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What we don’t know
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e It is essential for galaxy e What it actually is.

formation.
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Dark Matter classification.

Three options

In general terms, we can classify
(Particle) Dark Matter in three cate-
gories:

e Cold Dark Matter (CDM).
e Warm Dark Matter (WDM).
e Hot Dark Matter (HDM).
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Dark Matter classification.

CDM is usually characterized
by a heavy non-relativistic parti-
Three options cle that would lead to the forma-
) tion of small structures first.
In general terms, we can classify
(Particle) Dark Matter in three cate-
gories:
e Cold Dark Matter (CDM).
e Warm Dark Matter (WDM).

o Hot Dark Matter(FHDM).

Extracted from [New Astron. Rev. 58, 1

(2014)]
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Cold Dark Matter.

Weakly Interacting Mas-
sive Particles (WIMPs) fall
in this category and due
to the absence of confirmed
detection, only limits on its
properties (mass and cross
section) have been derived.
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Method Results

WIMP-nucleon cross section [cm?]

10 10*

1
WIMP mass [GeV/c?]

Extracted from [arXiv:1609.06154 [astro-ph.CO]]
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CDM D:fficulties.

Despite being able to suc-
cessfully describe large scale
structures, CDM seems to
predict a higher wvalue of
satellite galaxies than the
one observed...

150 T T T T
Cusp + baryons

Core + baryons

..and a cuspy distribution
for DM density near the cen- ,
ter of galaxies, in contradic- Galay
tion to observation.

r (kpe)

Extracted from [Proc. Nat. Acad. Sci. 112, 12249 (2014)]
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Warm Dark Matter.
WDM particles are lighter than in the CDM case, usually in the
order of ~keVs.
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Warm Dark Matter.

WDM particles are lighter than in the CDM case, usually in the
order of ~keVs.

WDM behaves like CDM at large scales, but differs at small scales
(less than 50 kpc) solving the missing satellites problem.

Extracted from [Mon. Not. Roy. Astron. Soc. 420, 2818 (2012)]
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Sterile neutrinos as WDM

Sterile neutrinos...

e Don’t perceive gauge SM
interactions.

e Mix with the light active
ones.

e Can generate neutrino
masses through the (type I)
seesaw mechanism (if

M ~ 10" GeV).
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Method Results

...as Dark Maitter.

Constitute a DM candidate if

M ~ keV, when one specifies

the production mechanism:

e Dodelson and Widrow
mechanism.

e Shi-Fuller mechanism.

e Decay of heavier scalar
singlets.
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Signals of WDM.

One of the process proposed to mea-

sure sterile neutrinos as DM is us-

ing their 1-loop decay into an active- Ns v, 7 v,
like neutrino and an X-ray photon,

in which
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Signals of WDM.

One of the process proposed to mea-
sure sterile neutrinos as DM is us-
ing their 1-loop decay into an active-
like neutrino and an X-ray photon,
in which

1
Ery - §Ml/

(1)
During 2014 a 3.5 keV line was de-
tected using the measurements from
the XMM-Newton satellite, but the
DM explanation is still controver-
sial.
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Method

Results
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Extracted from [Phys. Rev. Lett. 113, 251301

(2014)]
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The mysterious 3.5 keV line

Using an electron beam ion trap
the research group from the Max-
Planck-Intitut  fiir = Kernphysik
demonstrated that bare Sulphur
ions (S'%%) can emit gamma lines
at around 3.47 keV from Hydrogen
atoms, an effect not considered
before and published in

[arXiv:1608.04751 [astro-ph.HE]] .

(MPIK)
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Direct Detection Experiments

Time
S2
Lrift time
Part/iile/ indicates depth
€S

—» ionization electrons
NN UV scintillation photons (=175 nm)

Imaga by CH Eabam (Brow)

(LUX Collaboration)
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FElectron Recoil vs Nuclear Recoil

ER
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FElectron Recoil vs Nuclear Recoil

ER

(S2/S1)-ER mean
2

log

30
Energy [keVnr]

Extracted from [Phys. Rev. Lett. 107, 131302

(2011)]
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FElectron Recoil vs Nuclear Recoil

S1[PE]
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Extracted from [Phys. Rev. Lett. 107, 131302

(2011)]

In an attempt to use the discarded ER, one needs a signal that can
be discriminated from this background.
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The Process

This process is suppressed due
to the mixing angle between the
sterile and the active neutrinos:

|Use|? < 1. (2)

On the other hand if we as-
sume here that the sterile neu-
trinos constitute all Dark Mat-
ter the estimated local density of
0.3 GeV/cm? implies a high flux.
Also, as they are non-relativistic

E e fils. (3)
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The Analysis

To calculate the cross sections we used the Roothan-Hartree-Fock
method considering an effective mass for the bound electron as

m = E% — |pp|? where Eg = m, — €.

