Development of an ultra-thin tracking detector for Mu3e

Sebastian Dittmeier Physikalisches Institut - Universität Heidelberg

12th IMPRS seminar 4 November 2016

INTTERNIATTIONIAL MAX PLANCK RESEARCH SCHOOL

The Mu3e Experiment

Search for the charged lepton flavor violating decay $\mu^+ \rightarrow e^+ e^- e^+$

Standard ModelHighly suppressed branching ratioBR_{SM} < 10⁻⁵⁴

Probe physics beyond SM

Any observation is a clear sign for new physics!

Current limit on $\mu^+ \rightarrow e^+e^-e^+$ BR_{meas} < 10⁻¹² (SINDRUM 1988)

Goal of Mu3e

Enhance sensitivity to $BR < 10^{-16}$

Searching for New Physics with Mu3e

Lepton flavor and number conservation, and physics beyond the standard model, Progress in Particle and Nuclear Physics, 71 (2013) 75-9

Experimental Concept

How to achieve BR < 10^{-16} within a reasonable time?

• High rate of muons $O(10^9 \text{ s}^{-1})$ at PSI (CH)

How to measure this extremely rare decay?

- Stop the muons on a thin target
- Measure decay vertex and momentum of the electrons

The Signal Decay

Experimental Signature

- Common vertex
- Coincident
- $\sum \vec{p} = 0$
- $\sum E = m_{\mu}$

e

Main Sources of Background

e

 $\overline{\mathbf{V}}$

e

Radiative SM decay + photon conversion

 $\mu^+ \to e^+ e^- e^+ \nu \bar{\nu}$

Experimental Signature

- Common vertex
- Coincident
- $\sum \vec{p} \neq 0$
- $\sum E \neq m_{\mu}$

Combinatorial background

Experimental Signature

- No common vertex
- Not coincident
- $\sum \vec{p} \neq 0$
- $\sum E \neq m_{\mu}$

 e^{\dagger}

 e^{+}

The Mu3e Detector

- Excellent momentum, vertex and time resolution required
 - Silicon pixel tracking detector
 - Scintillating timing detectors
- Detector inside solenoidal magnetic field B = 1T

- Requires momentum resolution $\sigma_p < 0.5 \text{ MeV/c}$
- Multiple scattering dominates momentum resolution $\sigma_p/p \propto \sqrt{x/X_0}$

Material budget $x \leq 1\%_0 X_0$ per layer

8

Material Budget of Selected Pixel Detectors

Experiment	Material budget per layer
ATLAS IBL [‡]	1.9 % X ₀
CMS (current) [†]	$\sim 2.0 \% X_0$
CMS (upgrade) [†]	$\sim 1.1 \% X_0$
ALICE (current)*	1.1 % X ₀
ALICE (upgrade)*	0.3 % X ₀
STAR [°]	0.4 % X ₀
BELLE II $^{\triangle}$	0.2 % X ₀
Mu3e	0.1 % X ₀
[‡] ATL-INDET-PROC-2015-001	
[†] CERN-LHCC-2012-016 ; CMS-TDR-11	talk by G. Contin at PIXEL 2016
* arXiv:1211.4494v1	$^{\Delta}$ talk by C. Koffmane at PIXEL 2016

IMPRS Seminar 04.11.2016Sebastian Dittmeier - Development of an ultra-thin tracking detector for Mu3e

Approach for a Mu3e tracking detector layer

High Voltage Monolithic Active Pixel Sensors

HV-MAPS

High Voltage Monolithic Active Pixel Sensors

- 180 nm HV-CMOS technology
- Reverse biased HV ≤ -85 V
- Depletion zone ~ 10 20 μm
- Charge collection via drift
- Integrated digital readout
- Can be thinned to 50 μ m ~ 0.5 ‰ X_0

MuPix – HV-MAPS for Mu3e

- Latest prototype: MuPix7
 - Active area 3 x 3 mm²
 - Pixel size 103 x 80 μ m²
 - Integrated state machine
 - Untriggered readout
 - Serial data output at 1.25 Gb/s
- Next prototype: MuPix8
 - Large chip $\approx 2 \times 1 \text{ cm}^2$
 - Submission this month

Flexible Printed Circuits

- Supplies sensors with
 - Power ($P_{MuPix} \leq 400 \text{ mW/cm}^2$)
 - High Voltage (≈ -85 V)
 - Clock, reset, configuration signals
- Fast data transmission lines

Prototype with dummy chips of half an inner detector layer

17

FPC Technology

Two layer aluminium (LTU Ltd.)

- 14μm AI + 10μm Kapton per layer
- Dielectric spacing 45µm (Kapton + glue)
- Structure sizes $\geq 65 \mu m$
- SpTAB technology

Single point Tape Automated Bonding

No additional (high Z) material for bonding!

Material budget 45 μm Kapton + 28 μm Aluminium + 10 μm Glue

 $\sim 0.5\%_0 X_0$

FPC Feasibility Studies

Two layer FPC with test structures bonded to testboard

Data Transmission Studies

Signal integrity is crucial for stable operation of the experiment!

