Tagging Jets in Invisible Higgs Searches [1712.03973]

Anke Biekötter Heidelberg University

with Fabian Keilbach, Rhea Moutafis, Tilman Plehn and Jennifer Thompson

14th IMPRS seminar, May 2, 2018

UNIVERSITÄT HEIDELBERG ZUKUNFT SEIT 1386

Higgs physics

What has been measured yet?

- h $ightarrow \gamma\gamma$ [Atlas-conf-2017-045]
- $h \rightarrow ZZ^* \rightarrow 4l$ [Atlas-conf-2017-043]
- $h \rightarrow WW^* \rightarrow l\nu l\nu$ [Atlas-Conf-2016-112]
- h $\rightarrow \tau \tau$ ([708.00373], 4.9 σ (4.5 σ) evidence)
- $h \rightarrow b\bar{b}$ ([1708.03299], 3.5 σ evidence)
- *tt***h** ([1804.02610], 5.2 σ)

not measured yet

- h $\rightarrow \mu\mu$ ([CMS PAS HIG-17-019], upper limit 2.6(2.8) times SM pred.)
- h \rightarrow Z γ ([CMS PAS HIG-17-007], upper limit 3.9(6.6) times SM pred.)
- h \rightarrow invisible? ([CMS PAS HIG-17-023], upper limit 0.24)

Motivation

• Higgs decays to invisible particles

• [Shrock, Suzuki, 1982]

Higgs portal models

- [Silveira, Zee, 1985]
- [Burgess, Pospelov, Veldhuis, 2001]
- [Patt, Wilczek, 2006]
- [Englert, Plehn, Zerwas, Zerwas, 2011]

Dark matter candidates

- Scalar (minimal/extended Higgs sector)
- Fermion (MSSM) [Butter, Murgia, Plehn, Tait, 2016]
- . . .

Outline

- Introduction: Signatures of invisible Higgs decays
- Weak boson fusion and its backgrounds
- Quark gluon discrimination
- BDT analysis
- Comparison to associated Zh production
- Conclusion and discussion

Outline

- Introduction: Signatures of invisible Higgs decays
- Weak boson fusion and its backgrounds
- Quark gluon discrimination
- BDT analysis
- Comparison to associated Zh production
- Conclusion and discussion

PLEASE INTERRUPT ME

Introduction

Invisible Higgs decays

Invisible Higgs decays

Invisible Higgs decays

strongest channels [ATLAS: CERN-PH-EP-2015-191]

Weak boson fusion

WBF signature

EW process: Jets + missing energy

- 2 jets with large η separation
- opposite hemispheres $\eta_1 \cdot \eta_2 < 0$
- large MET
- no central jet activity

[Eboli, Zeppenfeld, 2000]

[Bernaciak, Plehn, Schichtel, Tattersall, 2014]

Trigger

- CMS-HIG-16-016:
 - *p*_{*T,j*} > 40 GeV
 - $m_{jj} > 600 \, {
 m GeV}$
 - $E_T^{\text{miss}} > 140 \text{ GeV}$
 - Δη_{jj} > 3.5
 - $\eta_{j1} * \eta_{j2} < 0$
- outlook for HL-LHC
 - $E_{\tau}^{\text{miss}} > 200 \,\text{GeV}?$

• ...?

• How dangerous is this?

WBF backgrounds

 $Z \rightarrow \nu \nu$

 $W \to (l) \nu$

Z EW

W EW

WBF backgrounds

 $Z \rightarrow \nu \nu$

0000

 $\sim W$

Z EW

W EW

 $W \rightarrow (l) \nu$

Z QCD

W QCD

WBF backgrounds

 $Z \rightarrow \nu \nu$

 $W \rightarrow (l) \nu$

Z EW

W EW losing a lepton

Z QCD

W QCD Losing a Lepton

WBF distributions

WBF distributions

W and Z backgrounds similar in signal region

WBF distributions

 $\Delta \eta_{\mu}$

W and Z backgrounds different for N_{jets} distribution

• W background has more 3-jet events

W and Z backgrounds different for N_{iets} distribution

- W background has more 3-jet events
- W background contains single-top events

 $(m_{jj} > 200 \text{ GeV}: 30\% \text{ 2jet}, 50\% \text{ 3jet}; \text{ preselection}: 5\%, 12\%)$ preselection: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, \Delta \eta_{jj} > 3.5, p_T(V) > 80 \text{ GeV}$

W and Z backgrounds different for N_{jets} distribution

- W background has more 3-jet events
- W background contains single-top events

 $(m_{jj} > 200 \text{ GeV}: 30\% \text{ 2jet}, 50\% \text{ 3jet}; \text{ preselection}: 5\%, 12\%)$

Tagging jet content

How to suppress QCD backgrounds?

