PRECISION MASSES OF ¹²⁹⁻¹³¹Cd FOR NUCLEAR ASTROPHYSICS

Dinko Atanasov Max-Planck Institute for Nuclear Physics

IMPRS Seminar, Heidelberg, 07 July 2015

Contents

- Nuclear astrophysics a place to begin...
- Production of heavy elements
- Theory
- Experiments with radioactive isotopes
- The mass spectrometer ISOLTRAP
- Results on ¹²⁹⁻¹³¹Cd
- Summary

Nuclear astrophysics

Definition: Interdisciplinary branch in physics which aims to understand the origin of chemical elements and the energy generation in stars.

Nuclear physics

- Nuclear masses •
- Half-lives •
- Reaction cross sections •

Astrophysics

- Stars, Star Clusters
- Galaxies
- Chemical composition

Natural abundance in the Solar system

Rapid neutron capture process

Starting conditions: $\tau = 10$ s; n = 10^{27} cm⁻³; T = 9 GK

Experimental facility

Online radioactive isotope production

Natural abundance in the Solar system

Natural abundance in the Solar system

ISOLTRAP setup

ISOLTRAP setup

F. Herfurth et al., NIM A 469, 254 (2001); R. N. Wolf et al., Int. J. Mass Spectrom 313, 8 (2012); G. Savard et al., Phys. Lett. A 158, 247 (1991), 12

für Kernphysik

Max-Planck-Institu

Mass measurements at ISOLTRAP

M. König et al., Int. J. Mass Spectrom. 142, 95 (1995); S. George et al., Phys. Rev. Lett. 98, 162501 (2007);

Mass measurements at ISOLTRAP

Results

 $S_{2n}(N, Z) = ME(N - 2, Z) - ME(N, Z) + 2 \cdot ME(n)$

Max-Planck-Institut für Kernphysik

15 🖫

Rapid neutron capture

Canonical model

The nuclide abundance equation in explosive burning

$$\frac{d N(A,Z)}{dt} = \lambda_n (A-1,Z)N(A-1,Z) - \lambda_n (A,Z)N(A,Z) + \lambda_\beta (A,Z-1)N(A,Z-1) - \lambda_\beta (A,Z)N(A,Z) + \lambda_\gamma (A+1,Z)N(A+1,Z) - \lambda_\gamma (A,Z)N(A,Z) + termination terms due to fission (A = 260)$$

The number density for isotope with (A, Z)

$$N(A,Z) = \omega(A,Z) \left(\frac{AM_{\mu}k T}{2 \pi \hbar^2}\right)^{3/2} \frac{N_n^{(A-Z)} N_P^Z}{2^A} e^{\frac{Q(A,Z)}{k T}}$$

Waiting-point approximation

$$\lambda_n \gg \lambda_\beta$$
 and having $(n, \gamma) \leftrightarrow (\gamma, n)$

$$\frac{dN(A,Z)}{dt} = \lambda_{\beta}(A,Z-1)N(A,Z-1) - \lambda_{\beta}(A,Z)N(A,Z)$$

$$\log \frac{N(A+1,Z)}{N(A,Z)} = \log N_n - 34.07 - \frac{3}{2}\log T_9 + \frac{5.04 Q_n}{T_9}$$

 N_n – neutron density; T_9 – temperature in GK; Q_n – neutron separation energy

Max-Planck-Institut für Kernphysik

Canonical model

130Cd Beta Branching for 1.4 GK

Canonical model

Around supernova 1987A, before and just after the event AAO image reference AAT 50 and AAT 50a (with arrow). <u>Previous || Next</u> *

Core-collapse supernova

M. Arnould, EEB 2012

Collapse scenarios - Supernovae

Collapse scenarios – Neutron Star Mergers

24

T. Tsujimoto A&A 565 L5 2014 , NR Tanvir et al. Nature , 1-3 (2013)

Collapse scenarios – Neutron Star Mergers

Collapse scenarios – Neutron Star Mergers

Summary

- Mass measurement of ¹²⁹⁻¹³¹Cd
- Bring further reliability in r-process calculations

Beta

30Cd1

Thank you and big thanks to my colleagues

P. Ascher, D. Beck, K. Blaum, Ch. Böhm, M. Breitenfeldt, R. B. Cakirli, T. Cocolios, S. Eliseev, T. Eronen, S. George, F. Herfurth, A. Herlert, M. Kowalska, S. Kreim, V. Manea, E. Minaya-Ramirez, Yu. A. Litvinov, D. Lunney, S. Naimi, D. Neidherr, A. de Roubin M. Rosenbusch, L. Schweikhard, A. Welker, F. Wienholtz, R. Wolf, K. Zuber,

Where to look for ?

Population I – Sun-like type

Population II – Globular clusters

Credits: ESA/Hubble & NASA

Metallicity

$$[Fe/H] = log_{10} \left(\frac{N_{Fe}}{N_{H}}\right)_{star} - log_{10} \left(\frac{N_{Fe}}{N_{H}}\right)_{\odot}$$

Credits: Brian Koberlein

Credits: Mt. Wilson Observatory

ToF-ICR and Ramsey excitation

