 0.33)\%$

- wrong tag probability $\omega_{tag} = (36.81 \pm 0.18 \pm 0.74)\%$
- effective tagging power $\epsilon_{tag}(1 2\omega_{tag})^2 = (2.29 \pm 0.07 \pm 0.26)\%$

 $A_{CP} \approx -\eta_{CP} \cdot (1 - 2\omega_{tag}) \cdot sin(\phi_s) \cdot D_{\sigma_{ct}} \cdot sin(\Delta m_s t)$

LHCb

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

24-04-2012 15/24

Other ingredients

There are still other ingredients needed:

- Proper time acceptance.
- Angular acceptances.
- Mass distribution modelling.
- Background composition and acceptances.
- S-wave modelling.

Lнср Гнср

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

$B_s^0 ightarrow J/\psi \phi$ Results

 $\phi_s - \Delta \Gamma_s$ profile Likelihood contour plot

Two-fold ambiguity resolved in a different measurement! Solution with positive $\Delta\Gamma_s$ is preferred at 4.7 σ .

[LHCb-PAPER-2011-028, arXiv:1202.4717[hep-ex]]

F. Dordei (Heidelberg University)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ► ● □ = ● ● ●

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to QP

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

24-04-2012 17/24

Systematic Uncertanties

Source	Γ_s	$\Delta \Gamma_s$	A_{\perp}^2	A_{0}^{2}	F_S	δ_{\parallel}	δ_{\perp}	δ_s	ϕ_s
	$[ps^{-1}]$	$[ps^{-1}]$							
Description of background	0.0010	0.004	-	0.002	0.005	0.04	0.04	0.06	0.011
Angular acceptances	0.0018	0.002	0.012	0.024	0.005	0.12	0.06	0.05	0.012
t acceptance model	0.0062	0.002	0.001	0.001	-	-	-	-	-
z and momentum scale	0.0009	-	-	-	-	-	-	-	-
Production asymmetry $(\pm 10\%)$	0.0002	0.002	-	-	-	-	-	-	0.008
CPV mixing & decay $(\pm 5\%)$	0.0003	0.002	-	-	-	-	-	-	0.020
Fit bias	-	0.001	0.003	-	0.001	0.02	0.02	0.01	0.005
Quadratic sum	0.0066	0.006	0.013	0.024	0.007	0.13	0.07	0.08	0.027

- The dominant contribution for Γ_s from the proper time acceptance.
- The dominant contribution for ϕ_s from the \mathcal{P} in mixing and decay.
- In view of more data, with the goal of separating the observed φ_s from the SM prediction to see if New Physics is playing a role, the measurement must be very precise.
- Systematic uncertainty need to be reduced!

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies

Nuisance 'CP asymmetries

Conclusions

There are several effects that may affect the the CP asymmetry:

- B^o_s-B^o_s production. A difference in the production rate of B and B introduces a production asymmetry
- Tagging efficiency. A different probability to tag B and \overline{B} may cause a tagging efficiency asymmetry.
- Wrong-tag probability. A different probability for a wrong tag for B and \overline{B} can be parametrized by wron tag asymmetry.
- Additional CP violation in mixing and/or decay. Can be parametrized by a parameter λ .

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP

Conclusions

| 4 同 🕨 🗧 🖿 🖌 🗐 🕨

3 = 1 - NQA

Systematic uncertainties

In the past this systematic uncertainties due to nuisance "CP "asymmetries were:

- production asymmetry (ν_ρ) → performing a toy study, which includes a ν_ρ = 10% and fitting a decay model without the nuisance asymmetry. The bias in the parameter of interested is the resulting systematic uncertainty;
- additional CP violation in mixing and/or decay \rightarrow fitting for it in data to get a feeling of the magnitude and then using the same procedure as before with $|\lambda|^2 = 1 \pm 5\%$;
- tagging/wrong tag asymmetries → already covered by the uncertainties on the tagging calibration parameters.