- QCD dominates over EW processes (LHC)
- central jet veto
- recall: for QCD background tagging jets can be quarks
 → can we use this to
 - suppress QCD backgrounds?

Quark gluon discrimination

QCD backgrounds more likely to have hard gluon jets

- wider angle soft emissions
- more splittings in parton evolution

Variables for quark gluon discrimination

• n_{PF} : number of particle flow (PF) objects (tracks and towers)

$$w_{\rm PF} = \frac{\sum_{\rm PF \in jet} p_{T,\rm PF} \Delta R_{\rm PF,jet}}{\sum_{\rm PF \in jet} p_{T,\rm PF}}$$
$$C = \frac{\sum_{i_{\rm PF},j_{\rm PF}} p_{T,i} p_{T,j} (\Delta R_{ij})^{0.2}}{(\sum_{i_{\rm PF}} p_{T,i})^2}$$
$$p_T D = \frac{\sqrt{\sum_{\rm PF \in jet} p_{T,\rm PF}^2}}{\sum_{\rm PF \in jet} p_{T,\rm PF}}$$

[ATLAS-CONF-2016-034, CMS-PAS-JME-13-002]

preselection: $p_{T,j} > 40 \text{ GeV}, \ m_{jj} > 600 \text{ GeV}, \ \Delta \eta_{jj} > 3.5, \ N_{\text{Lep}} = 0, \ p_T(V) > 80 \text{ GeV}$

preselection: $p_{T,j} > 40 \text{ GeV}, \ m_{jj} > 600 \text{ GeV}, \ \Delta \eta_{jj} > 3.5, \ N_{\text{Lep}} = 0, \ p_T(V) > 80 \text{ GeV}$

preselection: $p_{T,j} > 40 \text{ GeV}, \ m_{jj} > 600 \text{ GeV}, \ \Delta \eta_{jj} > 3.5, \ N_{\text{Lep}} = 0, \ p_T(V) > 80 \text{ GeV}$

Expect best discrimination power for second jet.

preselection: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, \Delta \eta_{jj} > 3.5, N_{\text{Lep}} = 0, p_T(V) > 80 \text{ GeV}$

Quark gluon discrimination - distributions

preselection: $p_{T,j} > 40 \text{ GeV}, \ m_{jj} > 600 \text{ GeV}, \ E_T^{\text{miss}} > 140 \text{ GeV}, \ \Delta \eta_{jj} > 3.5, \ N_{\text{Lep}} = 0$

Quark gluon discrimination - distributions

Quark gluon discrimination variables are p_T dependent

preselection: $p_{T,j} > 40$ GeV, $m_{jj} > 600$ GeV, $E_T^{\text{miss}} > 140$ GeV, $\Delta \eta_{jj} > 3.5$, $N_{\text{Lep}} = 0$

Quark gluon discrimination - distributions

Third jet gives best separation (here: $p_T > 20$ GeV)

preselection: $p_{T,j} > 40 \text{ GeV}$, $m_{jj} > 600 \text{ GeV}$, $E_{T}^{\text{miss}} > 140 \text{ GeV}$, $\Delta \eta_{jj} > 3.5$, $N_{\text{Lep}} = 0$

BDT analysis

Set	Variables
jet-level j_1 , j_2	$p_{\mathcal{T},j_1} p_{\mathcal{T},j_2} \Delta \eta_{jj} \Delta \phi_{jj} m_{jj} \not \not \in_{\mathcal{T}} \Delta \phi_{j_1, \not \in_{\mathcal{T}}} \Delta \phi_{j_2, \not \in_{\mathcal{T}}}$
subjet-level j_1 , j_2	$n_{PF, j_1} n_{PF, j_2} {\mathcal C}_{j_1} {\mathcal C}_{j_2} p_{\mathcal T} {\mathcal D}_{j_1} p_{\mathcal T} {\mathcal D}_{j_2}$
j_3 angular information	$\Delta\eta_{j_1,j_3}\Delta\eta_{j_2,j_3}\Delta\phi_{j_1,j_3}\Delta\phi_{j_2,j_3}$
jet-level j_1 - j_3	jet-level j_1 , j_2 + j_3 angular information + p_{T,j_3}
subjet-level j_1 - j_3	subjet-level j_1 , j_2 + $n_{PF,j_3} C_{j_3} p_T D_{j_3}$
preselection.	