[Based on method developed in Phys. Lett. B 525, 63 (2002)]
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Brief Introduction Method

Relevant quantities

We calculate the differential event rate as:

dEj dEy

measured in DRU’s = [kgxdayxkeV]~1.
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Relevant quantities

We calculate the differential event rate as:

s, [Us. ) = 2o, [ 57 (s, Us.P) fo)udv. (4

dEj dEy

measured in DRU’s = [kgxdayxkeV]~1.
If T is the exposure time and M the mass of the detector we can
define the differential number of events as:

dNy dRy

i, ——(ms,|Use|>) =M - T - i —(ms, |Use|?) - (5)
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Detector input

Background Function

To take into account the
background, it is necessary
to consider the intrinsic S
decays of 222Rn and 3%Kr
present in xenon. From
calibration data it is possi-
ble to obtain a background T R .
model. " e

Extracted from [Phys. Rev. D 90, no. 6, 062009 (2014)]

EventsPE

3

AR A AN RRR RN I

3

s

i bNo 829



Brief Introduction Method Results
Detector input
We must also consider the conversion function Conv(E})) that

relates the measured PE with the recoil energy of the scattered elec-
trons Fj, and the acceptance of the detector for ER Acc(PE).
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Detector input

We must also consider the conversion function Conv(E})) that
relates the measured PE with the recoil energy of the scattered elec-
trons Fj, and the acceptance of the detector for ER Acc(PE).

The differential number of events is then

dNr

2
- (ms, |Usel?).

dNy
o AR A ZACC Conv(Ek))ntdE

where n; is the number of electrons in the ¢ state.
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Statistical Method

In the region in which
the signal is above
than the background
we can integrate and

define:
Eo gN
NE= ——dFEy,
Ery, AFg
Lo
N — FydE;.
Erh
(6)
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Statistical Method

In the region in which 30
the signal is above o0
than the background
g __ 200}
we can integrate and i =
define: £ 150 //"—
u_é‘ 100
FoRTI z
NS, o= —dFEg, =
Ery Ak
Eo ‘ dN / dEy
5 10 45 20
Nb = deEk E‘rh tEo Ek [kev]
Erh
(6) XENONIT differential number of events for
mg = 40 keV and |Uge|? =5 x 1074
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Statistical Method

From this simple block space analysis, we define the significance in
terms of a x? distribution, as a function of Ny and Np:

(Ns(ms, |Use|?) — Np(ms, |Use|*))?
Nb(mSa ’US€|2)

(7)

x*(ms, |Use|?) :=

Imposing that x? > 4.60 (13.82) for 90% (99.9%) C.L. we obtain
the region in terms of mg and |Use|? that can be excluded in the
different experiments.
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Detector characteristics: XENON100

Characteristics

Bckgr ~ 3 x 1073
[kgx day xkeV 1]

T = 224.6 live days.

M = 34 kg fiducial mass.

E7, = 2 keVe, threshold
energy.

Data from [Phys. Rev. Lett. 109, 181301 (2012)]
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Detector characteristics: XENON1T

Characteristics

e Bckgr ~ 1.8 x 10~*
[kgx day xkeV 1]

o T = 2x%365 live
days.

e M = 1000 kg
fiducial mass.

L4 ETh =1 ke\/er
threshold energy.

Data from [JCAP 1604, no. 04, 027 (2016)]
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Detector characteristics: DARWIN

Characteristics

e Bckgr ~ 2.05 x 1075
[kgxday xkeV 1]

e M -T = 200 yearxton

o Fpp =1 keVe, threshold
energy.

Data from [arXiv:1606.07001 [astro-ph.IM]]
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Results
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Thanks !

\
\
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Backup Shides: Acceptance € Conversion Functions

Conversion Function

n(E) [PE]

l
E

ER Acceptance
o o o
>
i
|
i
T

AL
T

2
>

T
3
T

o
©
AR A

S,
o
T

|

\

R .5
N

T

|

e
T

1 10 E eV

Both extracted from [Phys. Rev. D 90, no. 6, 062009 (2014)]
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Backup Shides: Incoherent Scattering

If mg =~ O(10 — 50) keV, then Ag ~ O(10~% —107°) cm.

As Rx. ~ 1.1 x 1078 c¢m the electron-neutrino scattering is in-
coherent and all the bound electrons in the xenon atom must be
considered.

When considering just free electrons one would need masses higher
than ~ 20 keV to go beyond the minimum threshold of the detector
hence entering the incoherent regime.
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Backup Shides: Cross sections

For free electrons the cross section with a sterile neutrino is given

by
2m )

% :2%
dFEy, 7

ar g%(ES =4 (ES S

Me

mg
e

— g192(meEy + %m%)] :

where
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Backup Shides: Cross sections

For bound electrons in a state ¢ (t = 1s, 2s, 2p,...) the cross section
in the rest frame of the atom where (pg,0,¢) are the variables of
the bound electron is

doy _ fp%ded(COS 0)d¢ | R(p)|?
dEy, (2m)3 Am (9)

|M|? 1 du
AEsEg|B8 — pp/m| 8w Al/2(s,m%, m?) | dEy

Here R:(pp) are radial wave functions normalized such that

o 24k
| GpRmR =1, (10)

The function A(a,b,c) := a®+b? + ¢ — 2ab — 2bc — 2ca is the Kiillén
function and s and u are the usual Mandelstam variables.
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Backup Shides: The Roothaan-Hartree—Fock method

The Hartree—Fock method estimates the wave function and the
energy of a quantum many-body system in a stationary state.

The Roothaan equations are a representation of the Hartree—Fock
equation in a non orthonormal basis set which can be of Gaussian-
type or Slater-type.
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