The systematic uncertainties quoted are :

	Γs	$\Delta\Gamma_s$	φs
Additional <i>GP</i> in mix and/or decay	0.0003	0.002	0.020
Production asymmetry	0.0002	0.002	0.008
Total	0.0066	0.006	0.027

CP violation in mixing at LHCb

F. Dordei

Dutline

The LHC

The LHCb experiment

Introduction to ρ

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP

Conclusions

< ロ > < 同 > < 三 > < 三 > 、

CP in mixing and/or decay

Can we fit directly in data for the additional *CP* in mixing and/or decay? Defining

$$\lambda = \frac{q}{p} \frac{A_f}{A_f}$$

- q,p complex numbers that define B⁰_s mass eigenstates in terms of flavour eigenstates | B_{H,L} >= p | B⁰_s > ∓q | B⁰_s >
- \overline{A}_f and A_f the decay amplitudes.

Both the CP violation in B_s^0 mixing $|q/p| \neq 1$ or the CP violation in the decay (direct \mathscr{A}^p) $|\overline{A}_f/A_f| \neq 1$ result in $|\lambda| \neq 1$.

Parametrizing λ as:

$$\lambda = \mid \lambda \mid e^{-i\varphi_{\mathcal{S}}}$$

and allowing for $|\lambda| \neq 1$ is it possible to fit for the \mathcal{P} in mixing and/or decay.

▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ヨ ヨ め Q @

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

Fitting for the CP in mixing and/or decay

CP violation in

mixing at LHCb

Allowing for $|\lambda| \neq 1$ is it possible to fit for the \mathcal{AP} in mixing and/or decay.

- Making toy studies to check if there are bias introduced fitting for | λ |;
- I generated the same statistics as in data and run over 500 toys.
- looking to the pull distribution for the parameter θ:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

What about the other asymmetries?

CP violation in mixing at LHCb

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

•	Included	performing	a toy	study
---	----------	------------	-------	-------

- Adding a tagging efficiency, a wrong tag probability and a production asymmetry in generation
- fitting using a decay model without any asymmetry.

The bias in the parameter of interested is the resulting systematic uncertainty on the parameter:

	Гѕ	$\Delta\Gamma_s$	φs
Tagging efficiency asym	0.0002	0.003	0.007
Wrong tag asym	0.0003	0.002	0.006
Production asym	0.0001	0.001	0.005
All asimmetries	0.0003	0.002	0.007
CP mix and/or decay	0.0003	0.002	0.020
Production asym	0.0002	0.002	0.008

< □ > < 同 >

★ ∃ ► ★ ∃ ► 5 € € € € €

Conclusions

[LHCb-CONF-2012-002]

- First direct observation of a non-zero value for ΔΓ_s
- World's most precise measurement of CP violation in $B^0_s
 ightarrow J/\psi \, \varphi$
- The measurement of φ_s is*:

 $\varphi_{\textit{s}}\,=\,-0.002\,\pm\,0.083\,(\textit{stat})\,\pm\,0.027\,(\textit{syst})\,\textit{rad}$

* In combination with φ_s from ${\it B}^0_s
ightarrow {\it J}/\psi \pi^+\pi^-$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

F. Dordei

Outline

The LHC

The LHCb experiment

Introduction to

Challenge of precision measurement

Results

Ongoing studies Nuisance 'CP asymmetries

Conclusions

CP violation in mixing at LHCb

F. Dordei

More thoery

Ambiguity

More about the pdf

Backup slides

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

◆□ > ◆□ > ◆三 > ◆三 > 三三 のへで

24-04-2012 25 / 24

More theory

CP violation in mixing at LHCb

F. Dordei

More thoery

Ambiguity

More about the pdf

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ● ●

Ambiguity

► Two solutions to decay rates in $B_s^0 \to J/\psi \phi$: Solution I Solution II $\delta_{\parallel} - \delta_0 \qquad \delta_0 - \delta_{\perp}$ $\delta_{\perp} - \delta_0 \qquad \pi + \delta_0 - \delta_{\perp}$ $\delta_s - \delta_0 \iff \delta_0 - \delta_s$ $\phi_s \qquad \pi - \phi_s$ $\Delta \Gamma_s \qquad -\Delta \Gamma_s$

- ▶ P-wave phase (δ_{\perp}) increases rapidly across $\phi(1020)$ mass resonance, S-wave phase (δ_s) varies slowly
- Measuring $\delta_s \delta_{\perp}$ in bins of $M(K^+K^-)$ resolves the ambiguity arXiv:0908.3627 [hep-ph]
- LHCb results, 0.37 fb⁻¹ in 4 bins of $M(K^+K^-)$:

F. Dordei

More thoery

Ambiguity

More about the pdf

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

24-04-2012 27 / 24

ELE DOG

More about the pdf

Signs in blue are tag dependent and change for B_s^0

$$\begin{array}{rcl} \mathsf{A}_{1} & = & |\lambda_{0}|^{2} e^{-r_{gt}} \left[\cosh\left(\frac{\Delta\Gamma_{g}}{2}t\right) - \cos\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin\phi_{g} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{2} & = & |\lambda_{\parallel}|^{2} e^{-r_{gt}} \left[\cosh\left(\frac{\Delta\Gamma_{g}}{2}t\right) - \cos\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin\phi_{g} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{3} & = & |\lambda_{\perp}|^{2} e^{-r_{gt}} \left[\cosh\left(\frac{\Delta\Gamma_{g}}{2}t\right) + \cos\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{4} & = & |\lambda_{\parallel}||\lambda_{\perp}|e^{-r_{gt}} \left[-\cos(\delta_{\perp} - \delta_{\parallel}) \sin\phi_{g} \sin\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{5} & = & |\lambda_{0}||\lambda_{\parallel}|e^{-r_{gt}} \cos(\delta_{\parallel} - \delta_{0}) \left[\cosh\left(\frac{\Delta\Gamma_{g}}{2}t\right) - \cos\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin\phi_{g} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{5} & = & |\lambda_{0}||\lambda_{\parallel}|e^{-r_{gt}} \cos(\delta_{\parallel} - \delta_{0}) \left[\cosh\left(\frac{\Delta\Gamma_{g}}{2}t\right) - \cos\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin\phi_{g} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{6} & = & |\lambda_{0}||\lambda_{\perp}|e^{-r_{gt}} \left[-\cos(\delta_{\perp} - \delta_{0}) \sin\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin\phi_{g} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{7} & = & |\lambda_{2}|^{2} e^{-r_{gt}} \left[\cosh\left(\frac{\Delta\Gamma_{g}}{2}t\right) + \cos\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin\phi_{g} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{8} & = & |\lambda_{1}||\lambda_{\parallel}|e^{-r_{gt}} \left[-\sin(\delta_{\parallel} - \delta_{2}) \sin\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{9} & = & |\lambda_{2}||\lambda_{\perp}|e^{-r_{gt}} \sin(\delta_{\perp} - \delta_{2}) \left[\cosh\left(\frac{\Delta\Gamma_{g}}{2}t\right) + \cos\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{10} & = & |\lambda_{1}||\lambda_{0}|e^{-r_{gt}}t \left[-\sin(\delta_{0} - \delta_{2}) \sin\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \cos(\Delta m_{g}t) \right] \\ \mathsf{A}_{10} & = & |\lambda_{1}||\lambda_{0}|e^{-r_{gt}}t \left[-\sin(\delta_{0} - \delta_{2}) \sin\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{10} & = & |\lambda_{1}||\lambda_{0}|e^{-r_{gt}}t \left[-\sin(\delta_{0} - \delta_{2}) \sin\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{10} & = & |\lambda_{1}||\lambda_{0}|e^{-r_{gt}}t \left[-\sin(\delta_{0} - \delta_{3}) \sin\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{10} & = & |\lambda_{1}||\lambda_{0}|e^{-r_{gt}}t \left[-\sin(\delta_{0} - \delta_{3}) \sin\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{10} & = & |\lambda_{1}||\lambda_{0}|e^{-r_{gt}}t \left[-\sin(\delta_{0} - \delta_{3}) \sin\phi_{g} \sinh\left(\frac{\Delta\Gamma_{g}}{2}t\right) & \lim_{n \to \infty} \sin(\Delta m_{g}t) \right] \\ \mathsf{A}_{10} & = & |\lambda_{1}||\lambda_{0}|e^{-r_{gt}}t \left[-$$

CP violation in mixing at LHCb

F. Dordei

More thoery

Ambiguity

More about the pdf

F. Dordei (Heidelberg University)

CP violation in mixing at LHCb

24-04-2012 28 / 24

ELE DOG