Set	Variables
jet-level j_1 , j_2	$p_{\mathcal{T},j_1} p_{\mathcal{T},j_2} \Delta \eta_{jj} \Delta \phi_{jj} m_{jj} \not \not \in_{\mathcal{T}} \Delta \phi_{j_1, \not \in_{\mathcal{T}}} \Delta \phi_{j_2, \not \in_{\mathcal{T}}}$
subjet-level j_1 , j_2	$n_{PF,j_1} n_{PF,j_2} C_{j_1} C_{j_2} p_{\mathcal{T}} D_{j_1} p_{\mathcal{T}} D_{j_2}$
j_3 angular information	$\Delta\eta_{j_1,j_3} \Delta\eta_{j_2,j_3} \Delta\phi_{j_1,j_3} \Delta\phi_{j_2,j_3}$
jet-level j_1 - j_3	jet-level j_1 , j_2 + j_3 angular information + p_{T,j_3}
subjet-level j_1 - j_3	subjet-level j_1 , j_2 + $n_{PF,j_3} C_{j_3} p_T D_{j_3}$
preselection:	

Set	Variables
jet-level j_1 , j_2	$p_{\mathcal{T},j_1} p_{\mathcal{T},j_2} \Delta \eta_{jj} \Delta \phi_{jj} m_{jj} \not \not \in_{\mathcal{T}} \Delta \phi_{j_1, \not \in_{\mathcal{T}}} \Delta \phi_{j_2, \not \in_{\mathcal{T}}}$
subjet-level j_1 , j_2	$n_{PF,j_1} n_{PF,j_2} C_{j_1} C_{j_2} p_{\mathcal{T}} D_{j_1} p_{\mathcal{T}} D_{j_2}$
j_3 angular information	$\Delta\eta_{j_1,j_3}\Delta\eta_{j_2,j_3}\Delta\phi_{j_1,j_3}\Delta\phi_{j_2,j_3}$
jet-level j_1 - j_3	jet-level j_1 , j_2 + j_3 angular information + p_{T,j_3}
subjet-level j_1 - j_3	subjet-level j_1 , j_2 + $n_{PF,j_3} C_{j_3} p_T D_{j_3}$
preselection.	

Set	Variables
jet-level j_1 , j_2	$p_{\mathcal{T},j_1} p_{\mathcal{T},j_2} \Delta \eta_{jj} \Delta \phi_{jj} m_{jj} \not \not \in_{\mathcal{T}} \Delta \phi_{j_1, \not \in_{\mathcal{T}}} \Delta \phi_{j_2, \not \in_{\mathcal{T}}}$
subjet-level j_1 , j_2	$n_{PF, j_1} n_{PF, j_2} \mathcal{C}_{j_1} \mathcal{C}_{j_2} p_{\mathcal{T}} \mathcal{D}_{j_1} p_{\mathcal{T}} \mathcal{D}_{j_2}$
j_3 angular information	$\Delta\eta_{j_1,j_3} \Delta\eta_{j_2,j_3} \Delta\phi_{j_1,j_3} \Delta\phi_{j_2,j_3}$
jet-level j_1 - j_3	jet-level j_1 , j_2 + j_3 angular information + p_{T,j_3}
subjet-level j_1 - j_3	subjet-level j_1 , j_2 + $n_{PF,j_3} C_{j_3} p_T D_{j_3}$
preselection:	

Set	Variables
jet-level j_1 , j_2	$p_{\mathcal{T},j_1} p_{\mathcal{T},j_2} \Delta \eta_{jj} \Delta \phi_{jj} m_{jj} \not \not \in_{\mathcal{T}} \Delta \phi_{j_1, \not \in_{\mathcal{T}}} \Delta \phi_{j_2, \not \in_{\mathcal{T}}}$
subjet-level j_1 , j_2	$n_{PF,j_1} n_{PF,j_2} C_{j_1} C_{j_2} p_{\mathcal{T}} D_{j_1} p_{\mathcal{T}} D_{j_2}$
j_3 angular information	$\Delta\eta_{j_1,j_3} \Delta\eta_{j_2,j_3} \Delta\phi_{j_1,j_3} \Delta\phi_{j_2,j_3}$
jet-level j_1 - j_3	jet-level j_1 , j_2 + j_3 angular information + p_{T,j_3}
subjet-level j_1 - j_3	subjet-level j_1 , j_2 + $n_{PF,j_3} C_{j_3} p_T D_{j_3}$
preselection.	