Bit error rate measurements

- Transmit pseudo random binary sequence
- Receiver: check for errors
- Data rate = 1.25 Gbit/s
- No bit errors observed BER < $2 \cdot 10^{-13}$
- Up to 2.5 Gbit/s: no bit errors BER < $3 \cdot 10^{-13}$

20

Further Electrical Studies

Control of voltage drop along the FPC is crucial for stable operation of the experiment!

- Sensor power consumption up to 400 mW/cm²
- Supply voltage differences between chips $\leq 20 \text{ mV}$
- Especially challenging for outer detector layers!

Resistance measurements on test FPC

- Resistance of tested power traces: $50 120 \text{ m}\Omega$
- Actual aluminium thickness $12.3 \pm 0.3 \ \mu m$

Further Electrical Studies

- Resistance of tested power traces: $50 120 \text{ m}\Omega$
- Actual aluminium thickness $12.3 \pm 0.3 \mu m$

22

Approach for a Mu3e tracking detector layer

24

Summary and Outlook

- Ultra-low material tracking detector using HV-MAPS for Mu3e
- Average material budget of $\sim 1.07 \% X_0$ per layer
- Aluminium FPC prototype works very well: $BER < 2 \cdot 10^{-13} @ 1.25 \text{ Gb/s}$
- Coming soon: MuPix8 first large HV-MAPS
- Integration of *MuPix8* with FPC
- >Big step towards production of detector modules

Backyp

Material budget constraints

- Momentum resolution $\sigma_p/p \propto \sqrt{x/X_0}$
- Requirement $\sigma_p < 0.5 \text{ MeV/c}$

R.M Djilkibaev and R.V. Konoplich, Phys.Rev., D79 073004, 2009

Material budget required $x \le 1\%_0 X_0$ per layer

History of CLFV Experiments

Updated from W.J Marciano et al., Ann.Rev.Nucl.Part.Sci. 58, 315 (2008)

Serial Readout of the MuPix7

- DSA8300 serial analyzer with clock recovery
- True amplitude is a factor of 2 larger!

FPC design study – two layers

Composite View

Inner detector – FPC design study

Inner detector – FPC design study

Inner detector – FPC design study

FPC feasibility studies

Two layer FPC with test structures

- Impedance measurements using Time Domain Reflectometry
- Bit error rate measurements
- Resistance and voltage drop measurements

FPC - Time Domain Reflectometry

IMPRS Seminar 04.11.2016 Sebastian Dittmeier - Development of an ultra-thin tracking detector for Mu3e

FPC - Time Domain Reflectometry

- 17.5 cm long differential pair
- Glue thickness variations \rightarrow gradient in impedance

FPC studies – preliminary results

Time Domain Reflectometry

- Differential target impedance $Z_{diff} = 100 \Omega$
- Off by more than 10%
- Bottom: glue and board coating
 Will behave differently with MuPix
- Top: missing Kapton foil

Also tested:

- Resistance of power lines: $50 120 \text{ m}\Omega$
 - \rightarrow compatible with actual conductor thickness ${\sim}12.3~\mu m$

Outer detector – FPC design study

Two layer FPC for 9 sensors

- Minimum number of signals
 - 1 LVDS data link per sensor
 - Clock, Reset, configuration as bus signals
- Supply different voltages to compensate voltage drop

Cooling tests with detector model

Detector Mechanics – Prototyping

Inner detector 12 cm long barrel

Outer detector 36 cm long module

- Cool sensors below 70°C for up to 400 mW/cm^2
- Minimize material budget of cooling in active volume
- Gaseous Helium: low density, reasonable cooling capabilities

Helium Gas Cooling for Mu3e

Global Helium Flow

Whole detector located inside

Helium atmosphere

Fold Helium Flow

Inside v-shape folds in opposite direction

- Cool sensors below 70°C for up to 400 mW/cm^2
- Minimize material budget of cooling in active volume

Gap Helium Flow

Between pixel layers

Gaseous Helium: low density, reasonable cooling capabilities

Helium Gas Cooling for Mu3e

- Cool sensors below 70°C for up to 400 mW/cm^2
- Minimize material budget of cooling in active volume

Gap Helium Flow

Between pixel layers

Gaseous Helium: low density, reasonable cooling capabilities

Simulation of Mu3e Helium Cooling

- $v_{layer3-4} = 3.5 \text{ m/s} \quad v_{global} = 3.5 \text{ m/s}$
- Target power consumption ($P = 250 \text{ mW/cm}^2$) seems feasible
- Higher power consumption ($P = 400 \text{ mW/cm}^2$) requires higher flow velocities

Helium cooling – Vibration studies

- Helium flow velocities $\approx 20 \text{ m/s}$
- Thin detector:
 - HV-MAPS 50 μm
 - FPC ≈ 80 µm
 - Kapton support 25 μm
- Vibrations induced by Helium flow?
- Michelson Interferometer