Associated Zh production

Zh production - signature

- boosted SFOS leptons $m_{\iota\iota} \sim m_Z$
- Z+ jets not taken into account (irrelevant at high MET)

Zh production - backgrounds

Zh production - backgrounds

tī

Z+jets

WBF and Zh reach - triggering

default: $p_{T,j} >$ 40 GeV, $m_{jj} >$ 600 GeV, $E_T^{\rm miss} >$ 140 GeV

WBF and Zh reach - triggering

WBF constraints stronger for MET trigger \lesssim 350 GeV

default: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, E_T^{\text{miss}} > 140 \text{ GeV}$

WBF and Zh reach - triggering

WBF constraints stronger for MET trigger \lesssim 350 GeV

default: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, E_T^{\text{miss}} > 140 \text{ GeV}$

Conclusions

Conclusions

WBF

- Backgrounds: different behavior for N_{jets}
- Useful quark gluon discrimination variables: n_{PF}, C
- \bullet Third jet best for quark gluon discrimination $p_{\mathsf{T}} > 10 \text{ GeV}$
- However, no large improvement by QG variables when full information of additional jets is present
- WBF will still provide strongest constraints after trigger update

Thank you for your attention!

Tool chain

- used for classification problems (S/B)
- every node corresponds to decision
- always use the variable and the splitting that gives the **largest purity** of the classified samples

- used for classification problems (S/B)
- every node corresponds to decision
- always use the variable and the splitting that gives the **largest purity** of the classified samples

- used for classification problems (S/B)
- every node corresponds to decision
- always use the variable and the splitting that gives the **largest purity** of the classified samples

- used for classification problems (S/B)
- every node corresponds to decision
- always use the variable and the splitting that gives the **largest purity** of the classified samples

misclassified events

- decision trees are unstable (sensitive to statistical fluctuations)
- generate more than one tree and average
- **boosting** = modifying the **weights** of misclassified events
- different variables and splittings may be chosen at each node

$$\begin{array}{c} P = 0.48\\ p_T > 90 \end{array}$$

- decision trees are unstable (sensitive to statistical fluctuations)
- generate more than one tree and average
- **boosting** = modifying the **weights** of misclassified events
- different variables and splittings may be chosen at each node

events used for classification are the same for each tree - only the weights change

Use TMVA with

- 70 trees
- 3 Layers
- nCuts = 20
- $\bullet\,$ minimum node size 5 $\%\,$
- preselection

Zh - distributions

signal: Z boosted

Zh - distributions

signal: Z boosted

Zh - distributions

non-resonant bkgs flat

signal: Z boosted

WBF - dependence on jet cone size

Simulated process: h + 2/3 jets merged (Sherpa, parton shower) variation of jet cone size in Delphes

kinematics unchanged

Signal grows stronger with R than EW background

preselection: $p_{T,j} > 40 \text{ GeV}, m_{jj} > 600 \text{ GeV}, \Delta \eta_{jj} > 3.5, N_{\text{Lep}} = 0, p_T(V) > 80 \text{ GeV}$

WBF - dependence on jet cone size (2)

similar results in fixed-order calculation [Rauch, Zeppenfeld, 2017]

Dependence on jet cone size - hZ, $Z \rightarrow j j$

same final state, different topology

variable	cut
MET	120 - 160 GeV
Njets	2 - 3
ΔR_{jj}	0.7 - 2.0
m_{jj} (2jets)	70 - 100
m_{jj} (3jets)	50 - 100

Dependence on jet cone size - hZ, $Z \rightarrow j j$

same final state, different topology

variable	cut
MET	120 - 160 GeV
Njets	2 - 3
ΔR_{jj}	0.7 - 2.0
$m_{jj}(2 ext{jets})$	70 - 100
m_{jj} (3jets)	50 - 100

No strong dependence on R visible

Dependence on jet cone size - hZ, $Z \rightarrow j j$

